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Remote sensing models based on light use efficiency (LUE) provide promising tools for monitoring spatial
and temporal variation of gross primary production (GPP) at regional scale. In most of current LUE-based
models, maximal LUE (εmax) heavily relies on land cover types and is considered as a constant, rather than a
variable for a certain vegetation type or even entire eco-region. However, species composition and plant
functional types are often highly heterogeneous in a given land cover class; therefore, spatial heterogeneity
of εmax must be fully considered in GPP modeling, so that a single cover type does not equate to a single εmax

value. A spatial dataset of εmax accurately represents the spatial heterogeneity of maximal light use would be
of significant beneficial to regional GPP models. Here, we developed a spatial dataset of εmax by integrating
eddy covariance flux measurements from 14 field sites in a network of coordinated observation across
northern China and satellite derived indices such as enhanced vegetation index (EVI) and visible albedo to
simulate regional distribution of GPP. This dynamic modeling method recognizes the spatial heterogeneity of
εmax and reduces the uncertainties in mixed pixels. Further, we simulated GPP with the spatial dataset of εmax

generated above. Both εmax and growing season GPP show complex patterns over northern China that reflect
influences of humidity, green vegetation fractions, and land use intensity. “Green spots” such as oasis
meadow and alpine forests in dryland and “brown spots” such as build-up and heavily degraded vegetation
in the east are clearly captured by the simulation. The correlation between simulated GPP and EC measured
GPP indicate that the simulated GPP from this new approach is well matched with flux-measured GPP. Those
results have demonstrated the importance of considering εmax as both a spatially and temporally variable
values in GPP modeling.
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1. Introduction

Gross primary production (GPP), the flux of carbon into ecosys-
tems via photosynthetic assimilation, is an important variable in
global carbon cycle and a key process in land surface–atmosphere
interactions (Coops et al., 2009; Jung et al., 2008). Continuous
monitoring of spatial and temporal variations of GPP at regional
scale with high accuracy can provide reliable data for carbon-related
climate change studies and useful information for ecosystem
management. Eddy covariance (EC) flux measurement is one of the
best micrometeorological methods for estimating CO2, water, and
energy exchange between the atmosphere and terrestrial ecosystems
(Li et al., 2007). It can provide valuable information on daytime GPP
by measuring net ecosystem exchange (NEE) and estimating daytime
ecosystem respiration at site level (Falge et al., 2002; Falge et al.,
2002). Unfortunately, regional extrapolation of field based GPP
measurements is still a challenging task due to the high spatial and
temporal variability of terrestrial ecosystems across complex land-
scapes and regions (Maselli et al., 2009).

The application of satellite remote sensing has greatly enhanced
global scale observations of vegetation dynamics, and has played an
increasingly important role in estimation of GPP and net primary
production (NPP) over heterogeneous landscapes. Remote sensing
models based on light use efficiency (LUE) integrate satellite
observations and ground measurements provide promising tools for
regional GPPmonitoring (Chasmer et al., 2009; Garbulsky et al., 2008;
Landsberg &Waring, 1997; Potter et al., 1993; Prince & Goward, 1995;
Running et al., 2004; Veroustraete et al., 2002; Xiao et al., 2004; Xiao
et al., 2004). However, in many current LUE-based models, maximal
LUE (εmax) heavily relies on vegetation types and is considered as a
constant, rather than a variable for a certain vegetation type or even
entire eco-region. One obstacle of simulating regional GPP with LUE-
based models is the uncertainties in distinguishing real world
vegetation types. For most moderate to coarse resolution satellite
data (such as MODerate resolution Imaging Spectroradiometer
(MODIS)), there exist many mixed pixels with spatial resolutions
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Table 1
Main characteristics of the 14 flux sites in the study region.

Site Vegetation
type

Location EC above
canopy (m)

Elevation
(m)

Precipitation
(mm)

JZ Cropland
(maize)

41°09 N, 121°12E 1 17 463

YK Cropland
(maize)

38°51 N, 100°15E 1 2859 382

LZ Cropland
(maize)

39°20 N, 100°25E 1 1382 376

TYC Cropland
(sunflower)

44°35 N, 122°52E 2 151 404

DX Cropland
(wheat)

35°33 N, 104°36E 2 1912 505

ZY Steppe desert 39°05 N, 100°16E 2 1483 353
DS Desert steppe 44°05 N, 113°34E 2 990 287
TYG Degraded

meadow
steppe

44°34 N, 122°55E 2 151 404

AR Sub-alpine
meadow
steppe

38°03 N, 100°28E 2 3033 396

YZ Typical steppe 35°57 N, 104°08E 2 1968 382
NM Desert steppe 42°56 N, 120°42E 2 371 405
DYK Evergreen

needleleaf
forest

38°32 N, 100°15E 10 2823 360

CW Deciduous
broadleaf forest

35°15 N, 107°41E 20 1220 540

MY Deciduous
broadleaf forest

40°38 N, 117°19E 25 350 584
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ranging from 250 m to 1000 m. This may contain errors in the as-
signment of land cover type to a mixed pixel. Moreover, εmax is a
changing variable, and its spatial variation and temporal changes
are largely influenced by land use change, disturbance history, and
different successional stages of vegetation (Yan et al., 2009). So, it is
illogical either to employ a fixed εmax to represent certain biome or to
reconcile one pixel as one fixed biome pattern. Detailed analyses of
the spatial heterogeneity of εmax at regional scale are badly needed for
GPP modeling.

Deriving εmax from remotely sensed data could greatly improve
the ability of LUE-based model in estimating GPP in regions with
heterogonous land cover. A large number of studies have demon-
strated positive relationships between vegetation indices (VIs) and
LUE (Cheng et al., 2009; Drolet et al., 2005, 2008; Jenkins et al., 2007;
Nakaji et al., 2007). In this study, EVI (enhanced vegetation index)
was chosen from VIs to simulate LUE considering its great sensitivity
to both low and high biomass regions while minimizing soil and
atmosphere influences on vegetation monitoring (Huete et al., 2002).
Meanwhile, albedo is considered as the primary factor determining
the fraction of photosynthetically active radiation (PAR) absorbed
(Tian et al., 2004). Albedo modifies the amount of PAR and thus
strongly affects vegetation productivity in a given region (Sellers et al.,
1997). Here, we chose visible albedo (and combined with EVI) to
calculate LUE considering its relevance to photosynthetic active
radiation ranging from 400 nm to 800 nm. Consequently, we
integrated remote sensing products including maximal EVI and
minimal visible albedo of growing season with EC flux measurements
to simulate maximal LUE (εmax) for GPP modeling.

In this paper, we simulated GPP in northern China with a gridded
parameter of εmax retrieved from remote sensing data with full
consideration of its heterogeneous nature. We firstly used a dynamic
modeling method that combines maximal EVI and minimal visible
albedo of growing season to retrieve εmax for each pixel in the region.
Compared to the treatment of εmax in most current LUE-basedmodels,
this method considers εmax as a variable at pixel scale and doesn't
solely rely on land cover types. The εmax we retrieved was also
compared with those used for MODIS GPP algorithm (MOD17). Then,
we simulated GPP in growing season of 2008 and validated the results
with GPP retrieved from flux measurements. Finally, we analyzed the
spatial patterns of εmax and sum of GPP in growing season over the
study area. The results of this study will likely improve carbon cycle
modeling by capturing finer patterns with an integrated method of
remote sensing and eddy flux measurements.
2. The study site and data

2.1. Site description

Field measured GPP, air temperature, solar radiation, and PAR were
collected from the 14 field EC flux sites under a coordinated enhanced
observation project in arid and semi-arid regions in northern China
(Table 1). These 14 flux sites represent the dominant vegetation/land
cover types in the region: temperate grassland, cropland, deciduous
broadleaf forests, and evergreen needleleaf forests. For croplands, all the
5 sites (including Jinzhou (JZ), Linze (LZ), Tongyu-Crop (TYC), Dingxi
(DX) and Yingke (YK)) are irrigated with intensive management. JZ, LZ
and YK are planted with maize (Zea mays), TYC is planted with
sunflower (Helianthus annuus) and DX is planted with wheat (Triticum
aestivum). For forests, Dayekou (DYK) is a sub-alpine evergreen
needleleaf forest site, while Changwu (CW) and Miyun (MY) are
deciduous broadleaf forest sites. For grasslands, Arou (AR) is a sub-
alpine meadow site, Zhangye (ZY) represents steppe desert, Tongyu-
Grass (TYG) represents degraded meadow steppe, Yuzhong (YZ)
represents typical steppe, Dongsu (DS) represent desert steppe, while
Naiman (NM) is a sandy grassland site.
2.2. Field measurements and data quality control

The EC systems, which were mounted above canopy from 1 to
25 m (Table 1), consist of a three-dimensional sonic anemometer
(Model CSAT3, Campbell Scientific Inc., Logan, Utah, USA except for LZ
and CW which adopt WindMaster from Gill Instruments Ltd.
Lymington, Hampshire, UK) and an open-path fast response infrared
gas analyzer (IRGA, Model LI7500, LI-Cor Inc., Lincoln, Nebraska, USA).
The raw data were recorded at a rate of 10 Hz, and the computations
were done for each 30 min period by a Data-Logger (Model CR5000,
Campbell Scientific Inc., Logan, Utah, USA). Intensive calibration was
done weeks before the coordinated enhanced observation period
(July to September, 2008) to ensure proper performance of the
instruments and to make those site scale data comparable.

Webb, Pearman and Leuning (WPL) term (Webb et al., 1980) that
accounts for errors introduced by fluctuations in water vapor density
and temperature was applied to correct net ecosystem exchange
(NEE) time series directly measured by EC. The periods of half-hour
bad data caused by water vapor condensation and raindrops on the
windows of the open-path infrared gas analyzer were removed. To fill
small blocks (less than a few hours) of missing and bad data, a linear
interpolation method was applied to each time series. Larger gaps
were filled with values derived from the Michaelis–Menten equation
of PAR (Falge et al., 2001). More details on data quality control have
been described by Liu et al. (2008). NEE measured by EC in nighttime
is treated as ecosystem respiration since photosynthesis is almost
zero. The daytime respiration is calculated with the Q10 of respiration
in nighttime when ECmeasures gross respiration without considering
photosynthesis (Falge, Baldocchi, et al., 2002; Falge, Tenhunen, et al.,
2002). GPP was finally estimated as NEE minus estimated daytime
ecosystem respiration (RDay-eco):

GPP = − NEE � RDay�eco

� �
: ð1Þ

Then, daily GPP were accumulated to 8-day integrated GPP to be
consistent with MODIS 8-day products.



Table 2
Parameters of the Landsat images for evaluating landscape heterogeneity around the
flux towers.

Site Sensor Path/row Acquisition time

AR Landsat-5 TM 133/34 2009-8-11
DYK Landsat-5 TM 133/33 2009-8-11
JZ Landsat-5 TM 120/31 2009-7-15
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2.3. Ancillary meteorology data

The raster datasets of daily air temperature and PAR were
interpolated spatially using kriging from the air temperature and solar
radiation measured at 390 meteorological stations in northern China at
the same resolution of surface reflection (MOD09A1, 500 m). Solar
radiation is assumed as a linear function of PAR, and a conversion of 2.05
was taken from 106 Joules (106 J) tomol PAR (Aber et al., 1996). The air
temperature and solar radiation data over the region were provided by
China meteorological data service (http://data.cma.gov.cn). Daily air
temperature and PAR were also averaged to 8-day intervals to be
consistent with MODIS 8-day composites.

2.4. Remotely sensed data

The digital elevation model (DEM) data was obtained from U.S.
Geological Survey (USGS) global DEM dataset (http://rmmcweb.cr.
usgs.gov/elevation/) for analyzing terrain features of the study area.
The MODIS Land products (Collection 5) were provided by MODIS
Land Team (http://modis-land.gsfc.nasa.gov/) and include surface
reflection (MOD09A1) and Land cover types (MCD12Q1). MOD09A1
was selected to generate spatial dataset of visible albedo (Liang,
2000), land surface water index (LSWI), and enhanced vegetation
index (EVI) in northern China with a temporal resolution of 8 day and
spatial resolution of 500 m, over the coordinated enhanced observa-
tion period (July to September, 2008). 2008 land cover data
(MCD12Q1) was selected to analyze the feature of εmax for different
land cover categories:

albedovisible = 0:331ρ1 + 0:42ρ3 + 0:246ρ4 ð2Þ

LSWI =
ρ2−ρ6
ρ2 + ρ6

ð3Þ

EVI =
G × ρ2−ρ1ð Þ

ρ2 + C1 × ρ1−C2 × ρ3ð Þ + Lð Þ ð4Þ
where, visible albedo (albedovisible) was derived from three visible
bands fromMOD09A1. ρ1, ρ2, ρ3, ρ4 and ρ6 are the reflectance bands in
MOD09A1: blue band (459–478 nm), green band (545–565 nm), red
band (620–670 nm), near infrared band (841–875 nm), and short-
wave infrared band (1628–1652 nm) respectively. LSWI is sensitive to
changes in leaf water content over time (Maki et al., 2004; Xiao,
Hollinger, et al., 2004). The coefficients adopted in the EVI algorithm
are: L=1, C1=6, C2=7.5 and G (gain factor)=2.5 (Huete et al.,
2002). EVI includes the blue band for atmospheric correction, which
has been used for the study of vegetation dynamics or production
recently (Sims et al., 2006; Zhang et al., 2003, 2008).

We selected 3×3 subsets (approximately 1.5×1.5 km2) of
MOD09A1 in the period of coordinated flux measurements that
centered on the eddy flux tower sites of this study from Oak Ridge
National Laboratory (ORNL). Two major factors, footprint of flux and
geo-location accuracy of satellite products, were considered when we
decided the size of subsets. Details on footprint analysis will be
provided in the following sections. We generated spatial datasets of
EVI and visible albedo from product MOD09A1 to connect the flux-
measured εmax with remote sensing data (for more details, see the
next section).

Additionally, three cloud free scenes of Landsat Thematic Mapper
(TM5) data over the flux stations AR, DYK and JZ in summer of 2009
were acquired to evaluate the influence of landscape heterogeneity
around the flux towers on the predictability of GPP (Table 2).
3. Methods

3.1. εmax modeling

In this study, the εmax of the 14 flux sites were calculated from Michaelis–Menten light response function:

NEE = − εmax × PAR × GEEmax

εmax × PAR + GEEmax−R

� �
ð5Þ

where, εmax is maximal light use efficiency for a certain type of vegetation at canopy scale, PAR is photosynthetic active radiation, GEEmax is the
ecosystem gross primary productivity at “saturating” light, and R is ecosystem respiration. GEEmax and εmax were all obtained from the GPP
measured from flux stations and the fit curves of PAR based on the nonlinear model of Michaelis–Menten function Eq. (5).

We performed regression analysis between the calculated εmax and remote sensing products. The remote sensing products include the
maximal EVI (MaxE) andminimal visible albedo (MinVa) in growing season and the subsets were chosen from 3×3 pixels (1.5×1.5 km2) around
each flux tower. The results indicate that εmax andMaxE had a strong positive relation, while εmax andMinVa had strong negative relation (Fig. 1).

Independent variables employingMaxE alone, MinVa alone, and a combination of the former two variables for GPP estimationwere compared
to get the optimal input (Table 3). The result shows that the combination of MaxE and MinVa can reasonably better simulate εmax than taking
either of the variables alone, as indicated by its highest R2 and lowest RMSE. Furthermore, partial correlation of the multi-regression indicates
that MaxE and MinVa have nearly the same contribution in modeling εmax. Therefore, the εmax was calculated with the combination of MaxE and
MinVa as:

εmax = exp 1:428MaxE−6:295MinVa−1:211ð Þ; MaxE N 0:07εmax = 0;MaxE ≤ 0:07 R2 = 0:86; p b 0:01
� �n

ð6Þ

Herewe define a value ofMaxE as 0.07 from desert area as the threshold of vegetation by analyzing seasonal EVI curves throughout the region.
MaxE and MinVa are the maximal EVI and minimal visible albedo of the growing season for each pixel respectively.

http://data.cma.gov.cn
http://rmmcweb.cr.usgs.gov/elevation/
http://rmmcweb.cr.usgs.gov/elevation/
http://modis-land.gsfc.nasa.gov/


Fig. 1. (a) The negative relationship between maximal light use efficiency (εmax) and minimal visible albedo in growing season; and (b) the positive relationship between εmax and
maximal EVI in growing season.
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3.2. Description of the VPM model

Vegetation PhotosynthesisModel (VPM) is a LUE-based, remote sensing orientedmodel developed by Xiao et al. (2004)and Xiao et al., (2004).
VPMwas proposed by the conception of partitioning of vegetation canopies into photosynthetically active vegetation (PAV) such as chloroplasts
and non-photosynthetically active vegetation (NPV) such as stem, branch and cell wall:

GPP = εg × FAPARPAV × PAR ð7Þ

εg = εmax × Tscalar × Wscalar × Pscalar ð8Þ

where PAR is photosynthetic active radiation, FAPARPAV is the fraction of PAR absorbed by leaf chlorophyll of canopy (PAV), and εg is actual light
use efficiency under environmental stress (Okin, 2007). The parameter εmax is maximal light use efficiency, and Tscalar, Wscalar and Pscalar are the
environmental stress indices of temperature, water and leaf phenology on light use efficiency respectively (see Xiao et al., 2004; Xiao et al., 2004
for more details).

3.3. Regional GPP modeling

Regional GPP was simulated by VPM algorithmwith modified raster layer of εmax that we generated above except for Tscalar algorithm (Fig. 2).
The reason for such treatment is that at large regional scale, it is unpractical to get the “three base point” (minimal, maximal and optimal
temperature for photosynthesis) to calculate Tscalar. So we introduced the algorithm of Tscalar in Carnegie–Ames–Stanford Approach (CASA) to
Table 3
Correlations and root mean square errors (RMSEs) of different parameters employed to estimate maximal light use efficiency (gC/Mol PAR): (1) maximal EVI in growing season
(MaxE); (2) minimal visible albedo in growing season (MinVa); and (3) combination of MaxE and MinVa.

MaxE MinVa MaxE and MinVa

Partial correlation

R2 RMSE R2 RMSE R2 RMSE MaxE MinVa

0.762 0.136 0.769 0.162 0.86 0.098 −0.628 0.643



Fig. 2. Flowchart of gross primary production (GPP) modeling method. εmax was retrieved from maximal EVI and minimal visible albedo in growing season; Tscalar was calculated
from 8-daymean air temperature, Topt was defined as the air temperature when the pixel's EVI reach the peak of the year; Pscalar was calculated from the time series of EVI, the period
of pixel's EVI exceed the average value of EVI was defined as the expansion period; Wscalar was calculated from LSWI; and FPAR was set as the value of EVI.
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replace VPM in the case. The alternative algorithm only needs input of optimal temperature for vegetation growth, which is defined as the 8-day
air temperature when EVI reaches maximum of the year for each pixel:

Tscalar =
1:2 × 0:8 + 0:02Topt−0:0005T2

opt

� �
× 1 + exp 0:3 × T−Topt−10

� �� �� �
1 + exp 0:2 × T−10−Tð Þð Þ ð9Þ

where, Topt is the optimal temperature and T is 8-daymean air temperature. If T is lower than 0 °C, Tscalar is set as 0; if Tscalar is greater than 1, Tscalar
is set as 1 (Potter et al., 1993).

For each pixel, wedefined the period from the turningdatewhenEVI exceeds the average valueover growing season to the turningdatewhenEVI
drops to this threshold as the state of leaf full expansion. Pscalar was set as 1 during this period; for other periods, Pscalar was set as (1+LSWI)/2.

3.4. Footprint modeling

A footprint size and shape depend on the diffusion height of the EC measurement, canopy roughness, and planetary boundary layer
mixing conditions. In this study, we analyzed the flux footprints with Eulerian analytical approach. The approach assumes stand power law
Fig. 3. The maximal light use efficiencies retrieved from flux measurements (εmax-EC) and look-up-tables of MOD17 (εmax-MOD) among different biomes and flux sites along the
gradient of humidity.
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to obtain vertical profile of the horizontal wind velocity and the eddy diffusivity. Linkage of power law profiles to Monin–Obukhov
similarity profiles leads to an analytical solution of the flux footprint, the upwind distance, and the diffusion height. We calculated the size
and extent of flux footprint for each of the EC tower and overlaid vector layers on fine resolution satellite images to demonstrate source of
EC signals.
4. Results

4.1. Variations of εmax in different biomes

The values of εmax derived from coordinated EC fluxmeasurements
(εmax-EC) and MOD17 algorithm (εmax-MOD) were ordered along
environmental gradients of humidity and the maximum LSWI in
growing season (Fig. 3). εmax-EC showed an increasing trend along the
gradient of humidity. However, εmax-MOD was not so sensitive to
humidity as εmax-EC. They barely agree with each other not only
between different biomes but also within a certain biome. In
croplands, εmax-EC differed largely from 0.26 to 0.78 gC/mol PAR for
different crop species planted. Even in the croplands planed with the
same crop (JZ, LZ and YK), εmax-EC ranged largely from 0.51 to
0.78 gC/mol PAR. In most cases, εmax-EC was greater than MOD17
derived εmax (εmax-MOD) over cropland sites. For grasslands, although
mean value of εmax-EC was similar to εmax-MOD, there still exists a
large variation of εmax-EC ranging from 0.16 to 0.47 gC/mol PAR. There
was a major difference in εmax-EC between two DBF sites (CW and
MY) too. These large variations of εmax between and within biomes
indicated that εmax is a variable rather than a constant for a certain
biome or even a certain vegetation type. Employing a constant εmax for
a certain biome may bring errors for LUE-oriented GPP modeling,
Fig. 4. Spatial patterns of εmax in 2008: (a) retrieved from the simple dynamic modeling m
although the calculation of absorbed fraction of PAR partly compen-
sated the errors by considering the heterogeneous character of land
cover types.

4.2. Spatial patterns of εmax

The raster layer of εmax for northern China in 2008 was derived
with the modeling algorithm as described above. Meanwhile, another
spatial dataset of εmax was generated from look-up-tables (LUT)
according to MODIS derived land cover types (MCD12Q1) in the same
period with MOD17 algorithm, which assigned εmax of each pixel
according to land cover types (Fig. 4). Both of the εmax spatial datasets
captured the key spatial patterns of εmax in the region: εmax is
generally greater in the eastern part of the region than in the west.
However, the spatial patterns of εmax modeled by our dynamic
method (εmax-Dyn) and εmax-MOD were different in the following
aspects: 1) εmax-Dyn presented much clearer spatial continuity, i.e.,
the values of εmax-Dyn gradually decreased from east to west in
general, following the gradients of humidity, vegetation cover, and
land use options. εmax-Dyn can well capture the mixed εmax over
mosaics of different land cover/vegetation classes. By contrast, εmax-
MOD had a uniform value in a given biome. The spatial pattern of
εmax-MOD exhibited discrete characteristics between different
ethod; and (b) retrieved from the MOD17 algorithm with land cover types in 2008.
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biomes. There was no transition between vegetated area (mainly
grassland or cropland) and barren or sparsely vegetated (BSV) areas
since the εmax were all assigned as 0.33 gC/mol PAR in grasslands and
croplands, while BSV was assigned as zero. 2) In many areas of BSV,
especially those in transitional areas between grassland and desert,
vegetation productivity can hardly be ignored, therefore, assigning a
fixed εmax (zero) will likely lead to underestimation of GPP over large
areas. Another example is land cover class of urban and build-up
(UBU). In this case, urban greens and city parks that are commonly
found in most urban areas are totally ignored by traditional LUE-GPP
modeling efforts when those pixels are categorized as UBU and
thereforewere assigned as zero in εmax-MOD because land cover types
of BSV or UBU were treated as no vegetation activity. 3) The spatial
dataset of εmax-Dyn can capture fractional green vegetation in isolated
patches over contrasted background, such as oasis in desert and sub-
alpine forest/meadow (i.e., Hetao Oasis in Fig. 4) in dryland areas.
Those patches often repeatedly cover small areas (sub-pixel in many
cases) and are very easy to be ignored in the εmax-MOD approach. 4)
Different plant functional types (PFT) in the same biome such as C4
plants in croplands and sandy shrubs in grasslands could also be
captured by εmax-Dyn. C4 crops are widely planted in the southeast
part of northern China, with higher εmax thanmost C3 crops. εmax-Dyn
can well distinguish C3 and C4 plant in cropland in values of εmax,
while εmax-MOD treats εmax for all cropland as the same value. Also,
εmax-Dyn sensed the low productivity areas of sandy desert or salty
patches in grasslands, which are often ignored by εmax-MODmethods.

Table 4 listed the average value of εmax-Dyn and εmax-MOD for
major land cover types of the study area. In general, εmax-Dyn was
greater than εmax-MOD, especially for cropland, deciduous broadleaf
forest (DBF), andmixed forest (MF), while evergreen needleleaf forest
(ENF), deciduous needleleaf forest (DNF) and grassland had closer
values between them.

4.3. Spatial patterns of GPP

With the modified raster layer of εmax-Dyn, we simulated 8-day
GPP time series over 2008 growing season and generated a spatial
dataset of accumulative GPP in growing season (Fig. 5). The GPP in
northern China followed a clear longitudinal gradient and increased
from west to east and from lowland to high plateaus, likely controlled
by the gradient of humidity, green vegetation fractions and land
use intensity. In 2008, the average GPP in growing season was
509.29 gC/m2 for the entire region. HighGPP areasmainly distributed in
the eastern part of northern Chinawhere forest and cropland dominate,
but the “brown spots” such as build-up andheavily degraded vegetation
in this area can also be clearly captured by the simulated GPP. In the
central part of the region, GPP dropped gradually from east to west, as
Table 4
Comparison of GPP in growing season, the maximal light use efficiency retrieved from
simple dynamic modeling method (εmax-Dyn) and look-up-tables of MOD17 (εmax-MOD)
of the main land cover types over northern China.

Biome type GPP
(gC/m2)

εmax-DYN
(gC/mol PAR)

εmax-MOD
(gC/mol PAR)

Areas fraction
(%)

ENF 581.42 0.42 0.49 0.51
DNF 937.40 0.58 0.54 1.04
DBF 1680.93 0.71 0.51 2.50
MF 1320.83 0.64 0.54 6.05
Oshrub 254.53 0.27 0.38 2.52
Grass 364.55 0.33 0.33 27.90
Crop 1041.95 0.60 0.33 18.48
UBU 397.96 0.36 0.00 0.79
BSV 30.57 0.06 0.00 32.96

Biome class key: ENF = evergreen needleleaf forest; DNF = deciduous needleleaf forest;
DBF=deciduousbroadleaf forest;MF=mixed forest;Oshrub=openshrubland;Grass=
grassland; Crop = cropland; UBU = urban and built-up; BSV = barren or sparsely
vegetated.
dense grasslands were gradually replaced by sparse grasses and shrubs
towards inland. However, high GPP areas were often found over
cultivated areas, sub-alpine forest/meadow, and oasis. In the western
part of the region, the dominant land cover type was BSV, with the
lowest GPP. Also, some croplands, grasslands and ENF existed in oasis or
sub-alpine regions and became “green spot”with high GPP even in vast
Gobi desert (Fig. 5). In some cases, GPP values over oasis andmajor river
valleys in western desert were even higher than central grassland.

GPP is largely a function of dominant vegetation types in a given
area or pixel. Areas dominated by deciduous broadleaf forests and
coniferous forests generally had the highest GPP, while cropland took
the second place likely due to its intense management and dense
crown cover, followed by lower coverage vegetation (such as urban
greens and open shrubland) and grassland. BSV had the lowest GPP
but can still be detected by our modeling method (Table 5).

4.4. Accuracy assessment of GPP simulation

We calculated the mean value of simulated GPP over 3×3 pixel
subsets (1.5×1.5 km2) around flux sites to perform liner regression
with correspondent field measured GPP to assess accuracy. Sums and
the relative errors between EC measured and model simulated GPP for
different land cover types indicated that the GPP was simulated with
reasonable accuracy (Table 5). The liner regressionmodel also showed a
good agreement among different land cover types (Fig. 6). For all sites,
the correlation had a good agreement and highly significant level
(R2=0.78, pb0.01). As to different land cover types, grass sites had the
highest correlation with highly significant (R2=0.82, pb0.01), crop
sites took the second place (R2=0.69, pb0.01) and forest sites had the
lowest correlation with moderate significant (R2=0.60, pb0.05).

5. Discussion and conclusions

The differences in the performance of our GPP modeling among
different land cover types or locations were partly contributed by the
landscape heterogeneity over flux sites. Heterogeneity within the
subset around flux towers would influence the correlation between
field measurements and remote sensing simulation due to mismatch
in spatial representative areas (Wu et al., 2009). We chose grassland
site AR, cropland site JZ and forest site DYK as examples to analyze
influence of landscape heterogeneity on the performance of GPP
simulation (Fig. 7). DYK had the lowest correlation among the 3 sites,
JZ took the second place and AR had the highest correlation. From the
EVI histogram of the subsets and landscape views from Landsat
high resolution image (TM5), it is very clear that greater landscape
heterogeneity often leads to lower agreement between pixel scale
GPP simulation and site scale field measurements. Here, DYK is
categorized as a sub-alpine ENF site, however, in 1.5×1.5 km2 subset
(equal to the 3×3 pixels of spatial GPP dataset) around the flux site at
least three different vegetation types mixed as a mosaic, which are
dense needleleaf forest on shady slopes, sparse deciduous shrubs on
sunny slopes and sub-alpine meadows on flat tops. The EVI histogram
of the subset of high resolution image (TM5) ranged from 0.1 to 0.5,
more than half of the pixels have EVI values ranging from 0.1 to 0.3,
which were mainly contributed by sparse vegetation. Such a
Table 5
Sums and the relative errors between EC measured and modeled GPP in different
biomes.

Measured GPP
(gC/m2/8-day)

Simulated GPP
(gC/m2/8-day)

Relative error
(%)

Grass sites 20.56 22.83 11.06
Forest sites 36.47 42.96 17.80
Crop sites 65.76 61.06 −7.14
All sites 40.93 42.28 3.31



Fig. 5. Spatial patterns of sum of GPP in growing season (from April to September).
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heterogeneous pattern will very likely influence the performance of
VPM up-scaling of GPP from site scale to regional scale. For JZ, EVI
values of correspondent pixels ranged from 0.4 to 0.6, but there were
still large fractions of low EVI values contributed by build-up and bare
soil around croplands, which influenced the correlation moderately;
for AR, the land cover can be considered as relatively homogenous,
with nearly all EVI signature contributed by sub-alpine meadow,
ranging from 0.3 to 0.5, which will likely lead to more accurate
simulation and up-scaling by VPM model. The footprint analysis
illustrated the same issue, although the source area of DYKwasmainly
contributed by forest, but it also mixed with grassland, bare land, and
even river; JZ's source area of cropland was also mixed by buildings
Fig. 6. Comparison between the observed GP
and roads; as to AR, the source area was entirely contributed by a pure
signal of grassland (Fig. 8).

Another source thatmay influence theperformance ofGPPmodeling
was the flux measurement itself. EC measures GPP indirectly by
calculating it from flux-measured NEE and estimates daytime ecosys-
tem respiration. However, instrument calibration and data quality
control are critical for NEE measurements. Daytime ecosystem
respiration was estimated by extrapolating the relationship between
nighttime respiration and soil temperature to daytime. Both NEE and
respiration require subjective decisions and are currently the subject of
a great deal of discussion (Falge, Baldocchi, et al., 2002; Falge, Tenhunen,
et al., 2002). Here, we calibrated key EC instruments and performed a
P and modeled GPP in northern China.



Fig. 7. Landscape views from satellite, site underlying surface pictures, regression relationships between modeled and observed GPP and the histograms of EVI of the subset ith the size of 1.5×1.5 km2 around the site. (A) DYK, (B) JZ and
(C) AR. The range of EVI was expressed as alphabet, A: 0–0.1; B: 0.1–0.2; C: 0.2–0.3; D: 0.3–0.4; E: 0.4–0.5; F: 0.5–0.6; G: 0.6–0.7.
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Fig. 8. Footprint of the observation period in (a) DYK, (b) JZ, and (c) AR. The size of the
grid is 0.5×0.5 km2, and the key of the contour line for percentage of total footprint is:
purple=60%, magenta=80%, green=90%, blue=95%, and red=99%.
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coordinated quality control for all participant sites (14 in total) to
improve the quality and consistency of our sites during the enhanced
coordinated observation period. Meanwhile, intensified post-calibra-
tion and data quality control also greatly improved the reliability of our
ECmeasurements and reduced uncertainty related to instruments, field
protocol, and missing/bad data.

We also compared our simulation results with both εmax-MOD and
previous field EC measurements in the region. Field EC measured εmax
of needleleaf forest from previous studies ranged from 0.62 to
0.83 gC/mol PAR (Wuet al., 2009),while the εmax values for croplands in
northern China ranged from 0.76 to 0.92 gC/mol PAR with the same
method (Yan et al., 2009). εmax-Dyn are much closer to those results
than εmax-MOD in the corresponding land cover type, although it is still
lower than those field based results. It is likely due to the fact that εmax-
Dyn we calculated are still average values in a given pixel (large area),
and often mixed with signals of lower vegetation productivity.

The MODIS derived GPP is one of the main sources of satellite-
based products for vegetation processes that cover entire globe with
8-day MVC composite at 1 km pixel resolution. However, several
recent studies have highlighted limitations of this product and the
models used to derive the dataset (Heinsch et al., 2006; Running et al.,
2004; Turner et al., 2003, 2005; Yan et al., 2009). The underestimates
of vegetation productivity by MODIS GPP products in high produc-
tivity areas are very likely contributed by the relatively low value of
εmax based on the standard MODIS-based GPP/NPP algorithm
(MOD17, Running et al., 1999). Further, MOD17 doesn't distinguish
major crop species and plant functional types, which could lead to
errors in GPP modeling among different ecological categories. This is
likely due to lack of calibration data collected from East Asia used in
the MOD17, and that the parameters in MOD17 might be not suitable
for our study region. In this study, we integrated a network of flux
measurements with remote sensing data to retrieve high accuracy
spatial data of regional GPP and hope to cope with those problems.

Site-specific LUE-based models such as VPM has been evaluated
successfully by using εmax retrieved from flux tower data for various
land cover/vegetation classes (Li et al., 2007;Wu et al., 2009; Xiao et al.,
2004; Xiao et al., 2004; Yan et al., 2009). Up-scaling a site-specificmodel
is often limited partly by lack of localized spatial dataset with high
accuracy εmax that fully considers spatial heterogeneity of landscape.
The spatial dataset of εmax we generated in this study provides a new
opportunity for up-scaling of site-specific model to regional scale with
integrated multi-site EC measurements and satellite observation.

As the LUE-based remote sensing models become important
methods for estimating regional GPP, the critical assumption made for
LUE-based models should be a concern or reexamined (Ahl et al., 2004;
Drolet et al., 2008). εmax in LUE-basedmodels needs to fully consider the
spatial heterogeneity of vegetation, plant function groups, and their
texture (fractional cover) (Trotter et al., 2002). In current LUE-based
models, εmax is determined by “ideal” land cover or biome types that do
not vary with space or time. However, in the real world εmax is rather a
variable than a constant even in the same vegetation type in the same
biome. It varies with canopy densities, ages, and nutrient level from
pixel to pixel and from time to time. Moreover, the accuracy of land
cover types that εmax relies on in LUE-based models should also be a
concern. The simulated GPP of a mixed pixel suffers from uncertainties
caused bymixed εmax. This is also amajor problem thatmost LUE-based
GPP models face.

In this study, we used a dynamic modeling method that employs
minimal visible albedo andmaximal EVI in growing season to get εmax

for each pixel. Considering the visible albedo and EVI having the
ability of representing mixed information for every pixel, the mixed
signals of εmax could also be captured even over complex landscape by
our method. We hope this dynamic modeling method could to some
extent improve regional GPP modeling by introducing pixel level εmax

with full consideration of its heterogeneous nature.
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