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Studies using satellite sensor-derived data as input to models for CO2 exchange show promising results for
closed forest stands. There is a need for extending this approach to other land cover types, in order to carry
out large-scale monitoring of CO2 exchange. In this study, three years of eddy covariance data from two
peatlands in Sweden were averaged for 16-day composite periods and related to data from the Moderate
Resolution Imaging Spectroradiometer (MODIS) and modeled photosynthetic photon flux density (PPFD).
Noise in the time series of MODIS 250 m vegetation indices was reduced by using double logistic curve fits.
Smoothed normalized difference vegetation index (NDVI) showed saturation during summertime, and the
enhanced vegetation index (EVI) generally gave better results in explaining gross primary productivity
(GPP). The strong linear relationships found between GPP and the product of EVI and modeled PPFD
(R2=0.85 and 0.76) were only slightly stronger than for the product of EVI and MODIS daytime 1 km land
surface temperature (LST) (R2=0.84 and 0.71). One probable reason for these results is that several controls
on GPP were related to both modeled PPFD and daytime LST. Since ecosystem respiration (ER) was largely
explained by diurnal LST in exponential relationships (R2=0.89 and 0.83), net ecosystem exchange (NEE)
was directly related to diurnal LST in combination with the product of EVI and modeled PPFD in multiple
exponential regressions (R2=0.81 and 0.73). Even though the R2 values were somewhat weaker for NEE,
compared to GPP and ER, the RMSE values were much lower than if NEE would have been estimated as the
sum of GPP and ER. The overall conclusion of this study is that regression models driven by satellite sensor-
derived data and modeled PPFD can be used to estimate CO2 fluxes in peatlands.
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1. Introduction

Studies have shown that mid- to high-latitude forests at the
Northern Hemisphere probably can explain the so-called “missing
sink” for atmospheric carbon dioxide (CO2) (Keeling et al., 1996;
Prentice et al., 2001). Research has therefore focused on forest CO2

exchange, with less attention given to other ecosystem types, until
recently. Peatlands are important in the carbon cycle, since they may
store 30% of the global soil carbon or 50% of the carbon currently in the
atmosphere (Gorham, 1991; Turunen et al., 2002). The major fraction
of all peatlands is located in northern temperate and cold climates
(Aselmann & Crutzen, 1989). Because of waterlogged, anoxic, and cool
conditions, peatlands are characterized by slow decomposition rates,
which together with photosynthesis results in the accumulation
of atmospheric CO2. However, there are concerns that increased
temperatures and evapotranspiration rates will cause drought con-
ditions and a subsequent release of CO2 (Gorham, 1991; Tarnocai,
2006; Aurela et al., 2007). In sub-arctic peatlands, temperature in-
creasesmay lead to permafrostmelting, affecting the physical stability
of the ground and the biological dynamics of the soil and potentially
having severe consequences for the carbon storage (Gorham, 1991;
Johansson et al., 2006; Tarnocai, 2006). For these reasons, it is of
particular interest to find suitable ways of extending estimates of CO2

exchange in peatlands, across time and space.
An important method of measuring CO2 exchange for extended

time periods is the eddy covariance technique (Wofsy et al., 1993;
Lindroth et al., 1998; Aubinet et al., 2000; Falge et al., 2001). In the
mid- and high-latitudes, an increasing number of eddy covariance
tower sites cover a variety of ecosystems, such as forests, grasslands,
wetlands, and agricultural lands (Baldocchi et al., 2001; Baldocchi,
2003). Still, these on-site measurements are restricted in space, and
therefore, do not represent the diversity of different species, age
classes, and site conditions at a larger scale (Lagergren et al., 2006).

One way to extend estimates of CO2 exchange to a larger spatial
scale is to use satellite sensor-derived data as input to a light use
efficiency (LUE, see Appendix for abbreviations and symbols) model,
developed by e.g. Monteith (1972, 1977) and Prince (1991). It is well
known that the LUE model comes in the two versions where either
gross primary productivity (GPP) or net primary productivity (NPP) is
expressed as the product of the photosynthetically active radiation
absorbed by vegetation (APAR) and the light use efficiency factor (ε).
While GPP is the total amount of CO2 taken up by photosynthesis, NPP
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is the CO2 uptake after subtraction of autotrophic respiration, and ε is
the vegetation capacity to convert radiation energy into biomass. It
has been shown that the fraction of absorbed photosynthetically
active radiation (FAPAR) is dependent on the normalized difference
vegetation index (NDVI; Rouse et al., 1973) and that the relationship
is linear (Asrar et al., 1984, 1992; Goward & Huemmrich, 1992;
Myneni & Williams, 1994). Therefore, satellite sensor-derived NDVI
has been used to derive FAPAR (Tucker et al., 1986; Chen, 1996;
Fensholt et al., 2004; Olofsson & Eklundh, 2007), and when FAPAR is
available, APAR is easily calculated by multiplying FAPAR with the
incoming photosynthetically active radiation (PAR).

For Scandinavian coniferous forests, Olofsson et al. (2007) used
NDVI from the Moderate Resolution Imaging Spectroradiometer
(MODIS) to derive FAPAR, and then, calculated APAR by multiplying
FAPAR with modeled PAR. The LUE model was used to estimate NPP,
with ε dependent on latitude, air temperature (AT), and the day of the
year (DOY) (Lagergren et al., 2005). For North European coniferous
and deciduous forests, Olofsson et al. (2008) adopted another ap-
proach without any separate estimation of ε. Eddy covariance GPP was
modeled with a regression function driven by APAR and the MODIS
enhanced vegetation index (EVI; Huete et al., 2002). By reducing
atmosphere and canopy background influences, EVI enhance the
vegetation signal and maintains sensitivity in high biomass regions:

EVI = G
ρNIR−ρred

ρNIR + C1ρred−C2ρblue + L
; ð1Þ

where ρNIR, ρred, and ρblue, are surface reflectance values in the near
infrared (NIR), red, and blue wavelength bands, respectively. The
coefficients C1=6 and C2=7.5 correct for atmosphere influences,
while L=1 adjust for the canopy background. The factor G=2.5 is the
gain factor. To achieve APAR, Olofsson et al. (2008) derived FAPAR
from NDVI and multiplied it with measured PAR. Furthermore, eco-
system respiration (ER) was modeled with a regression function
driven by AT, and net ecosystem exchange (NEE) was finally cal-
culated from GPP and ER. Both Olofsson et al. (2007) and Olofsson
et al. (2008) used eddy covariance data to validate modeled CO2

fluxes, and stronger relationships were obtained for GPP and ER, than
for NEE.

For North American coniferous and deciduous forests, Rahman
et al. (2005) found an equally strong relationship between eddy
covariance GPP and MODIS EVI as for eddy covariance GPP and the
MODIS GPP product (MOD17; Running et al., 2004). It was also found
that nighttime ER was related to nighttime MODIS land surface
temperature (LST). In a subsequent study with additional sites, Sims
et al. (2006) found that EVI performed even better than MODIS GPP.
This was later confirmed by Sims et al. (2008) and implemented in
their temperature and greenness (TG) model, which improved the
results by combining EVI and LST. Therefore, it was suggested that
simpler models based entirely on satellite sensor-derived data could
be as good as the MODIS GPP product.

Heinsch et al. (2006) evaluated the LUE-based 1 km MODIS GPP
product (MOD17) and indicated that the input of coarse resolution
meteorological data is the most limiting factor in the quality of the
product. It was also pointed out that the 1 km land cover product
(MOD12Q1), used in the MOD17 algorithm, has a too coarse
resolution to be applied in regions with heterogeneous vegetation.
An additional problem is that the particular land cover classification
scheme inMOD12Q1 (the product containsmultiple schemes) used to
extract ε from lookup tables does not have any category for peatlands
(Heinsch et al., 2003). In their study of peatland representation on
global maps, Krankina et al. (2008) investigated the MOD12Q1
product based on another classification scheme that includes a cat-
egory for peatlands. This scheme is used to derive FAPAR as input to
the MOD17 algorithm. It was found that peatlands are highly under-
represented, compared to a detailed map of the St. Petersburg region
in Russia. Since peatlands often are smaller areas located within a
mosaic of other land cover types, such as temperate and boreal forests,
it seems that the MOD17 product cannot account for the site-specific
conditions in peatlands. Although these studies focused on 1 km
MODIS products, it is reasonable to assume general resolution
difficulties associated with peatlands.

An additional problemwith peatlands is that investigations both in
the laboratory and in the field have demonstrated that Sphagnum
mosses, which dominate most peatland types, have distinctively differ-
ent spectral signatures compared to vascular vegetation (Vogelmann &
Moss, 1993; Hall et al., 1995; Bubier et al., 1997; Bryant & Baird, 2003).
According to Bubier et al. (1997), the narrow red absorptions and near-
infrared (NIR) peaks of Sphagnum mosses, which are dominant in this
study, make NDVI and the simple vegetation index ratio inappropriate
for characterizing biomass or greenness. Also, Vogelmann&Moss (1993)
and Bubier et al. (1997) show that the differences between the red and
NIR reflectance values are smaller forSphagnummosses,whichgenerates
lower NDVI values. For the seasonal variation in NDVI, this should mean
that the errors in data are larger in relation to the range,making it harder
to find strong relationships with other seasonal variables.

Evidently, there are problems to be solved, but satellite sensor-
derived data have successfully been used in regressionmodels for CO2

fluxes in forests. There is a need for exploring similar relationships for
other ecosystem types, such as peatlands, in order to carry out large-
scale monitoring of CO2 exchange. Failure to account for ecosystem
differences is likely to result in either an over- or underestimation
of CO2 exchange at the regional or global level. The aim of this study
is to assess the possibility of using satellite sensor-derived data and
modeled photosynthetic photon flux density (PPFD) in regression
models for CO2 fluxes in peatlands. To achieve this, eddy covariance
NEE from two Swedish peatlands were used as ground truth data.
First, different environmental controls on GPP were related to modeled
PPFDandMODIS LST, and then,GPP, ER, andNEEwere related to various
combinations of modeled PPFD, MODIS EVI, and MODIS LST.

2. Material and methods

2.1. Study sites

Two sites were used: Fäjemyr and Degerö Stormyr. Fäjemyr is
a raised temperate ombrotrophic bog, surrounded by forest (see
Appendix for peatland-related concepts). It is located 50 km east of
the coast of Kattegat Bay in southern Sweden (56°15′N, 13°33′E) and
covers about 2.9 km2. The temperate climate has amean (1961–1990)
annual AT and precipitation of 6.2 °C (January: −2.4 °C, July: 15.1 °C)
and 700 mm, respectively (Lund et al., 2007). The average (2005–2007)
vegetation period is 199 days (AT > 5 °C), and the snow period is
intermittent. The average (2005–2007) water table depth (WTD) is
16 cm below the surface. Peat has accumulated to the depth of about
5 m. Scattereddwarf pines (Pinus sylvestris L.) growon thedrier patches.
Dominant vascular plant species on the hummocks are dwarf shrubs
(Calluna vulgaris L. Hull and Erica tetralix L.). Sedges (mainly Eriophorum
vaginatum L.) are common in the lawns and carpets. Sphagnummosses
(mainly S. magellanicum Brid. and S. rubellum Wils.) constitute the
bottom layer of the lawns and carpets. Lund et al. (2009b) estimated the
proportions of the hummocks, lawns/carpets, and hollows to 13%, 83%,
and 4%, respectively. The moss cover was estimated to 60%. Lindroth
et al. (2007) estimated the leaf area index (LAI) to about 1. The eddy
covariance tower is located about 250 m from the bog edge, and the
eddy covariance system, consisting of a closed-path infrared gas
analyzer (IRGA, Li-Cor 6262, Li-Cor Inc, USA) and a three-dimensional
sonic anemometer (Gill R3, Gill Instruments, UK), is mounted 3.4 m
above the ground. Further information on site and instrumentation
details can be found in Lund et al. (2007).

Degerö Stormyr (only “Degerö” in this text) is a boreal oligotrophic
minerotrophic fen, surrounded by forest. It is located 70 km west of
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Bothnian Bay in northern Sweden (64°11′N, 19°33′E) and covers
about 6.5 km2. The climate is cold temperate humid with a mean
(1961–1990) annual AT and precipitation of 1.2 °C (January:−12.4 °C,
July: 14.7 °C) and 523 mm, respectively (Nilsson et al., 2008; Sagerfors
et al., 2008). The average (2001–2002 and 2005) vegetation period is
155 days (AT>5 °C), and the snowperiod is 6 months long. The average
(2001–2002 and 2005) WTD is 8 cm below the surface. The peatland
consists of a rather complex system of interconnected smaller mires
divided by islets and ridges (Nilsson et al., 2008; Sagerfors et al., 2008).
Peat has accumulated to the depth of 3–4 m. The vascular plant
community is dominated by sedges and dwarf shrubs (Eriophorum
vaginatum L., Trichophorumcespitosum L. Hartm.,Vacciniumoxycoccos L.,
Andromeda polifolia L., and Rubus chamaemorus L.). Sphagnum mosses
dominate the hummocks, lawns, and carpets (hummocks: S. fuscum
Schimp. Klinggr. and S. rubellum Wils., lawns: S. balticum Russ. C. Jens.
and S. lindbergii Schimp., carpets: S.majusRuss. C. Jens.). Hummocks and
hollows are uncommon, while lawns and carpets dominate. Lindroth
et al. (2007) estimated LAI to about 1. The eddy covariance tower is
located about 250 m from the fen edge, and the eddy covariance system,
consisting of a closed-path infrared gas analyzer (IRGA, Li-Cor 6262,
Li-Cor Inc, USA) and a three-dimensional sonic anemometer (Gill R2,
Gill Instruments, UK), is mounted 1.8 m above the ground. Further in-
formation on site and instrumentation details can be found in Nilsson
et al. (2008) and Sagerfors et al. (2008).

2.2. NEE, GPP, ER, and other environmental variables

The eddy covariance data covers two-and-a-half years at Fäjemyr
(August 2005 to December 2007) and three years at Degerö (January
2001 to December 2002 and January to December 2005). For both
sites, themeasurements provided half-hourly values of NEE, incoming
PPFD, AT, WTD, and vapour pressure deficit (VPD), where VPD was
calculated from AT and relative humidity. Only daytime values were
used for PPFD, AT, WTD, and VPD, since they were treated as GPP
controls and photosynthesis is inactive during nighttime. Daytime
valueswere selected as valueswhen PPFDwas above 10 µmol m−2 s−1.
The partitioning of NEE into GPP and ER was done using publicly
available algorithms (http://www.bgc-jena.mpg.de/bgc-mdi/html/
eddyproc/EddyInputForm.html). This partitioning method is based on
the exponential dependency of nighttime ER on nighttime AT (Lloyd &
Taylor, 1994) and is described in detail by Reichstein et al. (2005).
Daytime ER is then derived by driving the exponential relationship
with daytime AT, and GPP is calculated from NEE and ER. All variables
were averaged for 16-day periods to match the corresponding MODIS
composite periods. However, there is an apparent circularity in relating
GPP estimated from AT to AT itself, and therefore, another already
available data set of GPP (Lindroth et al., 2007) was employed for
Fäjemyr from early April to late October 2007. The partitioning method
used for this data set is based on the parameterization of an exponential
regression function for two-week periods with NEE as the dependent
and PPFD as the independent variable (Falge et al., 2001; Lindroth et al.,
2007). Then, GPP is estimatedbydriving thefitted function for NEEwith
PPFD and subtracting the corresponding ER. The interchangeability of
the 16-day averages of these two time series of GPP was checked by a
linear regression with GPP estimated from AT as independent variable.
Since the coefficient of determination (R2) was as high as 0.99, the
root mean square error (RMSE) as low as 0.11gC m−2 day−1, and
the slope coefficient as close to one as 0.95 (the intercept was
−0.0084gC m−2 day−1), GPP and ER from nighttime AT were used
in the further analyses.

It should be noted that the two versions of GPP were auto-
correlated seasonal variables and that the underlying assumptions of
linear regression analysis were not completely fulfilled. This was true
for all linear regressions in this study. In all cases, residual plots clearly
showed that the errors were interdependent and that the error
variances were not constant across observations (heteroscedasticity).
Therefore, only R2 and RMSE values, without any significance levels,
are presented in the results.

2.3. Modeled incoming PPFD

The SwedishMeteorological and Hydrological Institute (SMHI) runs
an operational mesoscale radiation model system named STRÅNG
(Landelius et al., 2003). This model system produces radiation data
covering Scandinavia and theBaltic Sea regionwith a resolutionof about
11 km.Data is available on Internet (http://www.smhi.se/strang)where
radiation quantities are interpolated to the position specifiedby lat-long
coordinates using a bilinear method. STRÅNG-modeled PPFD (PPFDm)
was obtained for Fäjemyr and Degerö by downloading daily data and
averaging it for the 16-day composite periods.

2.4. MODIS data products and field-measured NDVI

Single grid cell subsets from the Terra/MODIS 16-day 250 m col-
lection 5 vegetation index (VI) product (MOD13Q1) were downloaded
from FLUXNET (http://www.fluxnet.ornl.gov/fluxnet/index.cfm). The
same time periods as for eddy covariance data were covered. The
spatial extents of the cells at Fäjemyr and Degerö were compared
with aerial photographs acquired from the National Land Survey
of Sweden (https://butiken.metria.se/digibib/index.php). This con-
firmed that the chosen cells not only reference the eddy covariance
towers but also cover only peatland areas and not the surrounding
forest. Based on the information in Lund et al. (2007) and Sagerfors
et al. (2008), also the footprints cover only peatland areas at both
sites. The prevailing wind direction at Fäjemyr is from the southwest
with about 90% of the flux emanating fromwithin 200 m (Lund et al.,
2007). Therefore, the cell where the eddy covariance tower is sit-
uated in the northeast corner largely overlaps the footprint. Also, the
cell at Degerö largely overlaps the modeled footprint in Sagerfors
et al. (2008). To extract the seasonality and reduce random noise,
the time series of original MODIS NDVI (NDVIM) and EVI (EVIM)
were smoothed using local double logistic curve fits in the TIMESAT
software (Jönsson & Eklundh, 2002; Jönsson & Eklundh, 2004). In
the evaluation study by Hird & McDermid (2009), it was concluded
that the highly competitive methods in TIMESAT preserve the signal
integrity to a great extent. Based on the usefulness information of the
MOD13Q1 quality data, higher weights were assigned to data points
with higher quality and lower weights to those with lower quality.
For each site, TIMESAT-smoothed NDVI (NDVIts) was plotted against
smoothed EVI (EVIts) to find out if there was a saturation effect in
NDVIts (Huete et al., 2002).

Single grid cell subsets from both the Terra/MODIS and Aqua/
MODIS 8-day 1 km collection 5 LST products (MOD11A2 and
MYD11A2) were also downloaded from FLUXNET. Since these two
products contain data only for the 8-day composite periods, daytime
and diurnal LST were derived for the 16-day composite periods. First,
MOD11A2 and MYD11A2 daytime LST were averaged within the
same 8-day composite periods. Second, two consecutive periods were
averaged to derive daytime LST (LSTd) for the 16-day composite period.
The same procedure was employed for nighttime LST, and by the
subsequent averaging of 16-day day- and nighttime LST, diurnal LST
(LSTdi) was derived. However, only MOD11A2 was used for Degerö,
since MYD11A2 is not produced for the whole time period needed. For
both sites, single cells not referencing the eddy covariance tower
positionswere chosen. At Fäjemyr, the cell borders the north edge of the
eddy covariance tower cell, and at Degerö it borders the northwest
corner. These offsets were chosen to maximize the area of peatland
covered by the 1 km cells, which resulted in more than 50% peatland
area, the rest being forest.

Although the entire 250 m MODIS VI grid cells cover only peatland,
one could question if the data have the same seasonality and ampli-
tude as field-measurements. Possible adjacency effects in the MODIS
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data and scale differences between the grid cells and field-measure-
ments motivate this question. Therefore, time series of NDVIM and
NDVIts were plotted together with field-measured NDVI (NDVIfm). The
time series of NDVIfm were obtained at Fäjemyr from hemispherical-
directional reflectance measurements in the wavelength interval from
blue to NIR with an Analytical Spectral Devices HandHeld spectrometer
(ASD HH, ASD Inc., USA) Thesemeasurements weremade around noon
during clear and stable weather conditions, once every three weeks
fromearlyApril to lateOctober2007. TheASDHHhas abarefibrefield of
view (FOV)of 25° and a sampling interval of 1.6 nmin the spectral range
of 325–1075 nm. By mounting the instrument downwards on a tripod,
the measurements were made at four sampling plots, which were
chosen to collectively represent the peatland vegetation composition
(except for dwarf pines). Thebarefibreof theASDHHwasplaced0.75 m
above the surface, and by pointing it at the same spots at each
measurement date, the composition of the measured vegetation was
held constant. One inventory wasmadewithin the plots and resulted in
11% sedges, 32% shrubs, and 57% Sphagnum mosses. For each
measurement, both white reference (Spectralon, Labsphere, USA) and
dark scans were taken and ten spectral scans were averaged. Each plot
wasmeasuredfive times, and thefive spectral signatureswere averaged
in the post-processing of data. These four sampling plot averages were
averaged once again to obtain spectral signatures representative of the
vegetation composition. Averaging scans and spectral signatures also
served the purpose of reducing random noise in the measurements
(ASD Inc., 2000). Tofindout how the spectral signatures developedover
time and where the NIR and red spectral bands are located within the
signature shapes, four of them were plotted in the same graph. Finally,
weighted averages were calculated from the reflectance values
spanning the MODIS red (620–670 nm) and NIR (841–876 nm) bands,
and from these averages, NDVIfm was calculated. The weights were
inferred from the spectral response functions of the MODIS red and NIR
bands. To rule out the possibility that the assembly of the instrument
was causing large errors on its own, the whole sequence of mounting
and dismounting the instrument was repeated for twenty-eight
measurements of NDVI at one of the sampling plots and resulted in a
standard deviation as low as 0.0064 (mean value of 0.77).

2.5. Regression models for GPP, ER, and NEE

The sign convention adopted in this study follows Baldocchi et al.
(2001), meaning that negative fluxes are transfers to the biosphere
(e.g. GPP), while positive fluxes are transfers to the atmosphere (e.g.
ER). In their study of CO2 exchange in peatlands, including Fäjemyr
and Degerö, Lindroth et al. (2007) used linear regression to inves-
tigate the dependency of GPP on the same environmental variables as
studied here (PPFD, AT, WTD, and VPD). Careful attention was given
to the correlation between the environmental variables themselves.
Sims et al. (2008) used this correlation between the environmental
variables (PPFD, AT, VPD, and EVI) to find a proxy variable that was
related to all other variables. Also, if a certain variable turned out to be
largely independent, it was assumed to contain additional informa-
tion. This concept was applied here, and it was found that both PPFDm

and LSTd were related to the GPP controls: PPFD, AT, WTD, and VPD,
but less in EVIts. Based on scatter plots, linear regression was used for
PPFD, AT, and EVIts, while exponential regression was used for WTD
and VPD. Since photosynthesis is inactive when the air temperature is
below the freezing point, only data when both LSTd and AT were
above the approximate freezing point of 0 °C were used in these
relationships. Because of these findings, GPP was related to each of
PPFDm and LSTd multiplied with EVIts:

GPP = aEVItsPPFDm + b ð2Þ

GPP = aEVItsLSTd + b ð3Þ
It could be argued that it would have been more correct to force
the regression line through the origin. However, this requires scaling
EVIts so that GPP is 0 when scaled EVIts is 0, and the aim of this study
can be fulfilled without this procedure.

Not only GPP but also ER has to be modeled to obtain NEE from
MODIS data. The Lloyd & Taylor (1994) equation was developed to
describe soil respiration in a number of different ecosystems,
including forests and peatlands. Lindroth et al. (2008) used it for ER
in forest ecosystems and Lindroth et al. (2007) used it for peatlands,
including Fäjemyr and Degerö. In this study, the equation was used to
model ER by LSTdi:

ER = R10e
308:56 1

56:02− 1
LSTdi + 273:15−227:13

� �
; ð4Þ

where R10 is the respiration rate at 10 °C and LSTdi is in Celsius
degrees. Diurnal LST is chosen as the independent variable, since
respiration processes are active both during day- and nighttime.

Once ER is derived, NEE can be estimated by addition of its
components (GPP is negative and ER is positive). Although this is one
way to proceed, a multiple exponential regression model was
employed in order to find out how strongly NEE can be directly
related to the variables used in the relationships of GPP and ER:

NEE = ae
308:56 1

56:02− 1
LSTdi + 273:15−227:13

� �
+ bEVItsPPFDm + c; ð5Þ

where NEE is expressed as the combination of Eq. (2) and Eq. (4).
Similar to when GPPwas calculated, only data when LSTd and ATwere
above 0 °C were used. Only the combination of PPFDm and EVIts was
chosen in this direct approach.

To find out how well the seasonality of the modeled GPP, ER, and
NEE (Eqs. (2)–(5)) correspond to the measured CO2 fluxes at Fäjemyr
and Degerö, modeled and measured time series were plotted in the
same graphs. Also, to find out how different the results would be, if the
CO2 fluxes at Fäjemyr were modeled with the regression coefficients
for Degerö and vice versa, both Fäjemyr and Degerö were modeled
with the regression coefficients for each site. Averages and standard
deviations of measured and modeled values were then calculated for
the time periods covered for each site (Fäjemyr: 2005–2007, Degerö:
2001–2002 and 2005).

3. Results

3.1. Seasonality in NDVI and EVI

The seasonality of MODIS VI was extracted and random noise
reduced by the local double logistic curve fits in TIMESAT (Fig. 1). The
large scatter in NDVIM during the second winter 2006/2007 at
Fäjemyr consists of data points with low MODIS usefulness quality.
Since these data points have been assigned lower weights in the
smoothing procedure, they only have a minor influence on the curve
fit. The small ridge-like curves in NDVIts and EVIts between 2002
and 2005 for Degerö are artifacts of the two separate smoothing
procedures employed for the two time periods of 2001–2002 and
2005. Important is the summertime leveling of NDVIts at both sites,
which indicates a saturation effect in NDVI, compared to EVI. This is
confirmed by Fig. 2 where the saturation effect is quite clear in the
scatter plot of NDVIts and EVIts. Smoothed instead of original datawere
plotted, because smoothed data were used in the further analyses. The
saturation effect and the slightly stronger relationships found between
GPP and EVIts for Fäjemyr and Degerö (EVIts: R2=0.37 and 0.45, NDVIts:
R2=0.26 and 0.36) were the reasons for choosing EVIts in the analyses.
For Fäjemyr, it was confirmed that there is a close resemblance between
MODIS and field-measured NDVI (Fig. 3), supporting that MODIS VI
represents the peatland vegetation. In spite of the pronounced outlier in
NDVIM, there is a close resemblance in seasonality and amplitude with



Fig. 1. Time series of NDVIM, EVIM, NDVIts, and EVIts for Fäjemyr (2005–2007) and Degerö (2001–2002 and 2005). Off note are the small ridge-like curves in NDVIts and EVIts between
2002 and 2005 for Degerö. These are artifacts of the two separate smoothing procedures for the time periods of 2001–2002 and 2005. Abbreviations: EVIM, MODIS enhanced
vegetation index; EVIts, TIMESAT-smoothed enhanced vegetation index; NDVIM, MODIS normalized difference vegetation index; NDVIts, TIMESAT-smoothed normalized difference
vegetation index.
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NDVIfm. By reducing noise, the TIMESAT processing improved the
similarity between NDVIts and NDVIfm. The seasonal increase in NDVI is
a result of the increase in the difference between the NIR and red
reflectance values (Fig. 4). Since NDVI was calculated from the MODIS
bands, the red band (620–670 nm) is located just before thewavelength
of maximum absorption, while the NIR band (841–876 nm) is located
on the upward slope of maximum reflectance.

3.2. PPFDm and LSTd as proxy variables

The R2 values in Table 1 show that both PPFDm and LSTd can serve
as proxy variables for the major controls on GPP (PPFD, AT, WTD, and
VPD). For Fäjemyr, the controls on GPP, except for EVIts, were related
to both PPFDm and LSTd. This also suggests that EVIts may contribute
with additional information about the temporal vegetation develop-
Fig. 2. Scatter plot of NDVIts and EVIts for Fäjemyr and Degerö. Abbreviations: EVIts,
TIMESAT-smoothed enhanced vegetation index; NDVIts, TIMESAT-smoothed normal-
ized difference vegetation index.
ment to PPFDm and LSTd. However, the results are not equally
consistent for Degerö where there were weak relationships between
GPP and PPFDm and between AT and PPFDm, and almost no
relationship between WTD and PPFDm. In addition, PPFD and WTD
were only weakly related to LSTd. On the other hand, the time series of
GPP, AT, and PPFDwere slightly truncated during the growing seasons
in 2001 and 2005, because of a few missing summertime data points,
and this probably weakened the relationships. This assumption was
confirmed by the stronger relationship found between GPP and
PPFDm when only non-truncated data from 2002 were used (R2=
0.54). Also, the weak relationships between WTD and the proxy
variables could be a less important argument against using PPFDm and
LSTd as proxy variables, since GPP was found to be weakly related to
Fig. 3. Time series of NDVIfm, NDVIM, and NDVIts for Fäjemyr. For NDVIM, the MODIS
composite day of the year is used, and for NDVIts, the day of the year at the center of the
composite period is used. Abbreviations: NDVIfm, field-measured normalized difference
vegetation index; NDVIM, MODIS normalized difference vegetation index; NDVIts,
TIMESAT-smoothed normalized difference vegetation index.



Fig. 4. Spectral signatures measured at Fäjemyr with an Analytical Spectral Devices
HandHeld spectrometer (ASD HH, ASD Inc., USA). The wavelength range is limited to
400–900 nm, because of noise in lower and higher wavelengths.

Fig. 5. Linear regressions for GPP at Fäjemyr and Degerö against EVItsPPFDm (Eq. (2)).
Abbreviations: EVIts, TIMESAT-smoothed enhanced vegetation index; GPP, gross
primary productivity; PPFDm, modeled photosynthetic photon flux density.
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WTD (R2=0.19). Similar to Fäjemyr, the relationships between EVIts
and the proxy variables were fairly weak, indicating that EVIts may
contribute with additional information about the temporal vegetation
development.
3.3. Regression results for GPP, ER, and NEE

Strong relationships were found between GPP and the products of
each of the proxy variables and EVIts (Figs. 5–6 and Table 2). It is
interesting that the product of EVIts and PPFDm had the slightly higher
R2 values of 0.85 for Fäjemyr and 0.76 for Degerö, compared to EVIts
and LSTd. These values were higher even though GPP was strongly
related to LSTd itself (Table 1). It seems that EVIts contributes with
more complementary information to PPFDm than to LSTd. This is
reasonable, because the linear dependency of FAPAR on VI makes the
relationship between GPP and the product of VI and PPFD an
approximation of the LUE model. The weaker relationships for Degerö
were probably caused by the absence of a few summertime data
points for the related variables. This explanation also applies to ER.
The fitting of the Lloyd & Taylor (1994) equation to ER and LSTdi
resulted in the high R2 value of 0.89 for Fäjemyr and the slightly lower
0.83 for Degerö (Fig. 7 and Table 3). Even though NEE is the sum of
GPP and ER, the direct model with NEE in the multiple exponential
relationship to LSTdi and the product of EVIts and PPFDm was applied.
Table 1
Coefficient of determination values (R2) for environmental variables at Fäjemyr and
Degerö against PPFDm and LSTd. The relationships are linear except those withWTD and
VPD, which are exponential. A minus sign within parentheses means that the
relationship has a descending slope.

GPP PPFD AT WTD VPD EVIts

Fäjemyr
PPFDm (−) 0.69 0.98 0.64 (−) 0.79b 0.81a 0.058
LSTd (−) 0.81 0.79 0.86 (−) 0.85b 0.87a 0.18

Degerö
PPFDm (−) 0.40 0.98 0.37 (−) 0.14b 0.71a 0.017
LSTd (−) 0.64 0.36 0.79 (−) 0.33b 0.76a 0.44

Abbreviations: AT, air temperature; EVIts, TIMESAT-smoothed enhanced vegetation
index; GPP, gross primary productivity; LSTd, daytimeMODIS land surface temperature;
PPFDm, modeled photosynthetic photon flux density; PPFD, photosynthetic photon flux
density; VPD, vapour pressure deficit; WTD, water table deficit.

a Equation: y = aebx .
b Equation: y = aebx + c.
This resulted in the higher R2 value of 0.81 for Fäjemyr and 0.73 for
Degerö (Table 4). In spite of the exponential component in Eq. (5), the
fitted sloping surfaces were rather planar (not shown in any figures).
However, only data from when both AT and LSTd were above 0 °C
were used in these relationships, and in Fig. 7, it can be seen that the
upper parts of the graphs have weaker curvatures than if the entire
temperature range would have been used. Of note are the RMSE
values of 0.18gC m−2 day−1 for Fäjemyr and 0.28gC m−2 day−1 for
Degerö (Fig. 8 and Table 4). For comparison, the averages of absolute
NEE are 0.35gC m−2 day−1 for Fäjemyr and 0.55gC m−2 day−1 for
Degerö. If NEE would have been calculated from GPP and ER, then
the RMSE values would have been much higher, because of error
propagation. One objection to the regression results for GPP and NEE
could be that the chosen air temperature limit of 0 °C is too low, since
the peatlands may still be covered by snow. While Fäjemyr has an
intermittent snow period, Degerö has a snow period that is 6 months
long. However, the higher air temperature limit of 5 °C was tested
for Degerö, and it did not change the results enough to alter any
conclusions (GPP against EVItsPPFDm: R2=0.64, NEE against LSTdi
and EVItsPPFDm: R2=0.70).
Fig. 6. Linear regressions for GPP at Fäjemyr and Degerö against EVItsLSTd (Eq. (3)).
Abbreviations: EVIts, TIMESAT-smoothed enhanced vegetation index; GPP, gross
primary productivity; LSTd, daytime MODIS land surface temperature.



Table 2
Linear regressions for GPP (g C m−2 day−1) at Fäjemyr and Degerö against EVItsPPFDm

(mol m−2 day−1) (Eq. (2)) and EVItsLSTd (°C) (Eq. (3)).

Explained Explanatory Points R2 RMSE Slope Intercept

Fäjemyr
GPP EVItsPPFDm 38 0.85 0.44 −0.23 −0.13
GPP EVItsLSTd 38 0.84 0.45 −0.40 −0.0024

Degerö
GPP EVItsPPFDm 30 0.76 0.51 −0.18 0.16
GPP EVItsLSTd 30 0.71 0.56 −0.32 −0.051

Abbreviations: EVIts, TIMESAT-smoothed enhanced vegetation index; GPP, gross
primary productivity; LSTd, daytime MODIS land surface temperature; PPFDm,
modeled photosynthetic photon flux density.

Table 3
Exponential regressions for ER (g C m−2 day−1) at Fäjemyr and Degerö against LSTdi
(°C) (Eq. (4)).

Explained Explanatory Points R2 RMSE R10

Fäjemyr
ER LSTdi 52 0.89 0.33 1.67

Degerö
ER LSTdi 51 0.83 0.26 1.10

Abbreviations: ER, ecosystem respiration; LSTdi, diurnal MODIS land surface temperature.
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For both Fäjemyr and Degerö, there is a strong correspondence
between the modeled (Eqs. (2)–(3)) and measured time series of GPP
(Fig. 9). Possibly, the time series of PPFDm-modeled GPP is slightly
displaced in time so that it precedes measured GPP, while LSTd-
modeled GPP is delayed. Also, the modeled time series of ER and NEE
corresponds well to the measured CO2 fluxes (Fig. 10). The largest
under- and overestimations of GPP, ER, and NEE are found during the
peak seasons. However, the displacements and under- and over-
estimations should be less important, if modeled CO2 fluxes are
averaged for whole years. Averages and standard deviations of
measured and modeled CO2 fluxes covering the time periods for
Fäjemyr and Degerö are found in Table 5. If the regression coefficients
for Fäjemyr are used for Fäjemyr and those for Degerö are used for
Degerö, then there are strong similarities between measured and
modeled averages. However, there are large differences if the CO2

fluxes at Fäjemyr are modeled with the regression coefficients for
Degerö, and vice versa.

4. Discussion

The results of this study show that satellite sensor-derived data
andmodeled PPFD can be used in regressionmodels for estimations of
CO2 fluxes in peatlands. Both the product of EVIts and PPFDm and the
product of EVIts and LSTd strongly explained GPP at Fäjemyr and
Degerö. One reason for these results probably is that other controls on
GPP were related to both PPFDm and LSTd. Also, ER was strongly
related to LSTdi, and based on these findings, NEE was successfully
related to LSTdi in combination with the product of EVIts and PPFDm.
Still, the biophysically correct way of modeling GPP would be to use
Fig. 7. Exponential regressions for ER at Fäjemyr and Degerö against LSTdi (Eq. (4)).
Abbreviations: ER, ecosystem respiration; LSTdi, diurnal MODIS land surface temperature.
the LUE model together with separate estimations of ε, which is the
concept implemented in the MODIS GPP product (Running et al.,
2004). On the other hand, one problem with this approach in
peatlands is to obtain FAPAR, since it is difficult to measure
transmitted light below the water-saturated vegetation. Early in this
study, incoming and reflected PPFD, measured at Fäjemyr, were used
to calculate the fraction of intercepted photosynthetically active
radiation (FIPAR). However, the absorption by the considerable
amount of water and dead plant material made FIPAR inappropriate
as an approximation of FAPAR. In a future study, another alternative
may be to model FAPAR with leaf area index (LAI) as input to Beer's
Law (Ahl et al., 2004; Turner et al., 2005; Conolly et al., 2009).

Despite the above-discussed limitation, the results open up the use
of satellite data in regression models for GPP, of the kind already
studied in forest areas (Olofsson et al., 2008; Rahman et al., 2005; Sims
et al., 2006; Sims et al., 2008). In addition, the models employed here
are to some extent similar to the LUE model, since the strong
dependency of FAPAR on VI makes the relationship between GPP and
the product of EVIts and PPFDm an approximation of the LUE model.
Similarly, the relationship to the product of EVIts and LSTd is such an
approximation, to the extent that temperature is related to PPFD. Also,
the strong relationships between AT and LSTd at both sites indicates
that LSTd can be used as a substitute for air temperature, despite the
coarse resolution of 1 km and the forest coverage of nearly 50%. Even
though these relationships may be restrained by air temperature
differences between the peatland and the surrounding forest, it seems
reasonable to assume a strong correlation between the peatland and
forest air temperature. The findings by Lindroth et al. (2007), which
show that GPP is related to AT at both Fäjemyr and Degerö, and the
findings by Conolly et al. (2009), which show that ε is related to AT in
two peatlands in Canada, support temperature as a good alternative in
a GPP model. However, the product of EVIts and PPFDm was used for
the GPP component in the direct approach of modeling NEE. Apart
from its close similarity to the LUE model, PPFDm was a better choice,
because it was interpolated to the specific positions of the eddy
covariance towers. The direct NEE model also avoided the logical
circularity in relating GPP partitioned by air temperature to
temperature itself, since NEE is not partitioned from other variables.
Another advantage was that the model resulted in much smaller
errors than if NEEwould have been calculated as the sum of estimated
GPP and ER, because of the propagation of errors. Therefore, it may be
Table 4
Multiple exponential regressions for NEE (g C m−2 day−1) at Fäjemyr and Degerö
against LSTdi (°C) and EVItsPPFDm (mol m−2 day−1) (Eq. (5)).

Explained Explanatory Points R2 RMSE a b c

Fäjemyr
NEE LSTdi and EVItsPPFDm 38 0.81 0.18 0.19 −0.097 0.42

Degerö
NEE LSTdi and EVItsPPFDm 37 0.73 0.28 −0.035 −0.090 0.38

Abbreviations: EVIts, TIMESAT-smoothed enhanced vegetation index; LSTdi, diurnal
MODIS land surface temperature; NEE, net ecosystem exchange; PPFDm, modeled
photosynthetic photon flux density.



Fig. 8. Measured NEE at Fäjemyr and Degerö against modeled NEE. The coefficients for
the multiple regression for NEE against LSTdi and EVItsPPFDm were used to model NEE
(Eq. (5)). Abbreviations: EVIts, TIMESAT-smoothed enhanced vegetation index; LSTdi,
diurnal MODIS land surface temperature; NEE, net ecosystem exchange; PPFDm,
modeled photosynthetic photon flux density.
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preferred to employ a direct approach, given that NEE is the final goal
of the modeling procedure.

Not only the LUE models but also the regression models for CO2

fluxes aremost likely constrained by temporal and spatial changes in ε
and the regression coefficients (e.g. slope). Several studies have shown
that ε not only varies temporally throughout the season but also
spatially between the ecosystems and plant functional types (Ruimy et
al., 1994; Turner et al., 2002; Brogaard et al., 2005; Conolly et al., 2009).
Although the regression coefficients are inferred from relating CO2

fluxes to environmental variables, it does not follow that they are
constant across time and space. It is known that CO2 fluxes vary
between various peatlands (Bubier et al., 1998; Lindroth et al., 2007;
Fig. 9. Time series of measured andmodeled 16-day GPP for Fäjemyr (2005–2007) and Deger
site, 16-day values of GPP were modeled both from PPFDm (Eq. (2)) and LSTd (Eq. (3)). The
GPP, gross primary productivity; PPFDm, modeled photosynthetic photon flux density; LS
Lund et al., 2009a; Aurela et al., 2009) and also between years within
the sites (Aurela et al., 2004; Roulet et al., 2007; Sagerfors et al., 2008;
Aurela et al., 2009). Thismay be explained by differences in vegetation
composition (Bubier et al., 2003; Riutta et al., 2007) and changing
environmental conditions, such asweather (Aurela et al., 2004; Aurela
et al., 2009). Not only the environmental variables included in this
study, e.g. AT and WTD, can affect the CO2 fluxes (Lafleur et al., 2003;
Lindroth et al., 2007), but also the nutrient availability is important.
Bubier et al. (1998) found that NEE and ER followed the trophic
sequence fromoligotrophic bog to eutrophic fen of a peatland complex
in Canada, indicating the importance of nutrient conditions. On the
other hand, Humphreys et al. (2006) found that summertime NEEwas
similar for seven Canadian peatlands, despite differences in vegetation
composition, nutrient availability, and WTD. In addition, GPP and ER
were found to depend on VI and aboveground biomass. Even though
changes in CO2 fluxesmay be captured by the environmental variables
used in the model relationships, CO2 fluxes should also depend on
differences in ε and the regression coefficients, which in turn, should
dependon different plant communities and environmental conditions.
If applied without considering changes in ε and the regression
coefficients, the LUE and regression models are correct only to the
extent that ε or the coefficients are constant across time and space. The
results of this study show that the regression coefficients are different
between Fäjemyr and Degerö (Tables 2–4) and that there would be
large differences between measured and modeled CO2 fluxes, if
Fäjemyr is modeled with the regression coefficients for Degerö, and
vice versa (Table 5).

Because of the narrow red absorption bands and NIR peaks in
Sphagnummosses, Bubier et al. (1997) concluded that NDVI should be
a poor estimator of biomass and greenness. Also, the seasonal range in
NDVI should be lower, because of the smaller difference between the
red and NIR reflectance in Sphagnum mosses. The presence of red
Sphagnum mosses (e.g. S. magellanicum) at Fäjemyr and both red
and brown (e.g. S. rubellum and S. fuscum) at Degerö make these
arguments valid. This means that it probably is harder to find strong
relationships between CO2 fluxes and NDVI in peatlands. These
ö (2001–2002 and 2005). By using the regression coefficients (Table 2) derived for each
data gaps are the result of missing data in measured or modeled GPP. Abbreviations:

Td, daytime MODIS land surface temperature.



Fig. 10. Time series of measured and modeled 16-day ER and NEE for Fäjemyr (2005–2007) and Degerö (2001–2002 and 2005). By using the regression coefficients (Tables 3–4)
derived for each site, 16-day values of ER (Eq. (4)) and NEE (Eq. (5)) were modeled. The data gaps are the result of missing data in measured or modeled ER and NEE. Abbreviations:
ER, ecosystem respiration; NEE, net ecosystem exchange.
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arguments also have implications for EVI, since it is calculated from
red, NIR, and blue reflectance values. In addition, not only MODIS VI
but also field-measured NDVI were calculated from the MODIS red
(620–670 nm) and NIR (841–876 nm) bands, which does not seem
optimal for the peatland vegetation at Fäjemyr (Fig. 4). Moving both
bands to larger wavelengths would capture the maximum red
absorption and maximum NIR reflectance in a better way. All mea-
surements in this study have been made over a mixed vegetation
cover of both Sphagnum mosses and vascular plants, and hence, it is
hard to evaluate to what extent this mix of plant functional types
affects the results. However, an indication of both the influence of
changing regression coefficients and spectral characteristics of the
vegetation on modeled CO2 fluxes may be obtained by a comprehen-
sive validation study against eddy covariance measurements for other
years and at other sites.

From the results by Heinsch et al. (2006) and Krankina et al.
(2008) it follows that the coarse resolution 1 kmMOD17 product with
its input of even coarser meteorological data is inappropriate for
heterogeneous areas, such as peatlands. Another problem is that ε is
extracted based on the 1 km MOD12Q1 land cover classification
Table 5
Averages (Avg) and standard deviations (Std) of measured andmodeled GPP (g C m−2 day−1

16-day values were averaged and standard deviations were calculated for the time periods c
GPP, ER, and NEE were modeled with Eqs. (2)–(5). Both Fäjemyr and Degerö were modele

Avg GPP
Eq. (2)

Std GPP
Eq. (2)

Avg GPP
Eq. (3)

Std
Eq

Fäjemyr
Measured −1.86 1.16 −1.86 1.1
Fäjemyr coeff −1.88 1.08 −1.89 1.0
Degerö coeff −1.21 0.84 −1.56 0.8

Degerö
Measured −1.30 1.06 −1.30 1.0
Degerö coeff −1.31 0.91 −1.33 0.9
Fäjemyr coeff −2.01 1.17 −1.60 1.1

Abbreviations: ER, ecosystem respiration; GPP, gross primary productivity; NEE, net ecosys
scheme without any category relevant for peatlands (Heinsch et al.,
2003). This study avoided the resolution problem by using the 250 m
grid cells of EVI, located within the peatlands, and modeled PPFD,
interpolated to the positions of the eddy covariance towers. Also, it
seems reasonable that the air temperature seasonality within peat-
lands resembles the surrounding forests, hence allowing 1 km LST to
be used as a substitute for air temperature. However, Tan et al. (2006)
shows that the MODIS gridding process in combination with the
geolocation error and the point spread function (PSF) of the sensor
observations results in an average overlap of only 30% between the
grid cells and the true observations. It is emphasized that this has
strong implications for the use of reference data in validation
procedures, because of the mismatch between the observations and
field measurements. The implications for this study are not only
possible mismatches between the observations and the eddy
covariance tower positions, but also that the observations may
include the surrounding forests. It was suggested by Tan et al.
(2006) that information on the observation dimensions and the
offsets between the cells and observations should be included in
validations to guarantee quality. One possible solution for peatlands
), ER (g C m−2 day−1), and NEE (g C m−2 day−1) for Fäjemyr and Degerö. Time series of
overed for each site (Fäjemyr: 2005–2007, Degerö: 2001–2002 and 2005). Sixteen-day
d with the regression coefficients (Tables 2–4) for each site.

GPP
. (3)

Avg ER
Eq. (4)

Std ER
Eq. (4)

Avg NEE
Eq. (5)

Std NEE
Eq. (5)

6 1.44 1.01 −0.12 0.41
7 1.40 1.01 −0.12 0.37
6 0.92 0.66 −0.25 0.38

6 0.63 0.66 −0.45 0.55
2 0.59 0.64 −0.45 0.48
5 0.90 0.97 −0.24 0.40

tem exchange.



Abbreviation
or symbol

Description

APAR Absorbed photosynthetically active radiation (Wm−2 day−1)
AT Air temperature (°C)
ER Ecosystem respiration (gC m−2 day−1)
EVIts TIMESAT-smoothed MODIS enhanced vegetation index
ε Light use efficiency factor (gC W−1)
FAPAR Fraction of absorbed photosynthetically active radiation
FIPAR Fraction of intercepted photosynthetically active radiation
GPP Gross primary productivity (gC m−2 day−1)
LAI Leaf area index
LSTd Daytime MODIS land surface temperature (°C)
LSTdi Diurnal MODIS land surface temperature (°C)
LUE Light use efficiency
NDVIfm Field-measured normalized difference vegetation index
NDVIM MODIS normalized difference vegetation index
NDVIts TIMESAT-smoothed MODIS normalized difference vegetation index
NEE Net ecosystem exchange (gC m−2 day−1)
NPP Net primary productivity (gC m−2 day−1)
PAR Photosynthetically active radiation (Wm−2 day−1)
PPFD Photosynthetic photon flux density (mol m−2 day−1)
PPFDm Modeled photosynthetic photon flux density (mol m−2 day−1)
VI Vegetation index
VPD Vapour pressure deficit (kPa)
WTD Water table depth (cm)

Concept Definition

Carpet Peatland vegetation dominated by bryophytes and with a sparse
cover of cyperaceous plants. The vegetation layer is leveled at 5 cm
below to 5 cm above the water table.

Hollow Depression in a peatland that is characterized by an alternating
microtopography.

Hummock Peatland vegetation leveled at 20–50 cm above the lowest
surface level. The vegetation layer consists of mosses, lichens,
and dwarf shrubs.

Lawn Peatland vegetation dominated by graminoids and with a
diversified bryophyte layer. The vegetation layer is leveled at
5 to 20 cm above the water table.

Minerotrophic
peatland/Fen

Peatland with an inflow of water and nutrients frommineral soils.

Oligotrophic
peatland

Nutrient-poor peatland

Ombrotrophic
peatland/Bog

Peatland with water and nutrients coming only from
precipitation, dust, sea-spray, and airborne deposition.

Peatland Peat-covered terrain with a minimum peat depth of 30 or 40 cm.
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would be to use the offset information for daily reflectance values and
pick out values for observations close enough to the eddy covariance
tower positions. Furthermore, the Spatial and Temporal Adaptive
Reflectance Fusion Model (STARFM), developed by Gao et al. (2006),
has shown positive results for downscaling MODIS reflectance data to
the Landsat 30 m resolution. In this way, the temporal resolution is
preserved, while increasing the spatial resolution. If some appropriate
downscaling procedure can be used, the resolution will be high enough
to pick out grid cells that are not only located within the peatlands, but
also within the eddy covariance tower footprints. In addition to the
influence of changing regression coefficients and the spectral char-
acteristics onmodeled CO2 fluxes, as discussed above, there is a need to
solve spatial problems in order to improve the performance of using
satellite sensor-derived data in regression modeling of CO2 fluxes in
peatlands.

5. Conclusions

(1) This study shows that regression models driven by satellite
sensor-derived data andmodeled PPFD can be used to estimate
CO2 fluxes in peatlands. Strong relationships were found
between GPP and the product of MODIS EVI and modeled
PPFD, as well as the product of MODIS EVI andMODIS LST. Also,
ER was strongly related to MODIS LST, and NEE was largely
explained by MODIS LST in combination with the product of
MODIS EVI and modeled PPFD.

(2) Several GPP controls (PPFD, AT, WTD, and VPD) were related to
modeled PPFD and also toMODIS LST. Therefore, modeled PPFD
and MODIS LST can serve as proxy variables for the GPP
controls. Since MODIS EVI was weakly related to the proxy
variables, MODIS EVI may provide additional information in
relation to the CO2 fluxes. This serves as an explanation to the
strong relationships found for GPP and NEE.

(3) The LUE and regression models are likely to be constrained by
temporal and spatial changes in ε and the regression coeffi-
cients. Differences in ε and the coefficients should depend on
different plant communities and environmental conditions,
which means that they are not constant across time and space.
At the temporal and spatial scale of this study, the regression
models are correct only to the extent that ε or the coefficients
are constant.

(4) Problems related to the application of coarse resolution MODIS
data in smaller peatland areas need to be solved. Not only is there
a need for considering the grid cell resolution, but the MODIS
gridding process that results in a small average overlap between
the cell and the true observation also needs to be taken into
account. One possible way is to use information on the offset
between the cell and the observations to pick out reflectance
values for observations close enough to the eddy covariance
tower positions. Also, some appropriate downscaling procedure
may be used to increase the spatial resolution to match the
peatland area and eddy covariance tower footprints.
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Appendix A. Abbreviations, symbols, and peatland-related concepts

Table A. Abbreviations and symbols and their descriptions. The
abbreviations and symbols in italics are only mentioned in the text
and not used in the study itself.
Table B. Peatland-related concepts and their definitions. Modified
from Rydin & Jeglum (2006).
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