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1 Introduction

Biophysical vulnerability,which is concerned with disruptions to biological and physical systems, is

inherently a spatial phenomenon. Food security or sensitivity—specifically the sensitivity of food

production systems—is a particularly precarious dimension of vulnerability, especially considering

the impending threat of global climate change. But this biophysical vulnerability can also precip-

itate social vulnerability. Within the realm of global climate change shocks, which can be both

idiosyncratic and covariate, it is by now widely acknowledged that the poorest of the world’s citizens

will find themselves particularly vulnerable, both because they often live in lower latitudes where

temperatures are often already close to (or beyond) optimal, because they often live in areas prone

to environmental disasters—disasters which can be enhanced as a result of climatic change—and

because they lack the individual and societal wherewithal to adequately adapt to the shocks affect-

ing their overall welfare (Diffenbaugh et al., 2007; Cline, 2007; IPCC, 2007). At present, there is no

‘gold standard’ definition of food security (Maxwell and Frankenberger, 1992), and thus there is no

perfect measure. Even those measures that purport to gauge security according to the World Bank’s

definition1 are subject to problematic measurements (De Araujo Marinho, 2008). Researchers are

thus generally forced to use proxy measures that may be consequential to or symptomatic of food

insecurity. Malnutrition—particularly juvenile malnutrition—is one such commonly cited measure.

For example, Figure 1 shows the spatial distribution of malnutrition (percent of children under 5

suffering from malnourishment) in Sub-Saharan Africa. Only South Africa has less than 11% of

childrn under 5 years of age suffering from malnutrition. In several countries, nearly 1 in 5 children

under the age of 5 suffer from malnutritino. Dow and Downing (2007) report that, as of 2005, 20 of

the 47 countries in Sub-Saharan Africa were already plagued with juvenile malnutrition (their mea-

sure of malnutrition is being moderately or severly underweight). The use of this proxy-and some

others-seems to have its source in Malthusian philosophies, drawing upon the geometric growth of

population expansion and the linear expansion in agricultural production as the main driving force

behind hunger. While population expansion may be a significant threat to food security, the policy

1The World Bank defines food security as “access of all people at all times to enough food for an active, healthy
life” (World Bank, 1986).
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responses to this threat are quite scarce, and may be limited to coercive anti-reproductive policies

(like those introduced China in 1979). Rather, recent food crises seem to support the hypotheses

that future concerns for food security will need to pay close attention to both demand- and supply-

side constraints. In this paper, we investigate and quantify the degree of biophysical vulnerability

in Sub-Saharan Africa at the scale of geographic grid cells, where the biophysical vulnerability is

specifically in regards to food production systems. Specifically, we examine the extent to which

cereal productivity in Sub-Saharan Africa is a function of exogenous factors such as temperature,

precipitation, irrigation, soil chemistry, elevation and distance to the seashore, taking into consider-

ation both parametric spatial heterogeneity across countries and local spillovers producing spatial

dependence. Because African food insecurity is expected to be exacerbated as a result of projected

changes to the global environment, we aim to use simulated climate shocks to predict the extent

to which yields in Sub-Saharan Africa are exposed to specific aspects of projected climate change,

including increases in temperature and changes in precipitation patterns.

2 Conceptual Background

It is well documented that Sub-Saharan Africa is heavily dependent on agriculture. Indeed, next

to the South Asian subcontinent, the subcontinent of Sub-Saharan Africa is the most heavily

agriculture-dependent region in the world, with nearly 19% of the region’s gross output being

produced in the agricultural sector (World Bank, 2006). Additionally, many of the countries in

Sub-Saharan Africa derive upwards of 30% of their GDP from agricultural production (See Figure

2). Despite this heavy dependence, agricultural productivity has been steadily declining in Sub-

Saharan Africa over the last 50 years (See Figure 3 and Table 1). At first glance, the nexus of

a heavy dependence on agriculture and a falling agricultural production would seem catastrophic.

It is often quite tempting to think of food security as simply the risk of famine or mass starva-

tion. Food production is generally the first variable that comes to mind when the word famine is

pronounced (De Araujo Marinho, 2008). Many would suggest, however, that in an interconnected

global community in which international trade can facilitate food shortcomings, it need not be

so. However, there is much evidence to suggest that lower food production may be a precursor to
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lower food security, even when international food trade is allowed. Nafziger (2003) has shown that

falling agricultural production may in fact have significant impacts on the availability of physical,

social, and economic capital. Thus, while low food production may not be a necessary condition

for a famine, it may be (under the right circumstances) a sufficient condition. “Declining rural pro-

ductivity contributes not only to increased dog-eat-dog contention among severely impoverished

rural populations, but also spurs rural-urban migration, increasing urban unemployment, under-

employment, and political discontent, which contribute to humanitarian emergencies” (Nafziger,

2003, p. 300). For example, especially for countries heavily dependent on agriculture, the failure

of food and agricultural development is a key element of overall economic stagnation, which has

direct impacts on the provision of public goods and services. Such widespread economic stagna-

tion also has a direct impact on wage income and overall employment, which limits the ability to

purchase food to supplement production shortfalls (Sen, 1999). In economies heavily dependent

upon agriculture, food scarcity could lead to sharp increases in food prices, which could lower the

purchasing power of farm laborers, who constitute a significant proportion of the overall popula-

tion. Similarly, it has been suggested that low agricultural production can result in rising social

tensions, particularly when warning signs of low output lead to food panics and riots. In several

African countries, agricultural stagnation has also been associated with overall slow technological

and institutional modernization, unfavorable government policies and factor market distortions,

and obsolete agrarian structures (Nafziger, 2003).

Particularly, cereals (wheat, rice, barley, maize, rye, oats, millet and sorghum) play an impor-

tant role in the diets of people in Sub-Saharan Africa. Cereals constitute 47% of total caloric food

consumption (Kcal/capita/day) for households in Sub-Saharan Africa (see Figure 4) and 50% of

protein consumption (see Figure 5). Additionally, cereals provide calories more cheaply than do

other sources of food. Clearly then, understanding and anticipating changes in cereal grains pro-

duction are vitally important avenues for research. Recent food supply shocks caused by weather

disruptions, livestock and crop disease, and export restrictions created serious crises in many of

the poorest regions in the world. The challenges of addressing food security are even more press-

ing when we consider the impending climatic changes, if history is any indicator. Historically,
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temperature extremes in the peak growing seasons have been devastating to regional agricultural

production, which can quickly produce chaos in international markets when policymakers intervene

to restrict the limited domestic food supply from being exported.

There have been three primary strands of literature in studying the effects of climate change

on agriculture: agronomic crop models, agro-ecological zone studies, and cross-sectional Ricardian

models. Each of these models are unique and have their own strengths and weaknesses. The

agronomic crop models utilize controlled experiments in which crops are grown in either field

or laboratory settings under different climatic conditions and concentrations of atmospheric CO2.

Many of these test plots involve Free-Air Carbon dioxide Enrichment (FACE) methods, in which the

plot is surrounded by a circular array of pipes that release CO2 at a rate consistent with maintaining

a specified, fixed atmospheric concentration, with sensors in the interior of the plot continually

measuring the effective concentration. Based on the results of these experiments, scientists are able

to estimate a yield response of specific crops to various conditions, from which they can extrapolate

the projected losses (or gains) based on various climate change scenarios, generally utilizing global

circulation models (GCMs). In a landmark study, Rosenzweig and Parry (1994) predicted that

doubling of atmospheric carbon would have only a small negative effect on global crop production,

but the effects would be more pronounced in developing countries. Recent climate simulations have

predicted a similar pattern in the future. Compiling the results from various global circulation and

Ricardian models, Cline (2007) predicts generally significant reductions in overall yields across Sub-

Saharan Africa (See Table 7). Tebaldi and Lobell (2008) predicted rather remarkable declines in

crop yields with a modest (1 degree) increase in average growing season temperature. Maize yields

are predicted to decline by about 10%− 15% with a 1◦C increase in growing season temperature,

a temperature change lower than most published estimates (around 3◦). Similarly, barley yields

are predicted to decline by about 10% and wheat yields by about 5%− 6% with a 1◦C increase in

growing season temperature. Climate change researchers are essentially predicting a lateral shift in

the distribution of mean seasonal temperatures. Battisti and Naylor (2009) used predictions from

23 GCMs and show that there is a greater than 90% probability that growing season temperatures

in the tropics and subtropics will be higher than the observed extremes from 1900 through 2006.
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They suggest that “the warmest summers during the past century will represent the norm by the

end of this century”.

The second primary strand of literature involves the analysis of changes in agro-ecological zone

(AEZ) land usage. These models combine crop simulation models with land-use decision analysis

and model changes in agronomic resources to assess changes in agricultural production, premised

on lands shifting from one agro-ecological classification to another with changes in environmental

conditions (Cline, 2007). A pioneering work in this literature is Darwin et al. (1995). Their model

utilizes a multi-region, multi-sector computable general equilibrium (CGE) framework to assess

changes in land use based on climatic changes, where the effects of climate change are derived from

four global circulation models. These models explicitly recognize that land values may change as a

result of climate change, and therefore the uses of land may change as well. A drawback of these

models is that they are inherently dependent upon the underlying behavioral assumptions and the

subsequent parameterization of the model. These models assume fluid prices and market closure, so

may not capture structural rigidities that could realistically influence dynamic equilibria. Largely

because of this assumption of fluid prices and market closure, Darwin et al. (1995) find that the

adverse effect of climate change on yields will drive up food prices, ultimately resulting in increased

land being devoted to food crop production, with little change in overall actual output.

The third strand of the literature involves cross-sectional reduced-form hedonic pricing models,

which have come to be known as Ricardian2 cross-section econometric models. Ricardian models

use statistical methods to estimate the response of land values to climatic changes. Because land

rents are assumed to reflect the value of the activity to which that land is allocated, these models are

thought to embody adaptation, thus controlling for the “dumb farmer” scenario that were identified

in traditional production function approaches. The first entry in this literature was Mendelsohn

et al. (1994), which found that, within the context of the United States, higher temperatures

generally resulted in lower land values, so they suggested that the effects of global warming on

the agricultural sector might be lower than estimated. premised on the argument that land values

account for the direct impact of climate on yields. The primary strength of these models is that

2These models are called ’Ricardian’ after David Ricardo (1772-1823), who theorized that land is allocated ac-
cording to whichever usage is able to pay the highest rents.
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they explicitly allow for adaptation.

In a landmark study, Rosenzweig and Parry (1994) predicted that doubling of atmospheric

carbon would have only a small negative effect on global crop production, but the effects would

be more pronounced in developing countries. Recent climate simulations have predicted a similar

pattern in the future. Compiling the results from various global circulation and Ricardian models,

Cline (2007) predicts generally significant reductions in overall yields across Sub-Saharan Africa

(See Table 7). Tebaldi and Lobell (2008) predicted rather remarkable declines in crop yields with

a modest (1 degree) increase in average growing season temperature. Maize yields are predicted

to decline by about 10%− 15% with a 1◦C increase in growing season temperature, a temperature

change lower than most published estimates (around 3◦). Similarly, barley yields are predicted to

decline by about 10% and wheat yields by about 5%− 6% with a 1◦C increase in growing season

temperature. Climate change researchers are essentially predicting a lateral shift in the distribution

of mean seasonal temperatures. Battisti and Naylor (2009) used predictions from 23 GCMs and

show that there is a greater than 90% probability that growing season temperatures in the tropics

and subtropics will be higher than the observed extremes from 1900 through 2006. They suggest

that “the warmest summers during the past century will represent the norm by the end of this

century”.

This study is somewhat of a hybrid, blending elements of the agronomic crop yield studies and

the econometric approach of Mendelsohn et al. (1994). Whereas the agronomic studies use field

experiments to estimate crop responses, this study uses statistical methods to isolate ceteris paribus

effects of explanatory factors in explaining yield responses. Similar to Mendelsohn et al. (1994), we

follow an econometric methodology, but with a different objective of analysis and an extension that

considers the effects of spatial spillovers. This study does not explicitly use a Ricardian framework,

as land values are not being explained by climatological and topographical factors, but rather we

use these factors to explain yields, allowing for the isolation of spatial dependence3.

3We did not use a Ricardian framework for several reasons. First, it would be difficult—if not impossible—to
derive land rental rates for sub-Saharan Africa, particularly at the level of geographic grid cells. Additionally, for
many parts of sub-Saharan Africa, there are lax property rights, and such laxity severely reduces the validity of any
land rental rates that could be identified. It could also be argued that rental rates in Africa may not truly reflect
the economic opportunities of such land (this argument is, of course, correlated with the laxity of property rights)
Finally, because many farmers in Africa grow crops for subsistence rather than for market, they are not likely to
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A weakness of the existing yield response studies is that, while they may take location into con-

sideration (i.e., the characteristics of a particular location), they often don’t consider the effect of

local technological spillovers or high-level institutions. Thus, while they may identify a statistical re-

lationship between agricultural productivity and environmental variables (such as temperature and

precipitation), they omit other relevant explanatory variables. We attempt to correct this oversight

by modeling the process of agricultural productivity as a spatial process, taking into consideration

spatially contemporaneous explanatory variables as well as the effect of spatial “neighborhoods”

and parametric heterogeneity over space.

The proposed methodology is certainly not without flaws of its own. This approach does not

explicitly allow for adaptation, which is one of the touted advantages of the Ricardian approach.

Similarly, unlike the agronomic crop yield studies, this approach quantifies only statistical corre-

lations, without necessarily identifying causality. Additionally, because this study focuses on a

cross-sectional analysis, we forgo any dynamical elements that affect crop yields. If we assume

trend stationarity, then it could plausibly be argued that cross-sectional differences in yields could

capture some of the dynamical or temporal differences as well. Facing impending climate change,

however, it is unlikely that current cross-sectional differences will be representative of dynamic dif-

ferences over the ensuing decades (e.g., see Battisti and Naylor, 2009). Nevertheless, because this

study allows for spillovers and heterogeneity, it is a novel contribution to the literature on yields

and may provide insights into strategies for buffering the effects of climate change on agricultural

production, which in turn may have impacts on food security.

3 Data Description

The areal data used in this analysis comes from several primary sources. To examine cereal yields

(the dependent variable in this analysis), we utilize 5′ × 5′ grid cell data on global cereal yields in

the year 2000 from Monfreda et al. (2008). The spatial distribution of yields in Sub-Saharan Africa

can be seen in Figure 6. Data on irrigation and soil carbon density (both at a 5′×5′ grid cell level),

and soil pH (at 0.5 ◦ × 0.5 ◦ resolution) come from FAO-Aquastat, the International Geosphere-

adapt to climate change by switching their planting from cereals or other food crops to higher returning cash crops.
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Biosphere Program (IGBP), and the International Soil Reference and Information Centre (ISRIC),

respectively. The latter two data sets were acquired through the Oak Ridge National Laboratories

Distributed Active Archive Center (ORNL-DAAC). Additionally, we utilize 1 ◦ × 1 ◦ grid cell data

on various other spatial, environmental, and economic factors obtained fromWilliam Nordhaus’s G-

Econ dataset (Nordhaus et al., 2006). The yield, irrigation, and soil chemistry data were aggregated

to 1 ◦×1 ◦ in order for it to be spatially joined to the G-Econ data applying standard GIS techniques.

These data consist of 2,517 observations spanning all of sub-Saharan Africa4. The G-Econ dataset

contains observations for gross cell product–hereafter GCP, the grid cell level equivalent of gross

domestic product–which is a population-weighted estimate of grid cell income based on the gross

domestic product for the country and the share of the population residing in a particular grid

cell5. Summary statistics for these data can be found in Table 3. Generally, for the purposes of

examining spatial effects, grid cell data are ideal in the sense that they can easily be thought of as

a regular lattice, which forms a very simple and intuitive spatial system. From this regular lattice,

it becomes a very simple procedure to construct neighborhood structures and weights matrices

based on simple contiguity of either the rook or queen6. However, one drawback of the G-Econ

data is that it cannot easily be converted from points to polygons—even simply Thiessen polygons.

In an effort to be thorough in presenting the data, geographic coordinates—off of which the grid

cells are based—are represented more than once if the area of the cell is shared by more than one

country. For example, if the border between two countries passes through a grid cell, then the

geographic coordinates corresponding to that grid cell will show up under both countries, though

under both entries information is provided as to what portion of the total area of the grid cell

belongs to which country (i.e., a “rate in grid”—or RIG—observation for each country) and the

data for some of the variables is generally different for the countries in question.7 These non-

4In the econometric analysis that follows, Zimbabwe and Somalia were removed from the sample due to missing
data on some key explanatory variables. Most of the exploratory spatial data analysis centered on other variables
proceeded with these countries included.

5For a detailed description of the construction of this variable, see Nordhaus (2006). While this is no doubt an
imperfect measure for the actual level of income at the grid cell level, it is to date the best approximation at this
level of spatial resolution

6These forms of contiguity take their name from the game of chess, in which rooks can only move in the vertical
and horizontal direction, whereas the queen can move vertically and horizontally, as well as along any of the diagonals.

7Noteworthy exceptions to this general rule include precipitation, temperature, elevation and distance data, which
are generally specific at the grid cell level and would therefore be expected to be homogeneous across countries in
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unique entries make converting the data into polygons impossible since points in space would be

represented multiple times. Thus, neighborhood structures based on strict contiguity are infeasible.

Nevertheless, because the data points are the geographical centroids of the grid cells, one can

approximate a neighborhood structure (and thus a row-standardized weights matrix) based on

contiguity if one uses a distance-based neighborhood system in which the distance specified is

the minimum distance required to ensure that each observation has at least one neighbor. This

is possible over the entire spatial system because the grid cells form a regular lattice structure.

When some cells are not represented in the spatial system because of missing observations for the

dependent variable (as will be discussed below), such a distance-based neighborhood structure no

longer approximates a contiguous neighborhood system, but does serve as a reasonable method

for structuring the spatial system. Under both regimes, inverse-distance weights were applied to

the neighborhood structures to account for rapid distance decay. Because the geographical scale

involved in this analysis (i.e., the African continent), the size of the various grid cells no doubt is

subject to the curvature of the Earth. In other words, because of the spherical shape of the Earth,

there is “stretching” of the cells as one approaches upper latitudes (i.e., as one approaches either

of the poles). Thus, the minimum distance to ensure that every cell has at least one neighbor will

be based on the largest grid cell (in this case, one in South Africa).

The purpose of this analysis is to consider how grid cell level cereal yields are affected by

exogenous environmental variables (such as temperature and precipitation) after accounting for

spatial dependence and heterogeneity. In section 4, we proceed with performing exploratory spatial

data analysis in order to identify unconditional spatial dependence and spatial clustering. In section

5 we introduce the basic model of interest and proceed with diagnostic tests to identify the spatial

process by which to control for spatial dependence and heterogeneity. In section 6 we present the

results of the spatial econometric estimation, including an interpretation of the marginal effects of

the various conditioning factors on yields. Finally, we conclude in section 7.

the same grid cell.
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4 Exploratory Spatial Data Analysis

Before proceeding with estimating the yield response model, including specifying the existent spatial

process, consider the following general cross-sectional spatial model:

y = Xβ + λMjy + ε, |λ| < 1 (1)

ε = ρWhε+ u, |ρ| < 1 (2)

where y is the dependent variable to be explained, X is an n × k matrix of data, Mj is an n × n

spatial weights matrix that defines the neighborhood structure for spatially correlated dependent

variables, ε is a disturbance term, u is a normally distributed random error, Wh is an n×n spatial

weights matrix that defines the neighborhood structure for spatially correlated errors, and λ and

ρ are spatial correlation coefficients corresponding to the spatially autoregressive lags and errors

respectively. Several key assumptions must be made concerning the general form of this model:8

Assumption 1: All of the diagonal elements of Mj and Wh must be zero. This assumption

ensures that the neighborhood structures are specified such that a location cannot be considered

its own neighbor.

Assumption 2: The matrices (I − λMj) and (I − ρWh)9 are non-singular for all

λ ∈ (−1/τM , 1/τM ) and ρ ∈ (−1/τW , 1/τW )10, where τi = max|ν1,i|, ..., |νn,i| (where | · | represents

the absolute value of a real number and the modulus of a complex number) and ν1,i, ..., νn,i are

the eigenvalues of spatial weights matrix i.11

Assumption 3: The row and column sums of the matrices Mj , Wk, (I − λMj)−1 and

(I − ρWk)−1 are bounded uniformly in absolute value.

Assumption 4: The design matrix X is of full column rank, and the elements of X are

8These assumptions are borrowed from (and where necessary, modified from) Kelejian and Prucha (1998, 2007)
9These matrices come from the reduced forms of equations 1 and 2, respectively

10In time series applications, the autocorrelation coefficients are usually restricted to be on the interval (−1, 1).
This assumption does not carry over to spatial applications, as there may arise instances in applications (particularly
when the weights matrix is not row-standardized) where (I − λMj) is singular for some λ ∈ (−1, 1).

11Kelejian and Prucha (2007) note that a closely related claim is that 1
ωmin

< ρ< 1
ωmax

and 1
µmin

< ρ < 1
µmax

,
where ωmin and ωmax represent the minimum and maximum eigenvalues of Wj and µmin and µmax represent the
minimum and maximum eigenvalues of Mk. This claim is only valid if (1) the weights matrix is row-standardized
and (2) all of the eigenvalues are real. The condition stated here is general enough to be valid in all applications.
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uniformly bounded in absolute value.

Assumption 5: The innovations u are independently and identically distributed with E(u) = 0,

E(u2) = σ2
u, with 0 < σ2

u < ∞.

These assumptions are critical for ensuring well-behaved spatial processes. For the analysis that

follows, we assume that the underlying spatial process is a spatial error process, (i.e., one with

spatially autoregressive errors). In the context of the above assumptions, therefore, we assume

λ = 0. There are both theoretical and statistical grounds for making this assumption. Statistically,

we used Lagrange multiplier tests on the OLS residuals (Anselin et al., 1996) to test for and

specify the underlying spatial processes12. The robust LM tests indicate the presence of both

spatially autoregressive lags (i.e., lagged dependent variables) and errors. Despite this relatively

conclusive statistical evidence, we appeal to intuition and precedence in assuming that the only

spatial process is in the error terms. Intuition would suggest there are no plausible reasons for yields

to be spatially correlated except for correlation among unobserved factors (e.g., technological or

knowledge spillovers), which would be captured more appropriately through a spatial error process.

Additionally, the robust lag test developed in Anselin et al. (1996) and performed above has the

highest power of all of the Lagrange multiplier tests included in their battery of specification tests,

and thus the significance of this statistic may be due to an extremely significant spatial error

coefficient. There is also precedence in modeling yield response functions as spatial error processes

Exploratory data analysis proceeded with detecting unconditional spatial dependence in cell-

level cereal yields using Moran’s I statistic, with random permutations used to verify the sensitivity

of these results. The tests indicate an unconditional coefficient of spatial correlation of 0.7063, sig-

nificant at the α = 0.001 level based on 1,000 Monte Carlo replications. Thus, there is significant

evidence of unconditional global spatial autocorrelation in agricultural productivity (See Figure

7). Clearly, there is significant spatial autocorrelation in yields across Sub-Saharan Africa. We

suggest, however, that because the Moran’s I statistic measures unconditional spatial autocorrela-

tion, much of this is likely due to the spatial scale in question and the strong spatial similarities in

12While it is acknowledged that the necessary assumptions for OLS to produce unbiased and efficient estimates are
violated (see below), for lack of better alternatives we proceed with the spatial model specification based on the the
asymptotic properties of OLS
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variables explaining yields, such as temperature and precipitation. If these truly exogenous factors

are able to explain a great deal of the variations in yields, then it is likely that strong spatial

autocorrelation in these explanatory factors will result in strong spatial autocorrelation in cereal

yields, even when there is no plausible reason to suggest that the spatial autocorrelation has any

causal interpretation. In addition to exploring the spatial correlation of yields, it is instructive to

consider the possibility that spatial dependence could arise from unobservable disturbances. Thus,

we again utilized Moran’s I statistic to test for unconditional spatial dependence in the residuals

of an OLS estimation of a simple non-spatial linear model (see the econometric model in equa-

tion 3 below). This test indicated unconditional spatial autocorrelation in the residuals of 0.2881,

again significant at the α = 0.001 level based on 1,000 Monte Carlo replications. So in addition

to there being unconditional autocorrelation in the dependent variable (cereal yields), there is also

significant autocorrelation in the OLS residuals (see Figure 8). Whether these significant spatial

dependencies remain consistent after considering conditioning factors will be discussed in section

5.

To abstract from the global spatial system and focus on lower-level spatial autocorrelation,

localized indicators of spatial autocorrelation (LISA) were used to identify patterns of localized

spatial dependence. The results of the LISA analysis can be seen in Figure 9, which clearly indicates

several clusters of highly productive areas neighboring other highly productive areas. Some of the

most notable clustering occurs in southern Africa (including South Africa, Lesotho, and Swaziland),

the island nation of Madagascar, near the Great Lakes region (including parts of Burundi, Kenya,

Rwanda, Tanzania, and Uganda), in parts of Ethiopia, and in the tropical rainforests of western

Africa, most notably in Ghana and Côte d’Ivoire. The LISA analysis also reveals several clusters

of low productivity. This clustering is most pronounced in Sahelian regions of northwestern Africa,

parts of the Republic of Congo (Brazzaville) and the Democratic Republic of Congo (Kinshasa),

and semi-arid regions of Namibia and Botswana. It would be tempting to link these areas of low

production with low precipitation, but the evidence is firmly against this broad generalization. In

fact, rainforest regions of the Republic of Congo and the Democratic Republic of Congo are among

the wettest areas in all of sub-Saharan Africa (see Figure 10), yet suffer from low agricultural
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productivity.

It is also of interest to consider spatial heterogeneity. In essence, spatial heterogeneity is an

instability in the spatial system (i.e., relations between pairs of points in space is non-constant over

the system). Anselin (1988) identified two primary sources of spatial heterogeneity: heteroskedas-

tic errors and spatially varying parameters. Spatial process models, by their nature, induce het-

eroskedasticity. Incorporating a neighborhood structure in a spatial process model allows for the

incorporation of spatial dependence, but often times, heteroskedasticity is due to spatial hetero-

geneity. Incorporating only spatial dependence implies parametric homogeneity over the spatial

system, or at least it does not model spatial heterogeneity explicitly. While it is true that the

spatial models artificially introduces heterogeneity, if the coefficients are likely to vary across space,

it is generally preferable to explicitly incorporate heterogeneity in the model. Thus, it was also of

interest to consider and control for discrete spatial heterogeneity, whether in the form of spatial

shift operators or spatial regimes. Since the data—once aggregated—were at 1 ◦ × 1 ◦ resolution,

it seemed logical to identify spatial shift operators based on the country to which each grid cell

belonged, since it is assumed there are country-level fixed effects which influence agricultural pro-

duction, but which cannot be measured explicitly. Such factors could include (but are not limited

to) governmental subsidies for fertilizers, extension programs to assist farmers’ decision-making, a

sound legal system which provides stringent property rights, a system of functioning input and out-

put markets, etc. Since each of these factors would plausibly be the same for all grid cells within

a country, but would vary across countries, even potentially across adjacent grid cells, it makes

natural sense to include country-specific fixed effects in the model to account for this high-level

heterogeneity. Such effects are captured through the use of country dummy variables. It is also

relevant to allow for parametric heterogeneity through the identification of spatial regimes. In a cri-

tique of earlier Ricardian models, Schlenker et al. (2005) suggests that the effects of climate change

on agriculture must be assessed differently in dryland and irrigated areas. Failure to account for

irrigation, they argue, understates the water supply in irrigated regions. Thus, they suggest that

irrigation be included in the set of explanatory variables in any such regression, but not simply as

a linear term to shift the constant. Rather, they suggest that the effects of climatological variables
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should be different in irrigated areas than in rain-fed areas. Thus, interactions between irrigation

and other explanatory variables allow for capturing an even greater degree of heterogeneity.

5 Model Specification

In specifying the model to be estimated, we initially specify a very general form, but follow the

sequential (specific-to-general) spatial model specification procedure outlined in Anselin (2005), in

which we sequentially impose a set of linear restrictions. We begin by considering the linear model:

yi = x′
iβ + h′

iπ + (Irri · x̃i)
′ ξ + εi

εi = ρ
∑

j

wijεj + ui
(3)

where yi is cereal yield per grid cell (in tons per hectare), x′
i is a vector of explanatory variables for

grid cell i containing observations on: average temperature (◦C) and its square, the standard devi-

ation of temperature, average precipitation (mm per month) and its square, the standard deviation

of precipitation, average elevation (km), the roughness of the terrain (a measure of variation in

elevation), the distance to the shore (m), the percentage of the cell that has irrigation, the average

pH level for the soil in the cell, and the average carbon content in the cell’s soil. The vector h′
i is a

vector of country dummy variables used to control for country-specific fixed effects,13 x̃i ⊂ xi is a

vector of explanatory variables excluding the cell-level irrigation proportion, εi is the disturbance

term, wij is the (i, j) element of a spatial weights matrix,14 and uj is a disturbance term assumed

to have a spherical, normal distribution. The vector β is a k-vector of parameters to be estimated,

π is a vector of parameters to be estimated capturing country-specific effects that effect yields (i.e.,

intercept shifters), ξ is a (k− 2)-vector of parameters to be estimated, and ρ is a scalar spatial cor-

relation coefficient, also to be estimated. In the specific-to-general approach, we begin by assuming

the absence of spatial autocorrelation (i.e., ρ = 0). In the absence of spatial correlation, the model

13To maintain a full-rank design matrix, responses for Angolan grid cells were omitted from the matrix H.
14The weights matrix satisfies the requisite assumptions above.
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reduces to:

yi = xiβ + h′
iπ + (Irri · x̃i)

′ ξ + ui

which, under the assumptions of spherically distributed error terms, could be estimated consistently

using OLS. Complications arise when testing the assumptions placed on the disturbance terms.

Testing this model for heteroskedasticity using the studentized Breusch-Pagan (a.k.a. Koenker-

Bassett) test results in test statistic of 205.21, indicating a clear rejection of homoskedastic errors.

As such, estimation of equation (3) is inefficient; that is, it results in biased estimates for the

variances, which invalidates any inferences that can be made based on simple OLS estimation of

this model. A noted weakness of the Breusch-Pagan test is that, while it is very general and thus

widely applicable, it makes no assumption about the source of the heteroskedasticity. The general

approach taken in the case of unknown heteroskedasticity is to employ the White estimator for the

variance of the least squares estimates. The heteroskedasticity-robust standard errors are shown

beside the non-spatial OLS estimates in Table 4. In addition to heteroskedastic disturbances,

the results of the Jarque-Bera test allow us to reject the normality the OLS residuals (with the

distribution of residuals suffering from both positive skewness and positive kurtosis), thus violating

one of the fundamental assumptions of the Gauss-Markov theorem.15 As such, inferences based on

normally distributed errors (e.g., t-tests, F-tests) would invalid.

Yields can take only non-negative values (that is, they are censored at 0), and, as such, the

“true” yield y∗i can be modeled as a latent variable. Because yields are only observed for a subset

of the total grid cells in Sub-Saharan Africa, we potentially face a non-random sample. If the grid

cells for which yields are observed have the same characteristics of the rest of the grid cells for

which yields are not observed, then the subsample is truly random, and it is by mere coincidence

that cereals were planted in the cells for which yields are observed and not planted in cells for

which yields are not observed. If this were truly the underlying process, then we could proceed

estimating the non-spatial yield response function using simple OLS or—to consider the censoring

15Rejection of the normality of the OLS residuals may result in the invalidation of the Lagrange Multiplier spec-
ification tests performed and outlined below, since they are based on the asymptotic properties of OLS, and thus
assume spherical and normally distributed disturbances.
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of the data—we could proceed using a censored regression (i.e., Tobit) estimator. If, however, the

cereal planting is due to an endogenous decision (or selection) mechanism, then the cells for which

we have observed yields no longer constitute a random sample, and the estimation suffers from

sample selection bias. For the 382 grid cells without observed yields, it is presumed that the lack

of yield is the result of no cereals being planted, not because conditioning factors were such that,

though cereals were planted, the resultant yields were zero. Thus, if the probability of choosing to

plant is conditional on factors outside those otherwise affecting yields (that is, factors not included

in equation (3)), then the factors conditioning the choice to plant cereals are correlated with ε,

and estimation of equation (3) is biased16. Consider the selection variable P ∗, such that P ∗
i > 0 if

cereals were planted in grid cell i and P ∗
i = 0 otherwise. The actual selection variable P ∗

i is never

explicitly observed, but rather a binary selection Pi is observed. The relationships between y∗i and

yi and between P ∗
i and Pi are as follows:

yi = y∗i if P ∗
i > 0 yi = 0 otherwise

Pi = 1 if P ∗
i > 0 Pi = 0 otherwise

If we allow for P ∗
i to be conditioned by a set of exogenous variables, zi, then we can reformulate

the selection model as:

P ∗
i = z′iα+ µi

with α being a j-vector of parameters. Under the assumption that µ ∼ N(0, σ2), the selection

model is such that Prob(Pi = 1|zi) = Φ(z′iα) and Prob(Pi = 0|zi) = 1− Φ(z′iα), where Φ(·) is the

normal cumulative distribution function. The regression model for the response is then:

yi = xiβ + h′
iπ + (Irri · x̃i)

′ ξ + ui

16For a detailed description of the properties of sample selection models and methods of correcting for sample
selection bias, see standard textbook treatments in Greene (2003) or Davidson and MacKinnon (1993).
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where yi is observed only if Pi = 1. Thus:

E[yi|Pi = 1,xi,x̃i,zi] = xiβ + h′
iπ + (Irri · x̃i)

′ ξ + ησu

[
φ(z′iα)

Φ(z′iα)

]
(4)

where φ(·) is the probability density function associated with the normal distribution and φ(z′iα)/Φ(z
′
iα)

is commonly referred to as the Inverse Mills Ratio (IMR). A two-step estimation procedure pro-

posed by Heckman (1976, 1979) is widely used to estimate models of this nature. In the first

stage of this procedure, the selection equation is estimated using a probit estimator and estimates

of the IMR is constructed. In the second stage, the outcome (or response) equation is estimated

via OLS, with the IMR included as an additional explanatory variable. Despite its popularity

and wide usage, Davidson and MacKinnon (1993) point out that the consistency of this estimator

depends crucially on the assumption of normally distributed errors. In specifying such a model,

Wooldridge (2006) suggests that it is advantageous to impose the requirement that
[
X,H, X̃

]′
⊂ Z

since (1) any variable relevant in explaining yields in equation (3) should also be considered as an

explanatory variable in the selection equation (though the converse is not necessarily true) and (2)

the requirement that
[
X,H, X̃

]′
⊂ Z automatically provides an exclusion restriction by which the

model can be identified. In specifying the non-spatial model to be tested here, we allow X ⊂ Z,

excluding the country dummy variables and the interaction terms from the selection equation. In

addition to the variables in X, the selection equation design matrix Z also includes observations

on gross cell product and grid cell population, factors which plausibly affect the decision to plant

but which should not have any power in explaining observed yields.17

Estimates of the model parameters computed via both OLS and Heckman’s two-step estimation

procedure are presented in Tables 4 and 5.

We now turn to modeling the cereal yield response function as a spatial process (i.e., we allow

ρ (= 0). For the time being, we abstract from the sample selection problem and consider the

censoring of yields to be the result of an exogenous data generating process, and thus estimation

17Population is likely to affect the decision to plant cereals in two ways: If the population is too high (e.g., an
urban area), it may be infeasible to plant cereals. Additionally, if the population is too low (for whatever reason),
there may not be any cereals planted. To control for the first effect (i.e., urban areas), gross cell product is used as a
conditioning variable in the selection equation. Grid cell population would therefore be considered to be the principal
conditioning factor in sparsely populated grid cells.
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of the parameters of the observed sample are consistent. Recall the general form of the model:

yi = x′
iβ + h′

iπ + (Irri · x̃i)
′ ξ + εi

εi = ρ
∑

j

wijεj + ui

which can be written in the reduced form

yi = x′
iβ + h′

iπ + (Irri · x̃i)
′ ξ +

∑

j

[
(I−ρW)−1

]
ij
uj (5)

where
[
(I−ρW)−1

]
ij
is the (i, j) element of the spatial multiplier matrix (I−ρW)−1. This reduced

form can be re-written in matrix notation

y = Xβ +Hπ +
(
Irr′ · X̃

)
ξ + (I − ρW)−1 u (6)

The parameter ρ is the coefficient of spatial correlation and the term (I − ρW)−1 represents the

spatial multiplier, as so identified by Anselin (2003). Most econometric models involving spatial

processes can be estimated using maximum likelihood approaches, but such approaches generally

require the (perhaps strong) assumption of normally distributed disturbances, and the calculation

of a likelihood function over a spatial system can be quite computationally demanding, particularly

since they require the computation of the Jacobian of the n×n spatial weights matrix. Estimating

equation (6) using a maximum likelihood approach was abandoned, primarily because diagnostic

tests indicate the absence of normally and spherically distributed error terms, thus invalidating

maximum likelihood estimates based on the assumption of normality.

Kelejian and Prucha (1999) developed an estimator for ρ based on the generalized method of

moments (GMM). This approach has two advantages over the maximum likelihood approach (Bell

and Bockstael, 2000). First, the GMM estimator is consistent regardless of whether the errors are

normally distributed. Additionally, the calculation of the estimator is relatively straightforward,

and the computational intensity is substantially lower compared with other spatial estimators,

including maximum likelihood estimators. This approach requires neither the computation of the
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determinant of the spatial weights matrix, nor its eigenvalues. One negative of the GMM estimator,

however, is that it does not allow the calculation of standard errors for the ρ parameter. This is not

a significant concern, however, as the ρ term is generally viewed as a nuisance parameter. Let ε be

the disturbance term of a spatial error process, as defined in equation (3). Then let ε̃ be a predictor

of ε. Then let ε̄ = Wε, ¯̄ε = WWε, and correspondingly ˜̄ε = Wε̃ and ˜̄̄ε = WWε̃. Additionally, let

ū = Wu. Then the three moment conditions are therefore:

E

[
1

n
u′u

]
= σ2 E

[
1

n
ū′ū

]
= σ2n−1Tr(W′W) E

[
1

n
ū′u

]
= 0 (7)

These moment conditions can be written in terms of ε:

E
[
1
nε

′(I− ρW)′(I− ρW)ε
]
= σ2

E
[
1
nε

′(I− ρW)′W′WW(I− ρW)ε
]
= σ2

n Tr(W′W)

E
[
1
nε

′(I− ρW)′W′(I− ρW)ε
]
= 0

(8)

Multiplying through, rearranging, and using ε̄ = Wε and ¯̄ε = WWε, we have the following system

of moment equations:

Γn
[
ρ, ρ2, σ2

]′ − γn = 0 (9)

where

Γn =





2
nE(ε′ε̄) −1

n E(ε̄′ε̄) 1

2
nE(¯̄ε′ε̄) −1

n E(¯̄ε′ ¯̄ε) 1
nTr(W

′W)

1
nE(ε′ ¯̄ε+ ε̄′ε̄) −1

n E(ε̄′ ¯̄ε) 0




γn =





1
nE(ε′ε)

1
nE(ε̄′ε̄)

1
nE(ε′ε̄)




(10)

Using the OLS residuals as predictors of ε, we have the sample moment analogue to (9):

Gn
[
ρ, ρ2, σ2

]′ − gn = νn
(
ρ, σ2

)
(11)
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and the corresponding sample matrices

Gn =





2
nE(ε̃′ ˜̄ε) −1

n E(¯̃ε′ ˜̄ε) 1

2
nE(˜̄̄ε′ ˜̄ε) −1

n E(˜̄̄ε′ ˜̄̄ε) 1
nTr(W

′W)

1
nE(ε̃′ ˜̄̄ε+ ˜̄ε′ ˜̄ε) −1

n E(˜̄ε′ ˜̄̄ε) 0




gn =





1
nE(ε̃′ε̃)

1
nE(˜̄ε′ ˜̄ε)

1
nE(ε̃′ ˜̄ε)




(12)

The GMM estimator for ρ and σ2 is the restricted nonlinear least squares estimator

(
ρ̂, σ̂2

)
= argmin

{
νn

(
ρ, σ2

)′
νn

(
ρ, σ2

)}
(13)

such that ρ is bounded according to Assumption 2 above (to ensure the invertability of the spatial

multiplier matrix) and σ2 is a strictly positive real number. Once estimates of ρ and σ2 have been

obtained, estimates for the model parameters can be obtained by feasible generalized least squares

(FGLS). For data matrix Q =
[
X,H,

(
Irr′ · X̃

)]′
and vector of parameters Θ = [β, π, ξ], Kelejian

and Prucha (1999) give the FGLS estimator as:

ΘFGLS =
[
Q′Ω(ρ̂)−1Q

]−1
Q′Ω(ρ̂)−1y

where Ω(ρ̂) is the estimated variance-covariance matrix of the disturbance vector ε, Ω(ρ̂) =

σ̂2 (I− ρ̂W)−1 (I− ρ̂W′)−1. Substituting in for Ω(ρ̂), the FGLS estimator reduces to

ΘFGLS =
(
Q̇

′
Q̇
)−1

Q̇
′
ẏ

where Q̇ = (I − ρ̂W)−1Q and ẏ = (I − ρ̂W)−1y, which is simply the OLS estimator of a model

transformed by a Cochrane-Orcutt transformation. Estimates of the parameters obtained via this

procedure are shown in Table 6.

While this model does control for spatial dependence and heterogeneity, it also assumes that

the sample is random and that the process for censoring yields at zero is exogenous. To remedy

this oversight, we employ an estimator for spatial error models that controls for endogenous sam-

ple selection, recently developed by Flores-Lagunes and Schnier (2010). The original attempt to
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model sample selection in the context of spatial precess models was McMillen (1995), though the

estimator he proposes is infeasible since it requires a priori knowledge of the model parameters and

is computationally intensive. The estimator that Flores-Lagunes and Schnier (2010) proposes has

the intuition of Heckman’s model, but is within the broader family of GMM estimators. Specif-

ically, it uses a selection equation analogous to the spatial probit estimator of Pinkse and Slade

(1998). The estimates from the spatial probit are then used to construct the IMR, which is then

included in the outcome equation. The Pinkse and Slade estimator yields consistent estimates of

the selection equation, which are themselves necessary to obtain estimates of the parameters in the

response equation. Additionally, because it is within the class of GMM estimators, it is computa-

tionally simpler than maximum likelihood estimators and does not require the strong distributional

assumptions. Flores-Lagunes and Schnier note that when the parameters in the selection equation

are different from those in the outcome equation, the appropriate IMR is a function of the spatial

correlation coefficient in the outcome equation. Thus, to increase the efficiency of the estimates,

all of the model parameters are estimated simultaneously through solving a system of stacked mo-

ment equations. While this estimator is less efficient than a maximum likelihood estimator, it is

consistent and asymptotically normally distributed with an estimable variance-covariance matrix.

Considering the problem of sample selection within the context of our spatial model, we allow

yields to once again be represented as a latent variable y∗. We therefore have the familiar cases:

yi = y∗i if P ∗
i > 0 ψi = 0 otherwise

Pi = 1 if P ∗
i > 0 Pi = 0 otherwise

Explicitly modeling the selection and response equations taking into consideration spatial depen-

dence in the errors, we have:

P ∗
i = z′iα+ ε1i, ε1i = ρ1

∑

j %=i

w1
ijε1j + vi (14)

y∗ = x′
iβ + h′

iπ + (Irri · x̃i)
′ ξ + ε2i, ε2i = ρ2

∑

j %=i

w2
ijε1j + ui (15)
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where w1
ij is the (i, j) element of the (n+ b)× (n+ b) spatial weights matrix corresponding to the

selection equation, and w2
ij is the (i, j) element of the n × n spatial weights matrix corresponding

to the outcome equation. Note that both equation (14) and equation (15) exhibit (or are general

enough to allow) spatial dependence in the errors (denoted by coefficients ρ1 and ρ2, respectively).

The innovations v and u are assumed iid and multivariate normal such that (vi, ui) ∼ N(0,Σ),

where

Σ =




σ2
v σvu

σvu σ2
u





From these equations, we can write the model in its reduced form:

P ∗
i = z′iα+

∑

j

[(
I− ρ1W

1
)−1

]

ij
vj (16)

y∗ = x′
iβ + h′

iπ + (Irri · x̃i)
′ ξ +

∑

j

[(
I− ρ2W

2
)−1

]

ij
uj (17)

where, again,
[
(I−ρW)−1

]
ij
is the (i, j) element of the spatial multiplier matrix (I−ρW)−1, where

the subscripts and superscripts refer to the selection equation and the outcome equation, respec-

tively. Flores-Lagunes and Schnier (2010) note that the probit model with spatially autoregressive

errors introduces a fully non-spherical variance-covariance matrix that renders the regular probit es-

timator inconsistent. Thus estimation of equation (14) must proceed with the spatial probit model

of Pinkse and Slade (1998). The outcome equation (15) is estimated using the FGLS estimator in

Kelejian and Prucha (1999).

From McMillen (1995), we have the following variance and covariance calculations:

Var(ε1) = σ2
v

∑

j

[(
I− ρ1W

1
)−1

]2
ij

(18)
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Var(ε2) = σ2
u

∑

j

[(
I− ρ2W

2
)−1

]2
ij

(19)

E(ε1iε2i) = σvu
∑

j

[(
I− ρ1W

1
)−1

]

ij

[(
I− ρ2W

2
)−1

]

ij
(20)

From Var(ε1i), Pinkse and Slade (1998) construct “generalized” residuals with which to construct

appropriate moment conditions for consistent estimation of the model parameters, taking into con-

sideration the induced heteroskedasticity. Letting the vector of parameters in the selection equation

be given as θ1 = [α′, ρ1] and letting δi(θ1) =
z′iα√

Var(ε1i)
be the index function of a probit model

weighted by the standard deviation of the residuals from the selection equation, the “generalized”

residuals of the selection equation are:

ε̃1i(θ1) =

√
σ2
v

∑

j

[(
I− ρ1W

1
)−1

]2
ij
· {Pi − Φ [δi(θ1)]} ·

φ [δi(θ1)]

Φ [δi(θ1)] {1− Φ [δi(θ1)]}
(21)

The GMM estimator for θ1 is given as

θ1,GMM = argmin
{
S(θ1)

′MnS(θ1)
}

(22)

where S(θ1) =
1
nZ

′ε̃1(θ1), where Z is the matrix of variables in the selection equation and ε̃1(θ1)

is the vector of generalized residuals, and Mn is a conformable positive definite weighting matrix.

Consistent estimates of θ1 are then used to construct the “adjusted”-IMR (from McMillen, 1995)

to be used in the outcome equation. The “adjusted”-IMR is given as:

λi ≡

∑

j

[(
I− ρ1W

1
)−1

]

ij

[(
I− ρ2W

2
)−1

]

ij

√∑

j

[(
I− ρ1W

1
)−1

]2
ij

· φ [−δi(θ1)]

1− Φ [−δi(θ1)]
(23)

This “adjusted”-IMR depends on the spatial correlation coefficient from the outcome equation (ρ2),

which is not estimated in this first step spatial probit. Likewise estimating the conditional outcome

response requires the inclusion of this “adjusted”-IMR as an additional explanatory variable in the
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outcome equation. Thus, all of the parameters in both the selection and the outcome equations

must be estimated simultaneously in order to increase the efficiency of the estimator and maintain

an estimable variance-covariance matrix. To accomplish this, Flores-Lagunes and Schnier (2010)

stack the moment conditions of the selection and outcome equations:

g(Z,X,H, X̃, θ) =
[
s(Z, θ)′,m(X,H, X̃, θ)′

]′
(24)

where, now, θ = [α′, ρ1, β′, π′, ξ′, η, ρ2]. The components of this matrix are as follows:

s(Z, θ) = Z′ε̃1(θ) (25)

m(X,H, X̃) =
[
P ·

(
X,H, X̃, λ̂

)]′
ε̃2(θ) (26)

where ε̃2(θ) = y −Xβ −Hπ − (Irr · X̃)− ηλ̂(ρ1, ρ2, α). Stacking the generalized residuals from the

spatial probit estimation with the residuals from the outcome equation, we get ε̃(θ) ≡ [ε̃′1(θ), ε̃
′
2(θ)].

Then a consistent GMM estimator for all of the model parameters is:

θGMM = argmin
{
gn(θ)

′Mngn(θ)
}

(27)

with gn =
1

n
Z′ε̃(θ) and, again, Mn is a conformable positive definite weighting matrix. In Flores-

Lagunes and Schnier (2010), they propose two variants of this “spatial heckit” model, an equal

weight version and an optimal weighting version. It has been shown that, at least in finite samples,

the optimal GMM estimator may be biased, and thus an equally-weighted GMM estimator (i.e.,

one in which Mn is an identity matrix) may be preferable. The Monte Carlo simulations in

Flores-Lagunes and Schnier (2010) suggest that, at least at larger sample sizes, the optimally-

weighted GMM estimator performs slightly better than the equally-weighted GMM estimator in

terms of estimating the model parameters (both in terms of bias and root mean squared error),

but performs slightly worse than the equally-weighted GMM estimator in estimating the spatial
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correlation coefficients for both the selection and outcome equations.18 For our purposes, we use the

optimally-weighted GMM estimator, which estiamtes the model parameters in two steps, takes the

estimates from a first-stage, equally-weighted GMM estimation and constructs the optimal-weights

for use in a second-stage GMM estimation. The results from this estimation are in Table 7.

6 Discussion of Results

There is highly significant (and strong) spatial dependence in the unobserved error terms in both

the selection equation and the response equation. In both equations, the correlation of spatial

autocorrelation is roughly 0.83, which is likely so high because of the geographic scale involved

and the nature of the spatial system. It is interesting, however, that the autocorrelation is so

similar between the two equations, even though the different equations represent interactions among

different spatial systems.19

While not reported in Table 7, it should be noted that all of the coefficients associated with the

country dummy variables were significantly different from zero at the α = 1% probability of Type

I error. This suggests that, even after controlling for the effects of temperature, precipitation, and

soil chemistry, country specific factors do significantly contribute to predicting cereal yields. In

fact, all of the coefficients on these variables are positive, indicating that all countries should, other

things equal, experience higher yields than the reference country, which in this case is Angola. The

largest country fixed effect belongs to Swaziland, which should expect roughly 3,700 more pounds

per hectare than Angola. The smallest country fixed effect belongs to Mozambique, which produces

on average only about 488 more pounds per hectare than Angola.

The estimates in Table 7 don’t provide the true marginal effects of small changes in the explana-

tory variable on the cereal yields, since the true marginal effects should take into consideration both

the effect that the explanatory variable in question has on the outcome equation, but also on the

18For comparison purposes, we compared the simulated results for ρ1 = 0.75, ρ2 = 0.75, and a correlation between
the errors in the two equations of 0.5, with sample selection of 25% and sample size of n=900.

19For concreteness, the selection equation represents all 2,505 grid cells, with some cells having zero (or unobserved)
yields and some cells having positive (or observed) yields, while the outcome equation only considers those grid cells
for which there are observed yields. Thus, the spatial system in the selection equation more closely approximates a
regular lattice—and thus the spatial weights matrix approximates a weighted contiguity matrix—while the spatial
system in the outcome equation is less regular in structure.
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selection equation. From McMillen (1995), expected yields conditional upon the decision to plant

cereals is given as:

E[yi|Pi = 1,xi,x̃i,zi] = x′
iβ + h′

iπ + (Irri · x̃i)
′ ξ +

σvu
σv

λ̂i (28)

Of particular interest in this analysis is the effect of temperature and precipitation on agricultural

production. Therefore, in order to estimate the effects of changes in temperature on cereal yields,

the marginal effects can be computed as:

∂E
(
y|P = 1,X, X̃,Z

)

∂Temp
= βTemp + 2βTemp2 · Temp + ξTemp · Irr +

σuv
σv

∂λ

∂Temp
(29)

Clearly, dividing by yields will result in the semi-elasticity of yields with respect to temperature;

that is, the percentage change in yields resulting from a discrete change in temperature. Likewise,

the effect of changes in yields brought about by changes in precipitation can be computed as:

∂E
(
y|P = 1,X, X̃,Z

)

∂Precip
= βPrecip + 2βPrecip2 · Precip + ξPrecip · Irr +

σuv
σv

∂λ

∂Precip

At present, it is not entirely clear whether a closed form analytical solution for these marginal effects

can be derived, since it requires the partial derivative of the “adjusted” inverse Mills Ratio with

respect to the various explanatory variables of interest. Additionally, because of the computational

intensity of estimating the full set of model parameters simultaneously in this iterative GMM

procedure, deriving any kind of numerical marginal effects also seems infeasible. If we assume that

planting decisions are static, then changes in temperature, for example, would not affect the selection

to plant cereals, but would affect the yield response. This implies, therefore, that
∂λ

∂Xj
= 0. This

may be a strong assumption, since planting decisions are part of a dynamic process, and because

changes in temperature and precipitation are expected to occur over a gradual period rather than

instantly as such a marginal effect calculation would imply. Nevertheless, to make the analysis of

these marginal effects tractable, such simplifying assumptions may be reasonable.

Based on this discussion, therefore, a 1◦C increase in temperature would, on average, result
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in only a 6% decrease in yields, where this semi-elasticity is evaluated at the mean temperature,

irrigation level, and current yield for those grid cells that are currently planting cereals. This is

significantly lower than the 10%-15% reductions in maize yields, but roughly in line with the 5%-

6% reduction in barley yields predicted by Tebaldi and Lobell (2008) with a similar temperature

reduction. As would be expected, the average current yields for those grid cells without irrigation is

significantly lower than the average irrigation for the entire sample (1,749 lbs. per hectare compared

with 2,145 lbs. per hectare). Nevertheless, even for areas without irrigation, a 1◦C increase in mean

temperature would only be expected to reduce yields by only 8%. Because the coefficient on the

quadratic temperature term is not significantly different from zero, and because the coefficients on

the interaction terms (both with temperature and its square) are both not significantly different

from zero, it may make more sense to assume that these terms have no effect on yields and thus

only consider the linear effect of temperature on yields. Under this approach, we find that a 1◦C

increase in mean temperature would decrease yields by roughly 11.5% (still toward the low end

of the Tebaldi and Lobell (2008) estimates) across the entire system, but by 14% for those areas

without irrigation.

Interestingly, these results predict a small negative effect on yields with increased precipita-

tion, though, strangely, an increase in the standard deviation of precipitation is expected to have

a net positive effect on production. A 1% increase in precipitation is expected to result in a 7%

reduction in cereal yields (or conversely, a 1% decrease in precipitation would—on average—result

in a 7% increase in cereal yields), though it should be noted that only the quadratic precipitation

coefficient is stastically different from zero at standard levels. Additionally, as yet there is not a

significant consensus on the climate change-related effects on precipitation, as there are simply too

many variables in flux to make realistic predictions, including the effects of aerosols in the atmo-

sphere, evapotranspiration patterns, changing oceanic currents and wind patterns, etc. A generally

accepted principle is that precipitation is expected to increase globally, but the distribution of

precipitation and the magnitude of the increase are still uncertain. Thus even if the estimated

marginal effects were significantly different from zero, it would be difficult to assess how changes

in precipitation resulting from global climate change would be expected to effect cereal yields in
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Sub-Saharan Africa.

The predictions reported in Table 7 and the marginal effects discussed here, of course, assume

that all other factors are held constant and that there is no structural adaptation. This may not

be a realistic assumption, as agriculture has often shown itself to be a progressive and innovative

sector, and could very well exhibit strong adaptation to changes over the course of the next century.

This analysis also ignores the effect of increased atmospheric carbon, which serves as a fertilizer

and could realistically be expected to offset some of the negative effects of climate change on the

agricultural sector. Additionally, we also assume that there are no other unforeseen effects that

could affect the level of production, such as catastrophic climate extremes or other natural disasters

that could dramatically affect the level of production. We leave it to future researchers to more

effectively coordinate these more complex elements into a spatial econometric framework. However,

because we incorporate spatial dependence among unobserved factors across the spatial system, we

can control for the technicality that such unobserved factors would have spatial spillovers into

neighboring grid cells. Controlling for this form of spatial dependence also controls for the effects

of positive unobserved spillovers. Spatial correlation of this form, however, does not have any form

of direct interpretation, and controlling for this through modeling spatial dependence only handles

this statistical technicality, which, for example, Bell and Bockstael (2000) have referred to as a

nuisance parameter.

7 Conclusion

In this paper we have estimated a spatial econometric model to examine grid cell level agricul-

tural productivity (specifically cereal grain productivity) across sub-Saharan Africa. As part of the

econometric approach, we specified the model such that it allowed us to examine the dependence

of agricultural production to a variety of exogenous factors, taking into consideration spatial de-

pendence and heterogeneity, and explicitly control for the effect of an endogenous sample selection

mechanism. Interestingly, we find that once we control for heterogeneity and spatial spillovers,

changes in average temperature are expected to have a smaller negative effect on cereal production

than recent climatological studies suggest. Also, contrary to previous studies that have attempted
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to predict the effect of anticipated precipitation changes on agricultural production, we find a small

negative effect on grid cell level production, though the effects are not significantly different from

zero. Rather, we find that one of the most important factors in determining a cell’s level of agricul-

tural productivity is the country to which it belongs. Dummy variables corresponding to the cell’s

country of origin capture country-specific effects even after controlling for the other explanatory

variables in this model. All coefficients on these dummy variables are highly significant, suggesting

a great deal of spatial heterogeneity across sub-Saharan Africa, independent of geographical factors

like elevation or terrain or distance to the coastline, and also independent of environmental factors

like precipitation and temperature. This heterogeneity could be due to many factors, including

governmental subsidies for fertilizers, the general availability of fertilizers, extension programs to

assist farmers’ decision-making, a sound legal system which provides stringent property rights, a

system of functioning input and output markets, supply chain management, price transmission,

etc. These are vital components of a well-functioning agricultural sector, but in a continent like

Africa in which it is nearly impossible to find a paradigm of good governance, the existence of these

institutions and structures may provide an even greater marginal benefit than they do in other

parts of the world.
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Figure 1: Malnourishment in Sub-Saharan Africa

Source: Center for International Earth Science Information Network (CIESIN)
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Figure 2: Sub-Saharan Africa’s dependence on Agriculture (2003)

Source: World Bank (2007)
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Figure 3: Growth in food production per capita, 1961-2007 (1961 = 100)

Source: Food and Agricultural Organization (FAO)
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Table 1: Indices of Food Production per Head by Regions
Regions 1963-1967 1968-1973 1973-1977 1978-1982 1983-1987 1988-1992 1993-1997 1998-2002 2003-2007

World 82.2 83.4 85.5 88.0 90.6 92.6 94.6 99.2 104.8
Africa 106.4 108.4 102.5 95.2 90.8 95.2 96.2 99.4 102.8
Asia 58.0 59.2 61.0 65.2 73.4 80.4 91.0 99.2 108.4
China 38.8 39.6 40.5 46.2 57.2 66.0 83.8 99.6 114.8
India 72.6 75.0 76.3 78.2 84.2 91.0 95.6 97.4 101.0

Central America 89.2 89.6 90.8 94.8 93.0 90.2 94.2 99.0 106.4
South America 70.8 70.8 74.0 78.0 79.6 83.4 89.6 99.2 112.0
Europe 92.4 98.2 104.0 108.6 113.2 111.4 99.6 99.4 99.8
North America 78.4 80.0 87.75 93.6 89.8 90.4 95.8 98.4 99.8
United States 78.2 80.4 88.75 94.6 90.0 91.0 96.0 98.8 99.6

Source: FAO (2010) Note: the three-year average of 1999-2001 is used as the base for comparisons. Reported figures represent five-year
averages in the Net per capita production index.
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Table 2: Preferred estimates of impacts of baseline global warming by the 2080s on African Agriculture
Impact without carbon Preferred estimates Changes in output

Farm Output per fertilization Without With (millions of 2003 dollars)
Area hectare Ricardian Crop models carbon carbon Without With
(1,000 (2003 Estimate Estimate fertilization fertilization carbon carbon

Country hectares) dollars) (percent) (percent) (percent) (percent) fertilization fertilization
Angola 3,300 360 -26.3 -25.3 -25.8 -14.7 -306 -174
Burkina Faso 6,830 190 -16.5 -32.1 -24.3 -13 -315 -168
Cameroon 7,160 768 -19.8 -20 -20 -8 -1,100 -441
DR Congo 7,800 422 -25.3 -14.7 -14.7 -1.9 -484 -64
Ethiopia 11,047 253 -31.4 -31.1 -31.3 -20.9 -873 -585
Ghana 6,331 434 -8.2 -19.8 -14 -1.1 -384 -30
Cote d’Ivoire 6,900 518 -8.8 -19.8 -14.3 -1.5 -511 -52
Kenya 5,162 446 15 -25.7 -5.4 8.8 -123 203
Madagascar 3,550 447 -20.3 -32.1 -26.2 -15.1 -416 -240
Malawi 2,440 267 -31.5 -31.1 -31.3 -21 -204 -137
Mali 4,700 350 -39 -32.1 -35.6 -25.9 -585 -426
Mozambique 4,435 253 -23.6 -19.8 -21.7 -10 -244 -112
Nigeria 33,000 460 -12.1 -24.9 -18.5 -6.3 -2,809 -953
Senegal 2,506 441 -84 -19.8 -51.9 -44.7 -573 -493
South Africa 15,712 407 -47 -19.8 -33.4 -23.4 -2,134 -1,495
Sudan 16,653 417 -81.1 -31.1 -56.1 -49.5 -3,892 -3,435
Tanzania 10,764 430 -16.3 -32.1 -24.2 -12.8 -1,122 -595
Uganda 7,200 280 -2.5 -31.1 -16.8 -4.3 -338 -86
Zambia 5,289 189 -47.1 -32.1 -39.6 -31 -395 -305
Zimbabwe 3,350 901 -44.7 -31.1 -37.9 -29 -1,144 -863
World 3,097,935 380 -10.1 -18.9 -15.9 -3.2 -186,510 -38,107
Median -9.8 -19.8 -16.7 -4.2

Source: Cline (2007)
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Figure 4: Food consumption patterns in Sub-Saharan Africa (Kcal/capita/day)

Source: Food and Agricultural Organization (FAO)

Figure 5: Protein consumption patterns in Sub-Saharan Africa (g/capita/day)

Source: Food and Agricultural Organization (FAO)
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Figure 6: Cereal Yields in Sub-Saharan Africa

Source: Monfreda et al. (2008)
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Figure 7: Moran scatterplot–Cereal Yields (2000)

Figure 8: Moran scatterplot–OLS Residuals
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Figure 9: Local Indicators of Spatial Autocorrelation: Cereal Yields

Figure 10: Distribution of Precipitation in Sub-Saharan Africa
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Table 3: Summary Statistics for Economic and Environmental/Geographic Data

Variable Description N Mean Std Dev Min Max
y Cereal yields, 2000 (pounds per hectare) 2,124 2145.1227 1074.6486 157.1400 10362.0000
Gross Cell Prod Gross Cell Product, 2000 ($US millions) 2,505 285.1281 1597.0102 0.0000 55089.9900
Pop Population (,000s) 2,505 234.6821 510.1857 0.0010 6984.1200
Temp Average annual temperature (degrees Celsius) 2,505 24.5655 3.4192 10.2100 30.3200
Std Dev–Temp Standard deviation of temperature 2,505 2.6879 1.7725 0.2700 7.7200
Precip Average precipitation (mm per month) 2,505 70.7741 48.8425 0.0800 255.6100
Std Dev–Precip Standard deviation of precipitation 2,505 59.4667 36.1757 0.1300 246.5700
Elev Elevation (m) 2,505 669.7979 428.2270 4.5943 2575.2210
Rough Roughness of elevation 2,505 9.2080 10.1118 0.0000 60.0000
Dist Distance to coast (km) 2,505 697.9023 434.9767 4.1000 1686.7000
Irr Irrigation (% of grid cell with improved irrigation) 2,505 1.4293 3.6743 0.0000 52.8933
pH Soil pH (Index ranging from 0 to 99) 2,505 32.6009 12.3194 15.0625 99.0000
Carbon Soil carbon density (kg C/m2) 2,505 8.3005 3.7966 0.0000 27.7155
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Table 4: Selected Coefficients: OLS Estimation
Robust

Estimate Std Error Std Error
Constant 4,560.9506 1,200.9436 *** 1,643.2880 ***
Temp -152.6618 91.0974 * 132.7378
Temp2 0.0993 1.9152 2.9559
Std Dev–Temp 15.6707 39.9436 73.6618
Precip -0.4124 3.1637 3.2216
Precip2 0.0016 0.0121 0.0118
Std Dev–Precip 2.9202 1.2920 ** 1.2184 **
Elev -0.4516 0.1333 *** 0.1980 **
Rougness -0.4191 0.0754 *** 2.6558
Dist 4.2196 2.6347 0.0687 ***
Irr -187.5909 274.8689 381.2729
pH 3.9913 3.0338 2.5573
Carbon 20.5116 5.9612 *** 4.6336 ***
Irr · Temp 16.3065 20.4696 28.0050
Irr · Temp2 -0.2937 0.4245 0.5758
Irr · Std Dev–Temp 34.8060 10.1579 *** 13.1456 ***
Irr · Precip -0.9582 0.9053 1.0944
Irr · Precip2 0.0036 0.0033 0.0037
Irr · Std Dev–Precip 1.2292 0.4501 *** 0.4725 ***
Irr · Elev 0.0541 0.0251 ** 0.0260 **
Irr · Rough -1.2134 0.8919 0.9040
Irr ·Dist -0.0396 0.0212 * 0.0208 *
Irr · pH -2.4196 0.9827 ** 1.0745 **
Irr · Carbon -6.4894 1.6474 *** 1.8038 ***

R2 = 0.5606
N = 2,124

0 *** 0.01 ** 0.05 * 0.1
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Table 5: Selected Coefficients: Non-Spatial Heckman Two-Stage Estimation
Selection Equation

Estimate Std Error
Constant 18.88829 3.680936 ***
Gross Cell Prod -0.00011 0.000053 **
Pop 0.59672 0.591912
Temp -1.78091 0.305817 ***
Temp2 0.03757 0.006292 ***
Std Dev–Temp 0.04240 0.071687
Precip 0.02450 0.008396 ***
Precip2 -0.00019 0.000037 ***
Std Dev–Precip 0.05286 0.005735 ***
Elev 0.00100 0.000385 ***
Rougness -0.00057 0.000172 ***
Dist -0.00157 0.009234
Irr 0.15023 0.038662 ***
pH -0.01729 0.005856 ***
Carbon 0.12620 0.030913 ***

N = 2,505
Pseudo-R2 = 0.7317
Percent “Successes” Correctly Predicted: 98.26%
Percent “Failures” Correctly Predicted: 86.88%
Total Percent Correctly Classified: 96.53%

Outcome Equation
Estimate Std Error

Constant 5,218.92154 1,171.55119 ***
Temp -246.70040 90.39324 ***
Temp2 2.33343 1.91052
Std Dev–Temp -69.89141 39.36085 *
Precip 2.45838 3.16929
Precip2 -0.02653 0.01271 **
Std Dev–Precip 7.41904 1.39617 ***
Elev -0.35576 0.13151 ***
Rougness -0.47011 0.07454 ***
Dist 3.71275 2.66919
Irr -301.20845 275.20771
pH 2.27741 2.91373
Carbon 30.14600 6.20358 ***
Irr · Temp 28.25790 20.72398
Irr · Temp2 -0.51905 0.43019
Irr · Std Dev–Temp 36.82399 9.92721 ***
Irr · Precip -0.67608 0.92048
Irr · Precip2 0.00411 0.00337
Irr · Std Dev–Precip 0.54944 0.46810
Irr · Elev 0.05508 0.02567 **
Irr · Rough -1.11866 0.90746
Irr ·Dist -0.02738 0.02135
Irr · pH -2.81572 0.95641 ***
Irr · Carbon -7.89991 1.69728 ***

N = 2,124
R2 = 0.5754

0 *** 0.01 ** 0.05 * 0.1
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Table 6: Selected Coefficients: Estimation of Spatial Autoregressive Error (SAE) Process
Estimate Std Error

Constant 4,851.3060 1,502.5969 ***
Temp -114.5274 108.5669
Temp2 -0.6597 2.2445
Std Dev–Temp 140.1086 63.7916 **
Precip -0.6777 4.3599
Precip2 -0.0146 0.0156
Std Dev–Precip 6.4747 2.1585 ***
Elev -0.5044 0.1910 ***
Rougness -0.4353 0.1706 **
Dist 2.2112 2.7554
Irr 833.0684 261.2403 ***
pH 0.5243 3.0612
Carbon 8.9912 7.0127
Irr · Temp -59.6912 19.1703 ***
Irr · Temp2 1.2500 0.3926 ***
Irr · Std Dev–Temp -19.4439 9.1861 **
Irr · Precip -1.6560 0.8610 *
Irr · Precip2 0.0050 0.0032
Irr · Std Dev–Precip 0.8783 0.4338 **
Irr · Elev 0.0215 0.0234
Irr · Rough -0.2270 0.7701
Irr ·Dist 0.0130 0.0189
Irr · pH -1.3549 0.8753
Irr · Carbon -3.5413 1.3921 **
ρ 0.8356

0 *** 0.01 ** 0.05 * 0.1
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Table 7: Selected Coefficients: Spatial Heckit Estimation
Selection Equation

Estimate Std Error
Constant 18.96727 6.64593 ***
Gross Cell Prod -0.00011 0.00003 ***
Pop 0.00061 0.00033 *
Temp -1.76596 0.52983 ***
Temp2 0.03779 0.01071 ***
Std Dev–Temp 0.04215 0.12972
Precip 0.02483 0.01412 *
Precip2 -0.00019 0.00006 ***
Std Dev–Precip 0.05376 0.00870 ***
Elev 0.00102 0.00053 *
Rougness -0.00058 0.00030 *
Dist -0.00166 0.01260
Irr 0.15022 0.09982
pH -0.01792 0.00719 **
Carbon 0.12567 0.03782 ***
ρ1 0.83167 0.02143 ***

Selection Equation
Estimate Std Error

Constant 5,199.34287 1600.0305 ***
Temp -247.68161 129.1513029 *
Temp2 2.32920 2.8120844
Std Dev–Temp -71.33907 67.1558629
Precip 2.45716 3.2870627
Precip2 -0.02682 0.0139533 *
Std Dev–Precip 7.43186 1.945101 ***
Elev -0.35641 0.1718461 **
Rougness -0.47020 0.0708304 ***
Dist 3.69493 2.6055351
Irr -301.42896 359.7912169
pH 2.34983 2.9159933
Carbon 30.23793 5.4022809 ***
Irr · Temp 28.23859 27.0950252
Irr · Temp2 -0.51679 0.5545297
Irr · Std Dev–Temp 36.85476 12.0627811 ***
Irr · Precip -0.68368 0.9897805
Irr · Precip2 0.00410 0.0033838
Irr · Std Dev–Precip 0.54866 0.4781438
Irr · Elev 0.05496 0.0239988 **
Irr · Rough -1.13132 0.8364094
Irr ·Dist -0.02737 0.0191155
Irr · pH -2.82356 1.0006531 ***
Irr · Carbon -7.90629 1.8936299 ***
IMR 864.93819 333.6108644 ***
ρ2 0.83040 0.0285239 ***
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