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a b s t r a c t

The latent heat of evapotranspiration (ET) plays an important role in the assessment of drought severity
as one sensitive indicator of land drought status. A simple and accurate method of estimating global ET
for the monitoring of global land surface droughts from remote sensing data is essential. The objective
of this research is to develop a hybrid ET model by introducing empirical coefficients based on a simple
linear two-source land ET model, and to then use this model to calculate the Evaporative Drought Index
(EDI) based on the actual estimated ET and the potential ET in order to characterize global surface drought
conditions. This is done using the Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation
Budget (SRB) products, AVHRR-NDVI products from the Global Inventory Modeling and Mapping Studies
(GIMMS) group, and National Centers for Environmental Prediction Reanalysis-2 (NCEP-2) datasets. We
randomly divided 22 flux towers into two groups and performed a series of cross-validations using ground
measurements collected from the corresponding flux towers. The validation results from the second
group of flux towers using the data from the first group for calibration show that the daily bias varies
from −6.72 W/m2 to 12.95 W/m2 and the average monthly bias is −1.73 W/m2. Similarly, the validation
results of the first group of flux towers using data from second group for calibration show that the daily
bias varies from −12.91 W/m2 to 10.26 W/m2 and the average monthly bias is −3.59 W/m2. To evaluate

the reliability of the hybrid ET model on a global scale, we compared the estimated ET from the GEWEX,
AVHRR-GIMMS-NDVI, and NECP-2 datasets with the latent heat flux from the Global Soil Wetness Project-
2 (GSWP-2) datasets. We found both of them to be in good agreement, which further supports the validity
of our model’s global ET estimation. Significantly, the patterns of monthly EDI anomalies have a good
spatial and temporal correlation with the Palmer Drought Severity Index (PDSI) anomalies from January
1984 to December 2002, which indicates that the method can be used to accurately monitor long-term

ht.
global land surface droug

. Introduction

Drought is a chronic potential natural disaster characterized by
n extended period of time in which less water is available than
xpected in an ecological system (Ghulam et al., 2007; Robeson,
008). The Evaporative Drought Index (EDI), which is defined as
minus the ratio of actual latent heat of evapotranspiration (ET)

o potential ET (PET), is one of the most significant metrics denot-
Please cite this article in press as: Yao, Y., et al., Monitoring global lan
Int. J. Appl. Earth Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.09.00

ng the soil moisture response to surface dryness (Yao et al., 2010).
his is because actual ET is a significant process that drives the
nergy and water exchange between the atmosphere and land sur-
ace (Priestley and Taylor, 1972; Wang et al., 2007; Wang and Liang,
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2008), and PET is the result of all other driving factors functioning
when soil moisture is not limited. Unlike other drought indices, the
EDI is easy to calculate and it also integrates the energy radiation,
which is an effective operational method for drought monitoring.
In a previous study, Yao et al. (2010) applied the EDI to both canopy
transpiration and soil evaporation by using a simple empirical ET
equation, and obtained good results for surface dryness estimates
over the contiguous United States.

Numerous studies have shown that the ratio of ET to PET can
be related to soil and plant water potentials (Abramopoulos et
al., 1988; Mahfouf and Noilhan, 1991; Song et al., 2000). When a
plant has adequate water available it will transpire at the potential
d surface drought based on a hybrid evapotranspiration model.
9

ET rate. Similarly, the actual ET rate will fall below the poten-
tial ET rate if water is limited (McVicar and Jupp, 1998; Kalma
et al., 2008). Therefore, methods for combining the ET and PET
have been used extensively for drought monitoring on landscape
and regional scales over the last several decades. The Crop Water

dx.doi.org/10.1016/j.jag.2010.09.009
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tress Index (CWSI) (see Idso et al., 1981; Jackson, 1982) was devel-
ped to estimate the full canopy water content using the ratio of
ctual ET to PET. Subsequently, Choudhury (1983) described the
WSI as the difference between canopy temperature and air tem-
erature. Moran et al. (1994) extended its application to partial
anopies to create the Water Deficit Index (WDI) for canopy water
stimation (also referred to as the Vegetation Index-Temperature
rapezoid, VITT), by using the Penman–Monteith equation with
nown values of net radiation, water vapor pressure, and wind
peed. Lambin and Ehrlich (1996) also adopted a trapezoid-method
imilar to that of Moran et al. (1994) to study the water stress of
eterogeneous landscapes. Anderson et al. (2007a,b) recently used
he Atmosphere-Land Exchange Inverse (ALEXI) model to estimate
urface latent heat fluxes and to assess soil moisture across the
ontinental United States, based on the Evaporative Stress Index
ESI). The weakness of these methods for estimating global ET
imits and their application to global drought monitoring, how-
ver, is that ET is difficult to measure and predict on global spatial
cales.

Global ET estimations in the literature have been character-
zed by the parallel development of complicated realistic models
hat require complex parameters, and simple empirical models
hat lack realistic mechanisms (Cleugh et al., 2007; Fisher et al.,
008). In general, more complex physical and analytical meth-
ds are not necessarily more accurate than simple statistical or
mpirical methods, though the datasets required to support some
f the empirical methods are not readily available (Kalma et al.,
008). Therefore, the application of a simple empirical ET method

s necessary when more detailed input data is not available. In con-
rast, traditional ET estimation models require numerous physical
nput parameters, which are not easy to acquire on a global scale.
or example, though both the Soil and Water Assessment Tool
SWAT) (Arnold et al., 1998a,b) and Variable Infiltration Capacity
VIC) (Wood et al., 1992) require precipitation data derived from
urface gauge networks, satellite imagery or modeling as an input,
ata on the subsurface soil texture is also needed. Many satellite ET
stimation methods, including Two-source Surface Energy Balance
TSEB) (Shuttleworth and Wallace, 1985), Surface Energy Balance
lgorithm for Land (SEBAL) (Bastiaanssen et al., 1998a,b), Simpli-
ed Surface Energy Balance approach (SSEB) models (Senay et al.,
007), which use the Map ET at high Resolutions with Internal Cal-

bration (METRIC) (Tittebrand et al., 2005; Allen et al., 2007a,b) and
he LST/NDVI triangle feature space methods (Gillies et al., 1997;

ang et al., 2006), often suffer from temporal and spatial gaps due
o cloud cover and the infrequency of satellite images. Recently,
n operational remote sensing algorithm for land surface evap-
ration based on a simple linear two-source land ET model was
eveloped by Nishida et al. (2003). It has proven to be effective
or estimating ET at regional-scale applications using MODIS data.
owever, it still requires too many input parameters (including
ind speed and cuticle resistance) to be of practical use in esti-
ating actual ET. As a result, the ET model will ultimately grow in

omplexity.
This study has two major objectives. First, based on the above

entioned simple linear two-source land ET model, we introduce
linear combination of the most important parameters (air tem-
erature, net radiation, etc.) controlling the actual ET to simplify
he evaporative fraction (EF), and to then develop a new hybrid ET

odel. We also validate the hybrid ET model using Atmosphere
adiation Measurement (ARM), FLUXNET and data from Chinese
xperiments. Second, we use the EDI to infer global land surface
Please cite this article in press as: Yao, Y., et al., Monitoring global lan
Int. J. Appl. Earth Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.09.00

ryness conditions from 1984 to 2002 using the hybrid ET model
ith GEWEX, AVHRR-GIMMS-NDVI, and NCEP-2 products. The EDI
atterns are compared with Palmer Drought Severity Index (PDSI)
roducts to determine the validity of the method’s drought assess-
ent on a global scale.
 PRESS
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2. Data and methodology

2.1. Data

We used global monthly surface downward and upward short-
wave and longwave radiation products at a spatial resolution of
1◦ × 1 ◦ from 1984 to 2002 that were derived from the Global Energy
and Water Cycle Experiment (GEWEX) Surface Radiation Budget
(SRB) products (http://gewex-srb.larc.nasa.gov/common/php/
SRB data products.php). The monthly NDVI at a 1-degree spatial
resolution is from the Global Inventory Modeling and Mapping
Studies (GIMMS) group at the National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center (Tucker et al.,
2005), which was obtained from National Oceanic and Atmospheric
Administration (NOAA)/AVHRR observations (http://islscp2.sesda.
com/ISLSCP2 1/data/vegetation/gimms ndvi monthly xdeg/). The
monthly air mean temperature, and the maximum and
minimum air temperature data were extracted from the
National Centers for Environmental Prediction Reanalysis-2
(NCEP-2) data, which were acquired from the NCEP/NCAR
Reanalysis Project (CDAS). These data (downloaded from
http://www.cpc.ncep.noaa.gov/products/wesley/reanalysis.html)
are found on the T-62 Gaussian grid, which has a spatial resolu-
tion of 1.875◦ longitude by approximately 1.9◦ latitude, and are
interpolated into 1◦ × 1◦ using bilinear interpolation.

To design and evaluate the hybrid ET model, MODIS
NDVI composite products with a 1-km spatial resolution and
a 16-day temporal resolution were used (downloaded from
https://wist.echo.nasa.gov/api/). The daily NDVI values were tem-
porally interpolated from the 16-day averages using linear
interpolation. We also used the flux data from twelve Atmo-
spheric Radiation Measurement (ARM) towers (EF02, EF04, EF07,
EF08, EF09, EF12, EF13, EF15, EF18, EF19, EF20, and EF26)
(downloaded from http://www.archive.arm.gov/), seven FLUXNET
towers (Hyytiala, Tharandt, Loobos, Bondville, Walker Branch
Watershed, Black Hills, and Mead Rain Fed,(downloaded from
http://daac.ornl.gov/FLUXNET/fluxnet.html), and three flux towers
in China (Miyun, Arou and Yingke) (Table 1). Except for the Chinese
flux data, the data covers the period from 2000 to 2005, and each
tower provides at least one year of reliable data. ET collected at the
ARM flux towers of the Southern Great Plains of the US was mea-
sured by the Energy Balance Bowen Ratio (EBBR) method, while the
ET collected at the other ten flux towers was measured by the Eddy
Covariance (ECOR) method. Although the ECOR method is consid-
ered best for directly measuring heat fluxes in global measurement
experiments (Baldocchi et al., 2001), we selected the method pro-
posed by Twine et al. (2000) to correct the ET from the FLUXNET
towers and Chinese flux towers, due to the problem of energy
imbalance. The corrected method is as follows:

ET = ETEC

Rc
(1)

Rc = ETEC + HEC

Rn − G
(2)

Here, ET is the corrected evapotranspiration. ETEC and HEC are the
original evapotranspiration, and the sensible heat flux measured by
the EC method, respectively. Rc is the energy closure ratio. Rn is the
surface net radiation, and G is the ground heat flux.

We also used the monthly PDSI products derived from
the NCAR CGD’s Climate Analysis Section dataset (http://www.
cgd.ucar.edu/cas/catalog/climind/pdsi.html) with a 2.5 degree spa-
d surface drought based on a hybrid evapotranspiration model.
9

tial resolution, for the period from 1984 to 2002. To highlight
the obvious features of both PDSI and EDI, we interpolated the
PDSI products into 1 degree from a 2.5 degree spatial resolu-
tion. Moreover, we used the monthly latent heat flux at a 1
degree spatial resolution, obtained from the GSWP-2 multiple-

dx.doi.org/10.1016/j.jag.2010.09.009
http://gewex-srb.larc.nasa.gov/common/php/SRB_data_products.php
http://islscp2.sesda.com/ISLSCP2_1/data/vegetation/gimms_ndvi_monthly%20_xdeg/
http://www.cpc.ncep.noaa.gov/products/wesley/reanalysis.html
https://wist.echo.nasa.gov/api/
http://www.archive.arm.gov/
http://daac.ornl.gov/FLUXNET/fluxnet.html
http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html
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Table 1
The locations, latitude (Lat), longitude (Lon), land cover types, measurement method, project names, and time-periods for the 22 flux towers. ET (W/m2) were measured
using the Energy Balance Bowen Ratio (EBBR) method at all 12 ARM EF flux towers on the Southern Great Plains of the US, while the eddy covariance (ECOR) method was
used to measure ET at the other 10 flux towers.

Site Latitude, longitude Land cover Measurement method Project Time period

Hillsboro, Kansas: EF02, US 38.31◦N, 97.30◦W Grass EBBR ARM 2003–2005
Plevna, Kansas: EF04, US 37.95◦N, 98.33◦W Rangeland (ungrazed) EBBR ARM 2003–2005
Elk Falls, Kansas: EF07, US 37.38◦N, 96.18◦W Pasture EBBR ARM 2003–2005
Coldwater, Kansas: EF08, US 37.33◦N, 99.31◦W Rangeland EBBR ARM 2003–2005
Ashton, Kansas: EF09, US 37.13◦N, 97.27◦W Pasture EBBR ARM 2003–2005
Pawhuska, Oklahoma: EF12, US 36.84◦N, 96.43◦W Native prairie EBBR ARM 2003–2005
Lamont, Oklahoma: EF13, US 36.61◦N, 97.49◦W Pasture and wheat EBBR ARM 2003–2005
Ringwood, Oklahoma: EF15, US 36.43◦N, 98.28◦W Pasture EBBR ARM 2003–2005
Morris, Oklahoma: EF18, US 35.69◦N, 95.86◦W Pasture EBBR ARM 2003–2005
El Reno, Oklahoma: EF19, US 35.56◦N, 98.02◦W Pasture (ungrazed) EBBR ARM 2003–2005
Meeker, Oklahoma: EF20, US 35.56◦N, 96.99◦W Pasture EBBR ARM 2003–2005
Cement, Oklahoma: EF26, US 34.96◦N, 98.08◦W Pasture EBBR ARM 2003–2005
Hyytiala, Finland 61.85◦N, 24.28◦W Scots pine ECOR FLUXNET 2000
Tharandt, Germany 50.97◦N, 13.67◦W Norway Spruce ECOR FLUXNET 2000
Loobos, Netherlands 52.17◦N, 44.63◦W Scots pine ECOR FLUXNET 2000
Bondville, Illinois, US 40.05◦N, 88.37◦W Crop ECOR FLUXNET 2003–2005
Walker Branch Watershed, Tennessee, US 35.96◦N, 84.29◦W Deciduous broadleaf forest ECOR FLUXNET 2003–2005
Black Hills, South Dakota, US 44.16◦N, 103.65◦W Evergreen forest (Conifer) ECOR FLUXNET 2003–2005
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Mead Rain Fed, Nebraska, US 41.16 N, 96.47 W Rainfed m
Miyun, Beijing, China 40.63◦N, 117.32◦E Mixture
Arou, Qinghai, China 38.04◦N, 100.46◦E Alpine gra
Yingke, Gansu, China 38.86◦N, 100.41◦E Crop

odel average datasets from January 1986 to December 1995
http://haneda.tkl.iis.u-tokyo.ac.jp/gswp2/), and compared it with
ur estimated ET.

.2. The hybrid ET model

In our algorithm, the landscape is simplified as a mixture of bare
oil and vegetation elements. The proportion of vegetation is the
ractional vegetation cover (fveg), which can be estimated from the
ormalized difference vegetation index (NDVI) based upon satellite
ata. Assuming that the coupled energy transfer between bare soil
nd vegetation is negligible, the total ET in a pixel is equal to the
ombination of the ET from bare soil (ETsoil) and from vegetation
ETveg) (Kustas and Norman, 1999; Nishida et al., 2003; Norman et
l., 2003; Zhang et al., 2008; Leuning et al., 2008), namely:

T = (1 − fveg)ETsoil + fvegETveg (3)

veg = NDVI − NDVImin

NDVImax − NDVImin
, (4)

here NDVImax and NDVImin are the NDVI of full vegetation (fveg =
) and bare soil (fveg = 0), which are set as seasonally and geograph-

cally invariant constants of 0.95 and 0.05, respectively.
We also introduce the evaporation fraction (EF), which is defined

s the ratio of ET to the available energy (Q) (W/m2) (Shuttleworth
t al., 1989; Nishida et al., 2003):

F = ET

Q
(5)

Here Q is the difference between the net radiation (Rn) and the
round heat transfer (G). In our method, we set G as G0Rn and G0 is
n empirical coefficient. Thus, we can express the EF as:

F = ET

Q
= ET

Rn − G
= ET

(1 − G0)Rn
(6)

At the same time, we can use the EF to describe both the ETsoil
nd ETveg:
Please cite this article in press as: Yao, Y., et al., Monitoring global lan
Int. J. Appl. Earth Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.09.00

Tsoil = QsoilEFsoil = a0Q ∗ EFsoil = a0(1 − G0)RnEFsoil (7)

Tveg = QvegEFveg = a1Q ∗ EFveg = a1(1 − G0)RnEFveg (8)

In Eqs. (7) and (8) above, Qsoil denotes the energy available from
are soil, Qveg denotes the energy available from vegetation, EFsoil
ECOR FLUXNET 2003–2005
ECOR – 2008 (July–September)
ECOR – 2008 (July–September)
ECOR – 2008 (July–September)

refers to the evaporation fraction of bare soil, and EFveg refers to
the evaporation fraction of vegetation. Here, we set Qsoil and Qveg

as a0Q and a1Q, respectively. a0 and a1 are empirical coefficients.
In this paper, to estimate the ETsoil and ETveg successfully, EFsoil

and EFveg , which are the most important variables, must be calcu-
lated using the air temperature, net radiation, NDVI, and the diurnal
air temperature range (Tmax − Tmin).

As for EFsoil, Nishida et al. (2003) revised the energy budget over
bare soil based on the maximum surface temperature (Tsoil,max) and
the actual surface temperature (Tsoil) of bare soil, as well as the air
temperature (Ta), and gave the following formula:

EFsoil = Qsoil0

Qsoil

Tsoil,max − Tsoil

Tsoil,max − Ta
= Qsoil0

Qsoil

(
1 + Ta − Tsoil

Tsoil,max − Ta

)
, (9)

where Qsoil0 is the available energy (W/m2) when Tsoil is equal to
Ta.

Eq. (9) indicates that EFsoil is closely related to the gradient of
temperature, which may reflect soil moisture, though this gradient
may not be used in regions having a known variability in surface
moisture. Goward et al. (2002) and Zhang et al. (2003) also consid-
ered surface net radiation and soil moisture as the main factors that
alter the surface ET of bare soil, an approach that is consistent with
the report of Wang et al. (2006). Wang and Liang (2008) replaced
soil moisture with the diurnal air temperature range (Tmax − Tmin),
and considered the value of ET/Rn to be closely related to the
daytime-averaged air temperature, NDVI, and the diurnal air tem-
perature range, by taking advantage of satellite measurements and
the ARM ground-measured data from the Southern Great Plains
(SGP).

To reduce the complexity of the EFsoil algorithm in Eq. (9), we
assume that Qsoil0/Qsoil and Ta − Tsoil are all invariant constants. To
calculate EFsoil approximately using air temperature, we can replace
Tsoil,max − Ta with the diurnal air temperature range (Tmax − Tmin)
to simplify the EFsoil by adding the empirical coefficients. These
assumptions may generate some biases for bare soil evaporation
estimation, but our results from independent validations, which
d surface drought based on a hybrid evapotranspiration model.
9

are given in Section 3.1, support the reliability of our simplification.
Thus, EFsoil can be expressed as:

EFsoil = b0 + b1

Tmax − Tmin
, (10)

dx.doi.org/10.1016/j.jag.2010.09.009
http://haneda.tkl.iis.u-tokyo.ac.jp/gswp2/
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here Tmax is the daily maximum air temperature, Tmin is the daily
inimum air temperature, and b0 and b1 are all the empirical

oefficients. In our method, we considered that daily satellite LST
roducts are not available under cloudy conditions, and therefore
elected air temperature as a replacement.

As for EFveg , assuming that the entire available energy is dissi-
ated as ET over dense vegetation, Nishida et al. (2003) provided
he following formulation for the analysis of EFveg:

Fveg = ˛�

� + �(1 + rc/2ra)
(11)

1
rc

= f1(Ta)f2(VPD)f3(PAR)f4(� )f5(CO2)
rc min

+ 1
rcuticle

(12)

Here, � is a derivative of the saturated vapor pressure in terms
f temperature, � is the psychrometric constant, the value of ˛ is
enerally accepted as 1.26, ra is the aerodynamic resistance, rc is
he surface resistance of the vegetation canopy, rc min is the mini-

um resistance, rcuticle is the canopy resistance related to diffusion
hrough the cuticle layer of leaves, VPD is the vapor pressure deficit,
AR is the photosynthetic active radiation, and � is the soil water
otential.

Both Eqs. (11) and (12) show that vegetation transpiration is
ainly controlled by aerodynamic resistance and canopy conduc-

ance (Kustas and Norman, 1999; Norman et al., 2003; Nishida et al.,
003; Mu et al., 2007; Zhang et al., 2008; Tang et al., 2010). Aerody-
amic resistance is affected by wind speed. Canopy conductance

s sensitive to the diurnal changes in absorbed photosyntheti-
ally active radiation (PAR), air temperature, Vapor Pressure Deficit
VPD), atmospheric CO2 concentration and soil moisture near the
oots (Jarvis, 1976; Mu et al., 2007). Some studies have shown that
ir temperature can be a surrogate for VPD (Tanaka et al., 2000).

Our method is to develop a linear combination of wind speed,
AR, air temperature, Vapor Pressure Deficit (VPD), atmospheric
O2 concentration, and soil moisture near the roots to approxi-
ately simulate the results of Eq. (11). However, because wind

peed, VPD, and CO2 concentration are difficult to estimate from
atellite data, we drop the terms of wind speed, VPD and CO2
oncentration. Additionally, we select Rn to replace PAR due to
heir approximately linear relationship. Similarly, the reciprocal of
he diurnal air temperature range (1/(Tmax − Tmin)) was selected to
enote the soil moisture near the roots. Thus, we further combine
hese factors to obtain:

Fsoil = b2 + b3Ta + b4Rn + b5

Tmax − Tmin
, (13)

here bi (i = 2, . . ., 5) is the empirical coefficient. Such simplifica-
ions may inevitably introduce errors in certain cases, but on a scale
hat is acceptable for large-scale ET estimations.

By the combination of Eqs. (3), (4), (7), (8), (10) and (13), we
btain the entire ET:

T =
(

1 − NDVI − 0.05
0.95 − 0.05

)
a0(1 − G0)Rn

(
b0 + b1

Tmax − Tmin

)

+ NDVI − 0.05
0.95 − 0.05

a1(1 − G0)Rn

(
b2 + b3Ta + b4Rn + b5

Tmax − Tmin

)
(14)

We further simplify our model by integrating a series of empir-
cal coefficients in order to propose a hybrid regression equation
Please cite this article in press as: Yao, Y., et al., Monitoring global lan
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ased on Eq. (14):

T = R2
n(c1NDVI − c2) + Rn

(
c3 + c4Ta + c5

Tmax − Tmin

)

+ Rn

(
c6 + c7Ta + c8

Tmax − Tmin

)
NDVI (15)
 PRESS
ervation and Geoinformation xxx (2010) xxx–xxx

ci (i = 1, . . ., 8) is the empirical coefficient and it can be calibrated
by linear regression using the observed data collected from a suffi-
cient number of representative flux towers. Although Eq. (15) has
been developed from a daily time-step, it can also be used to esti-
mate monthly ET by taking advantage of monthly input parameters,
because in this model, monthly forcing data can be calculated from
the averaged daily input data. In Section 3.1, we independently
validate the hybrid ET model for daily and monthly time-steps.

The hybrid model has two advantages. First, it is based on a linear
two-source land surface ET model, which treats land surface as a
composite of bare soil and vegetation with different Land Surface
Temperatures (LST), albedo, and fluxes. Second, this model inherits
the operability and applicability of a simple empirical model and
can be applied to a range of vegetation and soil moisture stress
conditions for large-scale ET estimations.

2.3. Estimation of potential evapotranspiration

Potential ET (PET) represents the ideal evaporation rate for cap-
turing the response to forcing variables if soil moisture is unlimited.
The accurate estimation of global PET is a significant challenge
due to the complexity of the global land cover and vegetation
types. To minimize the need for meteorological data but without
decreasing the accuracy of the global PET estimates, we adopted
the Hargreaves method to estimate PET. This method is much sim-
pler for practical use because it requires only two easily accessible
parameters: temperature and solar energy (Hargreaves et al., 1985;
Hargreaves, 1989, 1994). Although the Hargreaves method per-
forms effectively mainly for well-cropped grass, for exploration of
the validity of the Evaporative Drought Index (EDI), the results from
this method can be accepted on a global scale in this paper. Using
the Hargreaves model, the PET can be easily estimated from NCEP-2
data. The Hargreaves model is expressed as follows:

PET = 0.0023Ra(Tmean + 17.8)
√

Tmax − Tmin (16)

Here, PET is the potential evapotranspiration (mm/day) and Ra

is the extraterrestrial solar incident radiation (MJ m−2 day−1). The
difference between Ra and Rs is that Ra is solar radiation at the top
of atmosphere, which depends on the solar zenith angle; while Rs is
the surface solar radiation, which depends on different parameters,
including clouds, aerosols, and atmospheric water vapor content.
Bibliographical resources (Mimikou and Baltas, 2002) provide Ra as
a function of season and latitude in a tabular form.

2.4. EDI anomalies analysis and normalized calculation

To highlight the difference between drought indices for contin-
uous years and comparability with the Palmer Drought Severity
Index (PDSI), the EDI map depicts anomalies in the monthly and
multi-year average values for a period of n years.

�v̄(m, y, i, j) = v̄(m, y, i, j) − 1
n

n∑
y=1

v̄(m, y, i, j), (17)

where v̄(m, y, i, j) is an output variable for month m, year is y, and
pixel locations are i, j. Based on Eq. (17), the differences between
EDI and PDSI from 1984 to 2002 are presented to execute long-term
global surface drought mapping.

To illustrate the variation of EDI and PDSI during 1984–2002
d surface drought based on a hybrid evapotranspiration model.
9

across global continents (except for Antarctica), the average
monthly v̄(m, y, i, j) for all pixels has been calculated using Eq. (18).
The monthly normalized PDSI and EDI anomalies can then be deter-
mined based on Eqs. (19) and (20), respectively. Normalized EDI
anomalies obtained using Eq. (20) are used to keep a consistent

dx.doi.org/10.1016/j.jag.2010.09.009
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ariation for normalized PDSI anomalies, because both a higher EDI
nd a lower PDSI indicate dryer conditions.

AV(m, y) = 1
S

S∑
ij=1

�v̄(m, y, i, j) (18)

v = �AV(m, y) − �AV(m, y)min

�AV(m, y)max − �AV(m, y)min

(19)

r

v = �AV(m, y)max − �AV(m, y)

�AV(m, y)max − �AV(m, y)min

, (20)

here �AV(m, y) is the average monthly �v̄(m, y, i, j) for all pix-
ls; S is the whole number of all pixels; Nv is the normalized
AV(m, y); �AV(m, y)min is the minimum value of the �AV(m, y);

nd �AV(m, y)max is the maximum value of the �AV(m, y).

. Results and discussions

.1. Model validation

To fairly assess the accuracy of the ET estimation, we randomly
ivided the 22 flux towers listed in Table 1 into two groups and
erformed a series of cross-validations. The first group included
Please cite this article in press as: Yao, Y., et al., Monitoring global lan
Int. J. Appl. Earth Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.09.00

2 flux towers (EF02, EF07, EF12, EF15, EF19, EF20, Hyytiala, Loo-
os, Walker Branch Watershed, Mead Rain Fed, Miyun and Arou)
nd the second group was composed of the other 10 flux towers
Tables 2 and 3). We performed calibration by linearly regressing
he eight parameters in Eq. (15) using the collected ground-

able 2
summary of the statistics (bias, the Root Mean Square Error, RMSE, and the square

f the correlation coefficients, R2) of the comparison between ground-measured and
stimated daily ET from the second group of flux towers, using the first group data
o calibrate the eight parameters in Eq. (15). The bias and RMSE are in units of W/m2.

Site Bias RMSE R2

Plevna, Kansas: EF04, US 12.95 22.75 0.80
Coldwater, Kansas: EF08, US −0.84 20.86 0.71
Ashton, Kansas: EF09, US −5.93 20.31 0.84
Lamont, Oklahoma: EF13, US −1.52 22.17 0.72
Morris, Oklahoma: EF18, US −6.72 15.57 0.91
Cement, Oklahoma: EF26, US 1.70 21.88 0.74
Tharandt, Germany −0.98 21.80 0.62
Bondville, Illinois, US 0.62 17.77 0.77
Black Hills, South Dakota, US 8.07 18.92 0.63
Yingke, Gansu, China −4.19 17.37 0.75
Average 0.74 20.40 0.76

able 3
summary of the statistics (bias, the Root Mean Square Error, RMSE, and the

quare of the correlation coefficients, R2) used in the comparison between ground-
easured and estimated daily ET for the first group of flux towers using the second

roup data to calibrate the eight parameters in Eq. (15). The bias and RMSE are in
nits of W/m2.

Site Bias RMSE R2

Hillsboro, Kansas: EF02, US −5.58 19.57 0.82
Elk Falls, Kansas: EF07, US −12.91 25.97 0.75
Pawhuska, Oklahoma: EF12, US −0.81 17.66 0.86
Ringwood, Oklahoma: EF15, US −5.44 19.37 0.87
El Reno, Oklahoma: EF19, US 1.47 16.43 0.84
Meeker, Oklahoma: EF20, US −0.93 18.83 0.80
Hyytiala, Finland 10.26 16.66 0.80
Loobos, Netherlands −2.45 13.06 0.81
Walker Branch Watershed, Tennessee, US 3.67 15.12 0.90
Mead Rain Fed, Nebraska, US 9.35 17.41 0.85
Miyun, Beijing, China 5.43 18.42 0.76
Arou, Qinghai, China −8.88 20.11 0.85
Average −1.73 19.26 0.81
Fig. 1. Scatter plots of the predicted monthly ET and ground-measured ET for the
second group of flux towers using the first group data to calibrate the eight param-
eters in Eq. (15).

measured data from the first group and independently validated
the daily (or monthly) ET from the second group of flux towers. We
also calibrated by linearly regressing the eight parameters in Eq.
(15) using the second group data and independently validated the
daily (or monthly) ET from the first group of flux towers.

Table 2 demonstrates the bias, the Root Mean Square Error
(RMSE), and the square of correlation coefficients (R2) of the com-
parison between the ground-measured and estimated daily ET from
the second group of flux towers, using the first group data to cali-
brate the eight parameters in Eq. (15). We see that the bias of the
estimated daily ET varies from −6.72 W/m2 to 12.95 W/m2, the R2

varies from 0.62 to 0.91, and the RMSE varies from 15.57 W/m2 to
22.75 W/m2. Fig. 1 shows the good correspondence between the
estimated monthly ET based on our hybrid model and the mea-
sured ET from the second group of flux towers. The R2 for the
entire second group flux towers is 0.84, though it varies from site
to site, and the RMSE is 15.35 W/m2 and the bias is −1.73 W/m2.
Similarly, Table 3 demonstrates that Eq. (15) accurately estimates
the ET for the first group of flux towers using the second group
data to calibrate the eight parameters in Eq. (15). One can see
that the R2 is greater than 0.75, the bias of the estimated daily
ET deviating from the corresponding ground-measured ET varies
from −12.91 W/m2 to 10.26 W/m2, and the RMSE varies from
13.06 W/m2 to 25.97 W/m2. Fig. 2 illustrates the good agreement
between the estimated monthly ET based on our model versus
the measured ET from the first group of flux towers. The over-
all correlation coefficient of a comparison between the measured
and predicted monthly ET using Eq. (15) is 0.83, the RMSE is
12.88 W/m2, and the bias is −3.59 W/m2. Jiang and Islam (2001)
documented an RMSE of 85.30 W/m2 using the linear NDVI-LST spa-
tial variation method from NOAA-AVHRR data and an interpolated
surface net radiation map over the SGP area for 2001. Seguin et
al. (1999) suggested that the required ET retrieval accuracy varies
according to the application, but is typically 50 W/m2. The accuracy
of our study results meets this requirement.

The use of our ET algorithm, however, also produces biases
between the ET estimates and the ET observations, which may
d surface drought based on a hybrid evapotranspiration model.
9

reflect the influence of two factors. (1) There may be errors in the
input data. The collected flux and meteorological data is typically at
half-hour intervals. Using so few observation samples to calculate
the daily input parameters can lead to errors (Desai et al., 2005).
The uncertainty of MODIS NDVI products also limits our ability to

dx.doi.org/10.1016/j.jag.2010.09.009
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ig. 2. Scatter plots of the predicted monthly ET and ground-measured ET for the
rst group of flux towers using the second group data to calibrate the eight param-
ters in Eq. (15).

btain reliable estimates of the daily ET. (2) There are limitations
n the algorithm. Though our ET model can work well for a wide
ange of land cover types, our algorithm may overestimate the ET
or arid regions where the ET is relatively small, such as over the
reat deserts of North Africa. Further study is therefore needed to
mprove the ET algorithm for certain ecosystems, such as those in
rid regions.

.2. Global implementation of the ET estimation

We implemented the revised ET algorithm globally to further
emonstrate its reliability. We selected Rn, NDVI, Ta, Tmax, and Tmin,
s the input parameters to linearly regress to yield Eq. (21) for
lobal ET estimation based on daily meteorological data, and MODIS
DVI composite products with a 1-km spatial resolution tempo-

ally interpolated from the 16-day averages covering 2000–2008
rom all twenty-two flux towers (Table 1). Considering the variety
f land cover that includes grass, rangeland, pastures, crop fields,
orests, and mixed cover—including vegetation and bare soil—and
onsidering that their locations also differ greatly from each other,
e find these sufficiently representative for the purpose of estimat-

ng global ET (except for desert and glacier regions).

T = R2
n(0.00084NDVI − 0.000978)

+ Rn

(
0.3044 + 0.0029Ta + 0.284

Tmax − Tmin

)

+ Rn

(
0.1273 + 0.01Ta + 0.065

Tmax − Tmin

)
NDVI (21)

Fig. 3 shows scatter plots of a comparison between 16-day daily
stimated and ground-measured ET using ground observation data.
he 16-day average has been used here because the MODIS NDVI
roducts are available for a 16-day interval. We observe that the
ias of the estimated ET at all twenty-two sites is 0.01 W/m2. The
MSE is 14.74 W/m2 and the R2 is about 0.84. The accuracy of the
T simulation can be used for estimating the global land surface ET.

Rigorous validation of global ET derived from the remote sensing
adiation flux described here is difficult because it requires time-
Please cite this article in press as: Yao, Y., et al., Monitoring global lan
Int. J. Appl. Earth Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.09.00

ontinuous flux measurements on a scale of at least 1 degree. Until
ow, such time-continuous flux measurements have not existed
n a global scale. Moreover, the latent heat flux derived from
eanalysis datasets, data assimilation, and global land model sim-
lations also contains large uncertainties. To illustrate the validity
Fig. 3. Comparison of the 16-day daily estimated and ground-measured ET collected
at all 22 sites shown in Table 1. The 16-day average was used because MODIS NDVI
products have a 16-day interval.

of our hybrid ET model, we compared the monthly ET at a spatial
resolution of 1◦ × 1◦ as predicted by Eq. (21) to the 15-model-
simulation-averaged ET from the Global Soil Wetness Project-2
(GSWP-2) (Dirmey et al., 2006; Wang and Liang, 2008), even though
their results may indicate significant differences. The forcing data
of our model includes global monthly GEWEX surface net radiation
products, monthly AVHRR-GIMMS-NDVI datasets, monthly NCEP-2
reanalysis air mean temperature, and maximum and the minimum
air temperature data from 1984 to 2002. GSWP-2 is an offline land
surface model and its ET products are superior to the results of other
individual models. It can therefore be considered as a reference
dataset to evaluate our hybrid model.

One example of the evaluation of the hybrid ET model is a com-
parison of the estimated monthly ET of October 1986 using GEWEX,
AVHRR-GIMMS-NDVI and NCEP-2 datasets with the latent heat flux
from GSWP-2 in Fig. 4. Fig. 4(a) and (b) show similar spatial distri-
bution patterns in both maps, though the ET over the central and
southern areas of the US exhibit great differences. This discrepancy
may be an error that was partially caused by the inaccuracy of the
GEWEX and NCEP-2 data. We can see that the bias of the estimated
ET that deviates from the GSWP-2 ET is 0.01 W/m2 in Fig. 4(c). Fur-
thermore, the RMSE is 16.24 W/m2 and the R2 is 0.76. This small
positive bias may be partially attributed to our overestimate of ET
over the desert and glacier regions.

Fig. 5 shows histograms of the R2, bias, and RMSE of the compar-
ison between the ET estimated by Eq. (21) and the corresponding
GSWP-2 ET during the 120 months from January 1986 to Decem-
ber 1995. Fig. 5(a) shows a bias range of −4.54–10.19 W/m2, with a
mean bias of 6.15 W/m2; Fig. 5(b) shows an R2 range of 0.54–0.82,
with a mean R2 of 0.71; and Fig. 5(c) shows an RMSE range of
16.34–24.31 W/m2, with a mean RMSE of 20.34 W/m2. This bias
may partly reflect the simulation bias of the hybrid ET model itself.
The good agreement between the two independent datasets indi-
cates that the hybrid ET model provides reliable information for
global applications.

Global monthly ET products (except for Antarctica) from 1984
to 2002 have been obtained based on Eq. (21), though the ET over
desert, snow and ice are overestimated. The month-to-month pat-
d surface drought based on a hybrid evapotranspiration model.
9

terns for April through September of 2001 and 2002 reveal similar
spatial distribution and seasonal shifts (Fig. 6). This seasonal inter-
val was selected to cover most of the crop growing cycle—excluding
snow cover. The major regions of northern Africa and Australia

dx.doi.org/10.1016/j.jag.2010.09.009
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T; and (c) scatter plots of the estimated monthly ET for October 1986 and the corr
Please cite this article in press as: Yao, Y., et al., Monitoring global lan
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emain consistently low throughout 2001 and 2002, while the
outhern hemispheric tropics remain consistently high. In the high
orthern latitudes, the global ET presents high variations with

ncreases into the northern summer, which trail off in the autumn

ig. 5. Histograms of the (a) bias, (b) square of correlation coefficient (R2), and (c) Root M
21) and the corresponding GSWP-2 ET during the 120 months from January 1986 to Dec
and NCEP-2 datasets of October 1986, and the corresponding latent heat flux from
ing Eq. (21) for October 1986; (b) spatial distribution of the corresponding GSWP-2
ding GSWP-2 ET.
d surface drought based on a hybrid evapotranspiration model.
9

due to the major global change on a monthly scale. Though it is a
challenge to give a detailed explanation for this variation in global
ET, it may be attributed to the differences in temperature, precipi-
tation, and vegetation growth conditions in different regions.

ean Square Error (RMSE) used in the comparison between ET estimated using Eq.
ember 1995.
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Fig. 6. Estimated global monthly ET for April–September of 2001–2002.

.3. Global EDI anomalies in comparison with the Palmer
rought Severity Index

Palmer drought indices can reflect drought impacts over dif-
erent time periods and incorporate antecedent precipitation,

oisture supply and demand (Palmer, 1965). The Palmer mois-
ure anomaly index (Z index), the Palmer Drought Severity Index
PDSI), and the Palmer Hydrologic Drought Severity Index (PHDSI)
ere developed for the monitoring of long-term surface drought

onditions. Of these tools, PDSI has been most widely used to sim-
late the monthly moisture content of soil and to compare monthly
nomalies of regions with variable climates and seasons (Palmer,
965; Dai et al., 2004; Szep et al., 2005). Considering that it is
ne of the most common indices used worldwide, PDSI is most
omparable to the EDI, even as its functional deficiencies are well
nown.

To highlight the extremely dry conditions during 1984–2002,
he monthly EDI deviations (�EDI) and PDSI deviations (�PDSI)
verage were calculated, because EDI anomalies (�EDI) or PDSI
eviations (�PDSI) can emphasize the differences in EDI or PDSI
ariation by removing their identical features over a long period of
ime. To improve the comparability of the EDI anomalies (�EDI)
nd PDSI deviations (�PDSI), monthly normalized EDI anoma-
ies (�EDI) and PDSI deviations (�PDSI) averaged for all pixels
except for Antarctica) were calculated. Fig. 7 shows the tempo-
al variation of monthly normalized EDI and PDSI anomalies from
Please cite this article in press as: Yao, Y., et al., Monitoring global lan
Int. J. Appl. Earth Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.09.00

anuary 1984 to December 2002. One can see that the monthly
urves are in good agreement from January 1990 to December
002, and the statistical analysis results show that the correla-
ion coefficient between them is greater than 0.7. However, there
s an obvious bias of the normalized EDI anomalies (�EDI) and
Fig. 7. Temporal variation of monthly normalized EDI and PDSI anomalies from
January 1984 to December 2002.

PDSI deviations (�PDSI) from January 1984 to December 1989,
and EDI shows a larger variation than PDSI (Fig. 7), particularly
for January 1986. This discrepancy is obvious because PDSI is esti-
mated using antecedent precipitation while EDI is primarily driven
by radiation, the vegetation index, and the temperature dataset.
In general, satellite-based EDI may serve as an after-effect drought
indicator, since there are time lags between occurrences of drought
in some consecutive time periods, and the ET changes because
healthy vegetation can maintain a high ET for longer intervals after
rain events due to sufficient soil moisture from vegetation roots,
a dynamic which coincides with the results of Anderson et al.
(2007a,b). Moreover, the errors of an input dataset that includes
GEWEX radiation products, AVHRR-GIMMS NDVI products, and
NCEP-2 data, along with the biases of the ET and PET models,
may be the primary source of the biases of satellite-based EDI
products.

To analyze the spatial pattern in both �EDI and �PDSI from
1984 to 2002, we mapped the monthly EDI deviations (�EDI) and
PDSI deviations (�PDSI) for April through September of 2001–2002
(Fig. 8), because of the relatively wet conditions of 2001 and the dry
conditions of 2002 shown in Fig. 7.

In 2001, both indices show that the western regions of North
America, the central regions of Africa, the east of South Amer-
ica, east Asia (mainly eastern China), and southeast Australia were
dryer during April, as can be seen in both �EDI and �PDSI, a result
which is consistent with those of previous studies (White et al.,
2003; Dai et al., 2004; Bordi et al., 2006; Kim et al., 2009; Zhao
and Running, 2010). By May, the regions of the western areas of
South America and Europe, north Asia, southern Africa, and the
central and eastern areas of North America become wetter due to
the heavy monthly precipitation, and the dry conditions shift to
the eastern coastal regions of each continent. In June, both indices
show extremely dry conditions prevalent from west Asia to South-
east Asia, while the eastern areas of North America become wetter.
In July, dry conditions still exist in Southeast Asia in the �EDI map,
while this region appears wet in the �PDSI map. These differences
may well reflect the slight decreases of the southeast Asia ET due
to the decline in net radiation caused by industrial activity and
the vegetation coverage fraction caused by human activity (Zhou
et al., 2004). From August to September, extreme drought condi-
tions affect much of the southeast area of Australia, though there
is a slight difference in both �EDI and �PDSI maps from April to
September. For example, the �PDSI map indicates that during this
period, there was an almost continuous band of extreme drought
stretching across North Africa, but the �EDI map indicates an oppo-
site trend. These discrepancies between the EDI and PDSI maps may
indicate that our hybrid ET model may generate overestimations
over the great deserts of North Africa, where the ET is relatively
d surface drought based on a hybrid evapotranspiration model.
9

small.
In contrast to 2001, both indices for 2002 show the entire Aus-

tralian continent became dryer from April to September. The �EDI
map indicates the obvious dryer condition that prevails in the

dx.doi.org/10.1016/j.jag.2010.09.009
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ig. 8. (a) Monthly anomalies of EDI (�EDI) compared with anomalies in the PDSI (�
ith anomalies in the PDSI (�PDSI) for April–September of 2001–2002.

outhern areas of Africa in both April and May, but the �PDSI
ap did not capture this detail. This difference may be partially

xplained by both the energy radiation driving the change in EDI
nd the precipitation controlling the change in PDSI. The wet con-
itions in Europe became dryer in June, and overall, the trends in
he �EDI map are consistent with those in the �PDSI map. By July,
oth �EDI and �PDSI highlight the dry conditions that prevailed

n east Asia and the western areas of North America because these
egions suffered from lack of rain. This finding is consistent with
he reported Drought Monitor records of the US These extreme
ry conditions persisted into the month of August. However, both
he eastern areas of North America and the western areas of South
merica are wetter in the �EDI map than in the �PDSI map. This
et condition was aggravated to some extent in September. It is
challenge to speculate in detail as to the possible causes of the

DI changes over all continental regions (except for Antarctica),
ecause the factors of net radiation, air temperature, precipitation,
apor pressure deficit, and land cover all contribute to the EDI for
and surface drought monitoring.

In general, there is a good correspondence between the spatio-
emporal pattern in both �EDI and �PDSI maps. They both use
ndependent methods for surface dryness detection, because the
nput parameters for EDI include surface net radiation, air temper-
ture, NDVI, and diurnal air temperature ranges, while the PDSI
equires antecedent precipitation data. The good agreement of the
patio-temporal patterns in both the �EDI and �PDSI maps indi-
ates that the EDI based on net radiation, air temperature, NDVI, and
iurnal air temperature ranges can provide a valuable method for
onitoring global drought events using satellite and NCEP-2 data.

. Conclusions
Please cite this article in press as: Yao, Y., et al., Monitoring global lan
Int. J. Appl. Earth Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.09.00

The hybrid ET model described in this paper, which is based on
he surface energy balance and empirical equations, has a demon-
trated utility in mapping and estimating ET on a global scale. The
ybrid ET model is a significantly simplified, two-source evapo-
for April–September of 2001–2002. (b) Monthly anomalies of EDI (�EDI) compared

ration empirical model in which the landscape is considered as
a mixture of bare soil and vegetation. Moreover, the model has
the operability and flexibility to incorporate satellite products to
improve its accuracy. Based on this ET model, the Evaporative
Drought Index (EDI) was adopted to highlight surface dryness by
integrating information regarding energy fluxes in response to soil
moisture stress, and the model then proved its effectiveness in
global drought monitoring.

Global monthly EDI from 1984 to 2002 were produced using
the hybrid ET model with the net radiation, vegetation index, tem-
perature, and the diurnal difference in temperatures from GEWEX,
AVHRR-GIMMS-NDVI, and NCEP Reanalysis-2 data. To assess the
accuracy of the hybrid ET model, we randomly divided the 22 flux
towers into two groups and performed a series of cross-validations
using ground measurements collected from the corresponding flux
towers. The validation results from the second group of flux towers
using the first group data to calibrate them, show that the daily bias
varies from −6.72 W/m2 to 12.95 W/m2 and the average monthly
bias is −1.73 W/m2. Similarly the validation results for the first
group flux towers using the second group data to calibrate them,
show that the daily bias varies from −12.91 W/m2 to 10.26 W/m2

and the average monthly bias is −3.59 W/m2. To evaluate the reli-
ability of the hybrid ET model on a global scale, we compared the
estimated ET from GEWEX, AVHRR-GIMMS-NDVI and NECP-2 data
with the latent heat flux from GSWP-2 datasets, and found that both
were in good agreement. This further indicates that the hybrid ET
model can provide reliable information for global applications. We
compared the EDI with the Palmer Drought Severity Index (PDSI),
and the results show a good correspondence between their spatial-
temporal patterns. Since an EDI based on the hybrid ET model can
accurately interpret variations in soil moisture caused by drought
d surface drought based on a hybrid evapotranspiration model.
9

stress, it can also provide a favorable range of sensitivity resolu-
tion to detect surface drought events. Further exploration of the
EDI based on the hybrid ET model, and the advantages it offers for
different eco-systems, will continue to be the focus of our future
research efforts.

dx.doi.org/10.1016/j.jag.2010.09.009
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