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Abstract: Wavelet empirical orthogonal function analysis, genetic algorithm driven neural networks, statistical disaggregation and
hydrologic modeling were integrated into a hydrologic framework to predict weekly rainfall and runoff of the upper Kafue and Lunga
Rivers in Zambia, Africa. The April–June �AMJ� seasonal variability of the Atlantic Ocean, on the basis of its AMJ sea surface
temperatures, was used to predict the annual rainfall of two stations, Ndola in the upper Kafue River Basin and Solwezi in the Lunga
River Basin. The predicted annual rainfall at the two stations was disaggregated to weekly totals and then used to simulate the runoff of
the upper Kafue and Lunga Rivers. In the upper Kafue basin, runoff from the disaggregated weekly rainfall explained 81% of the runoff
variance, compared to 88% when historical weekly rainfall data was used. For the Lunga River, 72% of the observed runoff variance was
accounted for, compared to 81% when historical weekly rainfall was used. This scheme demonstrates that if a region is dominated by
hydro-climatic processes whose statistics are fairly stationary, it will be possible to use disaggregated rainfall from annual rainfall
predicted by a teleconnection model to predict reliable weekly basin runoff up to a year’s lead time useful for an integrated water
resources management.
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Introduction

Between 1965 and the late 1990s, parts of southern Africa, espe-
cially regions north of 25°S experienced gradual but consistent
decrease in rainfall �Mwale et al. 2007�. The reduction in rainfall
resulted in the decrease of runoff for many rivers in the region
�Fanta et al. 2001�. The considerable imbalance between water
supply and demand, which became noticeable in the 1990s �Jury
and Engert 1999�, forced regional governments to call for the
development of legal and political frameworks to manage the
declining local and regional water resources in a holistic way
�The Water Page 2005�. While legal and political frameworks
form cornerstones of integrated water resources management,
sound hydrologic frameworks, which design efficient and sustain-
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able solutions to solving water resources problems, are required
to ensure an integrated management of water resources. Hydro-
logic frameworks complement legal and political frameworks by
integrating knowledge of the dominant spatial, temporal and fre-
quency regimes of climatic and hydrologic variability and their
predictability into various levels of integrated water resources
management.

One region that could benefit from such a holistic water re-
source management framework is the Kafue River Basin, located
in central Zambia, Africa �Fig. 1�. This river basin provides water
to more than 40% of Zambia’s population, supplies part of the
country’s hydroelectric power generation, provides municipal
water supply to the Copper-belt and Lusaka provinces, meets the
irrigation demand of the Nakambala sugar estate located south of
the capital of Lusaka, and provides water for wildlife in the Kafue
National Park.

To implement the hydrologic framework, basin scale hydro-
logic models �e.g., Bindlish and Baros 2000; Kerkhoven and Gan
2006� which can simulate hourly, daily, or weekly streamflow
from predicted precipitation at hourly, daily, or weekly time
scales with lead times of three months or more will be necessary.
Ideally, partly to consider feedbacks between land and atmo-
sphere, streamflow could be simulated using fully distributed hy-
drologic models coupled to general circulation models or
mesoscale atmospheric models. Atmospheric models could simu-

late precipitation fields at hourly or daily time steps for the com-
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ing rainy season and their output could then be used to drive
hydrologic models �Yarnal et al. 2000�. However, numerical at-
mospheric models generally have problems forecasting accurate
climate data beyond a week because of chaos or round-off errors
�Peitgen et al. 1992�. Therefore, for streamflows prediction at
seasonal scale, coupling a hydrologic with atmospheric models
may not lead to meaningful results for the Kafue River Basin.

In other words, instead of coupled climatic-hydrologic model-
ing, a more modest but practical approach would be to integrate
statistical methods with a lumped parameter hydrologic model.
Statistical methods can predict annual rainfall with lead times of
three months or more which can be disaggregated into smaller
time scales suitable for driving a conceptual, lumped hydrologic
model to simulate the streamflow of a river basin. If meaningful
rainfall and streamflow prediction can be achieved at a seasonal
to a year’s lead time, the proposed hydrologic framework can be
a useful tool especially during periods of prolonged droughts. The
disaggregation of seasonal rainfall of the Kafue River Basin may
be carried out using the approaches by Valencia and Schaake
�1973� and the analog approach by Lorenz �1969�. In using the
analog approach long data sets are required so that many similar
episodes of weekly, monthly and annual aggregates can be found
in the observations. Since the Kafue River Basin has only limited
hydro-climatic data, only the disaggregation method of Valencia
and Schaake �1973� could be used.

The objective of this study is to develop a hydrologic frame-

Fig. 1. Location of the study area. The upper Kafue River Basin is de
are shown as SG1 for the upper Kafue River and SG2 for the Lunga
are at Solwezi and Ndola, respectively. Both rivers drain into the Ite
work that integrates wavelet empirical orthogonal analysis, statis-
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tical disaggregation, genetic algorithm-neural networks and a
lumped parameter, hydrologic model, to predict the weekly runoff
of the Kafue River Basin at a seasonal, and possibly up to a year
lead time.

Study Site and Data

Kafue River Basin

The Kafue River Basin has a total area of 157,000 km2, is located
on the central African plateau approximately between 12.5–17°S
and 25.5–29.5°E, and lies completely within central Zambia �see
Fig. 1� �United Nations Development Planning/Food and Agricul-
tural Organization/Government of the Republic of Zambia, 1968
report or UNDP/FAO/GRZ 1968�. The river basin can be divided
into three zones: the upper Kafue basin, which extends from the
head waters to the Iteshi-Teshi Dam; the middle Kafue basin,
which extends from the Iteshi-Teshi Dam to the Kafue Gorge
Dam; and the lower Kafue basin, which extends from the Kafue
Gorge to the Zambezi River confluence. The eastern part of the
upper Kafue River Basin is dominated by the Lukanga swamps,
where most rivers to the east of the basin drain into. Hence, the
effective area contributing to the upper Kafue River stream flow
is only 34,162 km2, while that to the Lunga River is 24,268 km2.

The upper reaches of the Kafue River Basin are dominated

with stars and Lunga River Basin is hatched. Their gauging locations
The rainfall gauging stations for the Lunga and Kafue River Basins
hi Dam.
noted
River.

shi-Tes
by clays and sands, each accounting for between 30–40% of the
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soil type, while in the middle and eastern sections, sandy soils
account for 40–50% of the soil types �figures not shown�. There
are also many saucepan-shaped depressions, called “Dambos,”
which are seasonally waterlogged �UNDP/FAO/GRZ 1968�. As a
result, during wet years considerable Horton overland flow oc-
curs, while during dry years the detention storage of these Dam-
bos dominates the water budget, resulting in little surface run-
off. Tropical grasslands and trees are also a dominant feature of
the basin. During summer in the Southern Hemisphere �SH�
�September–November�, the temperature of Kafue is generally
high while during winter �June–July�, its temperature is low, but
for the rest of the year, mild temperature dominates.

Existing Climatic Regime

The Kafue River Basin is characterized by a rainfall regime

Fig. 2. 850-hPa winds showing the prevailing atmospheric circulatio
months of �a� OND; �b� JFM; �c� AMJ; and �d� JAS
driven by the October–March �summer in the SH� inflow of the
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moist Congo air mass into the basin �Fig. 2�, and the March–April
outflow of the Congo air mass from the basin. The SH summer
causes low pressures to develop in the Kafue basin, drawing in
the Congo air mass and causing wide spread rains �UNDP/FAO/
GRZ 1968�. The air mass flows out of the basin between March
31 and April 25, bringing an end to the rainfall season �UNDP/
FAO/GRZ 1968�. Statistical properties from the fairly consistent
climatic regime were used to generate future rainfall at time steps
that are fine enough to drive a properly calibrated lumped param-
eter rainfall-runoff model, which was then used to predict the
runoff hydrographs of the Kafue basin for the coming water year.

Available Data

Daily natural streamflow data �m3 /s� for the upper Kafue River
was available from 1962 to 1988, and for the Lunga River from

3

moisture transport in terms of wind speed �m/s� and direction for the
n and
1962 to 1982. Both data sets in m /s were converted to mm/day
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by normalizing the streamflow of each river by its drainage area.
The daily runoff was summed to weekly, monthly and annual
totals. Daily rainfall data from 1962 to 1988 was taken from two
rainfall stations, Ndola and Solwezi, located at the upper reaches
of the basin. The daily rainfall at Ndola and Solwezi were con-
verted to weekly, monthly, seasonal �i.e., October–December
�OND�, January–March �JFM�, April–June �AMJ� and July–
September �JAS�� and annual values. Monthly rainfall data, grid-
ded at a resolution of 2.5° lat.�3.75° long., was also extracted for
central southern Africa �CSA� �6°S-18°S, 13°E-36°E�. Gridded
monthly sea surface temperature �SST� for 1950–1997, at 5°
�5° resolution for the south Atlantic �10°N-40°S, 55°W-10°E�
and the Indian Oceans �20°N-40°S and 40°E-105°E� �figures not
shown�, were provided by the U.K. meteorological office.
Monthly air temperature data of 1950–1998 was obtained from
the SAFARI 2000 project �New et al. 2002� �http://www.daac.
ornl.gov�. The sunshine hours and relative humidity data were
obtained from UNDP/FAO/GRZ �1968�.

Research Procedure

The implementation of the Kafue River Basin hydrologic frame-
work involved the following steps:
1. The wavelet empirical orthogonal function �WEOF� analysis

was applied to the annual rainfall �ONDJFM� and the AMJ
SST data to establish the spatial and temporal patterns of
annual rainfall of the Kafue River Basin and AMJ SST vari-
ability of the Atlantic Ocean respectively �see Mwale and
Gan 2005�. WEOF was applied to the annual rainfall of the
entire central southern Africa �CSA� region, which encom-
passes the Kafue River Basin, to establish the teleconnection
between the variability of AMJ SST of the Atlantic Ocean
and the dominant regional patterns of rainfall of an area
�CSA� larger than the study site at Kafue. The AMJ SST of
the Atlantic Ocean was chosen because it has been shown to
teleconnect well with the rainfall of CSA at a 3-month lead
time �Mwale et al. 2004�;

2. Establish the teleconnection patterns between the annual
rainfall of CSA and the AMJ Atlantic ocean SST variability;

3. Using the established SST teleconnection patterns in step �2�,
and part of the annual rainfall data collected from Ndola and
Solwezi, calibrate the ANN-GA model. Then the remaining
AMJ SST data was used to drive the calibrated ANN-GA
model to validate its predicted annual rainfall at Ndola and
Solwezi;

4. The predicted annual rainfall at Ndola and Solwezi was dis-
aggregated to weekly rainfall totals; and

5. The disaggregated weekly rainfall at Ndola and Solwezi was
used to drive a conceptual, lumped parameter, soil moisture
accounting model �the Sacramento Model� to predict the
weekly runoff of the upper Kafue River Basin.

Details of the above steps are given below.

Application of Wavelet Empirical Orthogonal Function

WEOF was applied to first transform the observed rainfall and
SST time series, O�t�, by a mother wavelet, �, to a wavelet spec-
trum W�b ,a�

W�b,a� =
1
�a
�

0

T

O�t��*� t − b

a
�dt �1�

where �*�complex conjugate of �; a �scale �or periodic cycle�

of the wavelet; and b�translation position along the t-axis. At
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each scale, the wavelet spectra coefficients �also known as power
or energy� depict how well the mother wavelet matches the ob-
served rainfall or SST time series, O�t�. The quantity a−1/2 in
Eq. �1� is an energy normalization term to ensure that the energy
of the mother and daughter wavelets remain the same over all
scales, making it possible to directly compare wavelet transforms
of one time series with another �Torrence and Compo 1998�.

Next, the scale-averaged wavelet power �SAWP�, which rep-
resents the mean variance of wavelet coefficients over a range of
scales, was computed from the wavelet spectrum, to examine the
variation of rainfall and SST over a range of statistically signifi-
cant oscillations, as

Wt
2 =

� j�t

C�
�
j=j1

j2 �Wt�b,aj��2

aj
�2�

where C��0.776 for the Morlet wavelet; � j�factor for scale av-
eraging; and �t�sampling period �Torrence and Compo 1998�.
Since SAWP is a time series of average variance in a certain
frequency band, SAWP can also be used to examine the modula-
tion of one time series by another �e.g., variation of rainfall due to
SST variations� or the modulation of one frequency by another
within the same time series.

To determine the dominant spatial and temporal patterns of
rainfall and SST and the teleconnection between these patterns,
the empirical orthogonal function analysis was applied to the
SAWP of rainfall and SST

um = em
T x� = �

k=1

K

ekmxk�, m = 1, . . . ,M �where M � K� �3�

where um�wavelet principle components �WPCs� time series of
rainfall or SST SAWP; ekm �xk���eigenvectors �anomalies� of the
SAWP; and M represents the number of dominant WPCs that
accounted for majority of the variability in the SAWP.

Then, the dominant spatial patterns of rainfall �Fig. 3�a�� and
SST variability �figures not shown� were established by correlat-
ing the leading WPC of rainfall and SST �i.e., WPC1� to the
gridded SAWP of rainfall and SST, respectively. Furthermore,
teleconnection patterns between rainfall and SST were established
by correlating the rainfall WPC1 and the SAWP of AMJ SST �see
Fig. 3�b��.

Having established the spatial patterns shown in Fig. 3�b�, the
AMJ SST data to be used for training the genetic algorithm neural
network �ANN-GA� model and for predicting the rainfall of
Solwezi and Ndola were extracted from areas of the Atlantic
Ocean �Fig. 3�b�� where the correlation exceeded 0.5.

ANN-GA for Predicting Annual Rainfall

The ANN-GA model of Mwale et al. �2004� �see Fig. 4� was
trained to predict the annual rainfall at Ndola and Solwezi using
AMJ SST data selected from the Atlantic Ocean as shown in
Fig. 3�b�. To train the best ANN-GA model for a given set of data,
five procedures, “evaluation,” “ranking,” “selection,” “crossover”
and “mutation,” of the genetic algorithm �GA� were applied to
hundreds of thousands of artificial neural networks �ANNs�
through hundreds of iterations called generations:

First, the ANN-GA randomly generates hundreds of neural
networks called a population �Fig. 4�. Each neural network in the
population has three layers �i.e., input layer, middle layer and
outer layer�. The number of input layers depends on the number

of AMJ SST data points chosen for training or predicting the
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annual rainfall, the middle �hidden� layer contains three neurons
and the output layer, which represents the annual rainfall to be
predicted, has one neuron. Each layer has weights that translate
the AMJ SST data from the input layer, through the middle layer
to the outer layer. The translated AMJ SST data in the outer layer
�as predicted annual rainfall� is then compared with the observed
annual rainfall. Different metrics such as correlation, root mean
square errors or Hansen Kuipers score could be used to compare
the translated SST and the observed rainfall data. If the discrep-
ancy between the translated SST and the observed rainfall data
are large, the weights in all the layers are adjusted until a good
agreement between them is achieved. In this study standardized
rainfall and SST were used, and the agreement between the pre-
dicted and the observed annual rainfall was assessed in terms of
correlation coefficient. The predicted rainfall in the standardized
form was then multiplied with its standard deviation and added to
its mean to become the actual rainfall.

Next, the ANNs are ranked according to how well their

Fig. 3. Plots showing �a� the dominant spatial pattern of rainfall in
central southern Africa that includes the Kafue River Basin; �b� areas
of the Atlantic Ocean where April–June �AMJ� sea surface tempera-
tures data was extracted to train the ANN-GA model and predict
rainfall at Ndola and Solwezi
weights translated the SST data into annual rainfall. The best
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ANN at each generation is put away separately and only replaced
if a better ANN is found. To continue searching for a better ANN,
the top 85% of the population are randomly selected to form
another 100% of a new population. Since the selection is only
taken from the top 85% of the population, some ANNs are se-
lected more than once.

After the ANNs are selected, they undergo crossover whereby
the weights between any two randomly selected ANNs are ex-
changed by randomly identifying a point in the middle layer and
exchanging all weights on either side of the point �see Fig. 4�.
After crossover, a few ANNs are allowed to undergo mutation in
which weights of a few selected ANNs are randomly altered.
Usually only 1% of ANNs are randomly chosen from the popu-
lation and a small portion of their weights are randomly altered.
Similar to natural processes, mutation does not usually produce
desirable traits in ANNs and hence it is applied sparingly.

At Ndola, the 1962–1983 annual rainfall and AMJ SST data
were used for training the ANN-GA and the remaining data
�1984–1988� was used to predict the 1984–1988 annual rainfall.
At Solwezi, the 1962–1979 data were used to train the ANN-GA
and then the 1980–1982 AMJ SST data was used to predict the
1980–1982 annual rainfall. Using the AMJ SST data of Fig. 3�b�,
the annual rainfall predicted for Ndola and Solwezi �shown in
Figs. 5�a and b�, respectively� were further disaggregated to
weekly totals before being used to drive the SAC-SMA hydro-
logic model.

Statistical Disaggregation of Annual Rainfall

The total length of the upper Kafue River from the source to the
gauging station �SG1 in Fig. 1� is about 410 km and has a slope
of about 0.09%. For such natural channels, approximate average
velocities range between 0 and 0.61 msecond−1 �Chow et al.
1988�, which means that the time the entire watershed begins to
contribute streamflow at the reservoir is 7.8 or about 8 days and
so it is appropriate to disaggregate the seasonal rainfall into
weekly time steps. Out of convenience, for months with 31 days,

Fig. 4. ANN-GA model
the stream flows for the first three weeks were averaged over
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eight days, while the stream flows for the last week was averaged
over seven days. For months with 30 days, the first two weeks
were averaged over eight days while the last two weeks over
seven days. By so doing, we ended up with only forty eight �48�
weeks per year, instead of fifty two �52� weeks.

In the first disaggregation stage, statistical properties between
annual and monthly rainfall are used to disaggregate the annual
rainfall into twelve �12� monthly rainfall totals �Fig. 6�. Next the
12 annual monthly totals are aggregated to three month seasonal
totals of OND, JFM, AMJ, and JAS. In the second stage, statisti-
cal properties between seasonal and weekly rainfall are used
to disaggregate the seasonal rainfall into twelve weekly rainfall
totals for each of the OND, JFM, AMJ and JAS seasons �i.e., for
a total of 48 weekly rainfall totals�.

The disaggregation of annual rainfall to 12 monthly totals or
from each of the seasonal rainfall totals �OND, JFM, AMJ or
JAS� to 12 weekly rainfall totals takes the following form:

Fig. 5. Plots of the predicted and the observed annual rainfall at �a�
Ndola; �b� Solwezi in the Kafue River Basin

Fig. 6. Illustration of the disaggregation procedure
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y�t� = dx�t� + fv�t� �4�

where y�t� is a k�1 vector of 12 monthly �or 12 weekly� rainfall
totals of year �season� t, k the number of months �weeks� in the
year �season�, x�t� the annual �seasonal� rainfall for year �season�
t, v�t� is a k�1 vector of random standard normal deviates �with
a mean zero and variance of one�, d is a k�1 vector and f is a
k�k matrix, of coefficients �Valencia and Schaake 1973�. The
elements of vector d sum to one and can be considered as
monthly �weekly� contributions to the annual �seasonal� rainfall
of vector x�t�. The vector resulting from the product of matrix f
and vector v�t� adds a random variation to y�t�, so that y�t� re-
flects some degree of stochastic variability observed at weekly
time steps. The vector d and matrix f are derived by analyzing
historic rainfall data as follows:

d = syxsxx
−1 �5�

ffT = syy − syxsxx
−1sxy �6�

where the covariance matrices between different levels of aggre-
gation �i.e., monthly and annual or seasonal and weekly� are
denoted by syx and sxy, while variances by sxx and syy. The vector
d is computed directly from Eq. �5� but there is no unique solu-
tion to the matrix f from ffT given in Eq. �6�. Matrices of the form
ffT=c are called Gramian matrices, c being the Gramian of f.
Given c there is no unique solution to f since any matrix of the
form f .e, where e is orthogonal, will satisfy the above relation-
ship. The necessary and sufficient condition for estimating f is
that the covariance structure of c be positive semi-definite, as
shown by Valencia and Schaake �1972�. The most common
method used to estimate f is the empirical orthogonal function
factorization. By equating the Gramian matrix c, to the left hand
side of Eq. �6�

ffT = c �7�

The eigenvector solution of Eq. �7� is

ce = e� �8�

where �i are the eigenvalues and e the eigenvectors that are or-
thogonal to each other. Multiplying both sides of Eq. �8� by e−1,
we obtain

c = e�e−1 = ffT �9�

which reduces to

f = e�1Õ2

where �1Õ2 = 	
��1 · · · ·

· · · · ·

· · · · ·

· · · · ·

· · · · ��n


 �10�

The matrix f and vector d are then used in Eq. �4� to generate the
disaggregated y�t�.

The application of above statistical disaggregation procedure
to the predicted annual rainfall of Figs. 5�a and b� yielded disag-
gregated rainfall totals shown in Figs. 7�a and b�, respectively.
The latter figures show that both disaggregated and observed rain-
fall at Ndola are characterized by bimodal peaks, one in
December–January �DJ� and the other in February–March �FM�.

The DJ peak is associated with the southward passage of the
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moist Congo-air front through Ndola while the FM peak is asso-
ciated with the passage of the front during the northward dis-
placement of the Congo air mass. The latter peak generally
appears larger than the former. The general rainfall features asso-
ciated with the intrusion �extrusion� of the Congo air mass in
�out� of the Kafue basin appears to be captured by the distribution
matrices d, while the matrix f adds a reasonable randomness �or
“natural” look� to the weekly rainfall. The disaggregated weekly
rainfall was then used to drive the Sacramento Soil Moisture
Accounting model �SAC-SMA� �Burnash et al. 1973; Burnash
1995�.

Hydrologic Model „SAC-SMA…

SAC-SMA was chosen because it only requires modest climatic
data while physically-based hydrologic models are data-intensive,
and climatic data are scarce in the Kafue River Basin. SAC-SMA
is a lumped, deterministic conceptual model, made up of upper
and lower conceptual storages, from which direct flow, Horton
overland flow, interflow, subsurface flow, and evaporation are
simulated. Soil moisture storages of the upper and lower zones
are divided into free and tension water. The upper zone represents
the top soils and the basin interception layers, while the lower
zone represents the groundwater storage. As conceptual models,
SAC-SMA requires the lumped parameters to be realistically cali-
brated by manual and automatic calibration procedures �Gan and
Biftu 1996; Duan et al. 1992� in order to simulate runoff that
matches the observed streamflow. Given that parameter values
can vary over a wide range �e.g., 0–250 mm for the tension stor-
ages and 0–900 mm for the lower zone free water storages�, the
search for model parameters of global optimal quality can been

Fig. 7. Example showing disaggregated and observed weekly rainfall
at �a� Ndola; �b� Solwezi
tedious.
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As one of the input data to SAC-SMA, potential evapotrans-
piration �ET� were estimated by the Complementary Relationship
Areal Evapotranspiration �CRAE� model of Morton �1983�,
which has been recommended by Chiew and McMahon �1991�,
and Hobbins et al. �2001�.

Estimation of Potential Evapotranspiration

The CRAE model assumes that when an area is getting drier, the
actual ET decreases but the potential ET increases. CRAE as-
sumes that the decrease in the actual ET generates an equal but
opposite change in the potential ET, so that the sum of both equal
to the maximum ET from a wet environment, represented as

ET + ETP = 2ETW �11�

where ET�areal ET; ETP�potential ET estimated from a solution
of vapor transfer and energy balance equations; and ETW�wet
environment areal ET. According to CRAE, the actual ET result-
ing from feedbacks between the land surface and atmosphere in-
teraction can be computed as

ETw = g1 + g2
�p

�p + 	p
R

n
* �12�

where R
n
* is the net radiation adjusted to the equilibrium tempera-

ture Tp, �p �mbar °C−1� is the slope of the saturation vapor pres-
sure at Tp, 	p �mbar °C−1� is the psychometric constant equal to
66.8 Pa / °C, g1=14 Wm−2 �to account for large-scale advection
during seasons of low or negative radiation and represents the
minimum energy available for ETw�, and g2=1.2 is an empirical
constant that Morton �1983� obtained through calibration. CRAE
has been calibrated on a monthly basis and applied to diverse
environments around the world, including Africa.

To estimate the potential ET in the CRAE model, average
weekly temperature is needed for the following year. Weekly tem-
peratures were estimated from monthly temperatures by simple
averaging while monthly temperatures were estimated by simple
averaging and a harmonic analysis defined as

w�t� = ŵ�t� + C1 cos�2
t

n
− �� + R�t� �13�

where w�t��predicted monthly temperature; ŵ�t��average
monthly temperature; C1�constant; n�fundamental period �i.e.,
12 months�; t�time in months; ��phase shift in radians; and
R�t��random numbers ranging between −1 and 1, with a mean of
zero and a variance of‘1. R�t� is included in Eq. �13� to include
some stochastic processes observed in nature. Without R�t�, w�t�
will be a pure sine or cosine wave which may not appear natural,
albeit monthly temperature generally exhibits sinusoidal behavior.
As the amplitude of the harmonic function, C1 is computed as

C1 = �A2 + B2

where A =
2

n�
t=1

n

w�t�cos�2
t

n
� and B =

2

n�
t=1

n

w�t�sin�2
t

n
�
�14a�
The phase shift, �, is then computed as
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A
A � 0

=tan−1 B

A

 
 A � 0

=



2
A = 0

� �14b�

Using the averaging approach, the basin-wide averaged monthly
temperatures were estimated as follows:

w�t� = Ŵ�t� + Tr + R�t� �15�

where Ŵ�t��vector of average monthly temperatures computed
in a period; t�length of the training data; Tr is approximately the
linear trend observed in the average monthly temperature data;
and R�t��random numbers as defined above.

Examples of predicted and observed air temperatures are
shown in Fig. 8. Fig. 8�a� shows that air temperature estimated
from simple averaging accounted for about 91% of variability of
the observed air temperature, while Fig. 8�b� shows that Har-
monic analysis only accounted for about 60% of the variability of
the observed air temperature. Since the RMSE and biases were
also higher for the air temperature estimated by Harmonic analy-
sis, the air temperature data from the simple averaging approach
was chosen for this study.

Discussion of Results

Prediction Skill

The prediction skill was assessed in terms of the Nash-Sutcliffe
coefficient of efficiency �E f�, the bias, root-mean-square error

Fig. 8. Comparison of observed and predicted monthly air tempera
analysis
�RMSE� and the Pearson correlation �Corr� as follows:
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Ef = 1 −

�
i=1

K

�Xi − O�2

�
i=1

K

�Xi − X̄�2

�16�

Bias =
1

K�
i=1

K

�Xi − Oi� �17�

RMSE =
1

K
��

i=1

K

�Xi − Oi�2 �18�

Corr =
1

K

�
i=1

K

�Xi − X̄��Oi − Ō�

��
i=1

K

�Xi − X̄�2�
i=1

K

�Oi − Ō�2

�19�

where Oi and Xi�observed and modeled streamflow discharges

respectively; X̄ and Ō are their respective mean values; and
K�total number of observed Oi and Xi values. The Pearson cor-
relation ranges from −1 to 1 with a correlation of 1 �−1� being a
perfect linear positive �negative� relationship between Oi and Xi,
and a correlation of zero indicating no relationship between Oi

and Xi, while the Nash-Sutcliffe coefficient efficiency may range
from −� to 1, with an efficiency of 1 corresponding to a perfect
match, an efficiency of 0 indicating model predictions that are
only as good as the mean of Oi, and an efficiency less than zero

a� and �b� using simple averaging; and �c� and �d� using harmonic
ture �
indicating that the prediction is as good as random.
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Skill of Predicted Rainfall

The observed and predicted annual rainfall shown in Fig. 5�a� has
a Pearson correlation of 0.98, Ef of 0.88, RMSE of 31.2 mm and
Bias of 22.1 mm, while that of Fig. 5�b� has a Pearson correlation
of 0.99, Ef of 0.92, RMSE of 24.2 mm, bias of 22.3 mm. From
these statistics, it is clear that the ANN-GA model exhibited a
high prediction skill and predicted the annual rainfall very accu-
rately.

The prediction skills of statistically disaggregated weekly rain-
fall at Ndola and Solwezi are shown in Tables 1 and 2, respec-
tively. Table 1 shows that disaggregated rainfall at Ndola
accounted for between 47 and 59% of the observed weekly rain-
fall variability, while RMSE ranged between 21 mm to 39 mm/
week, biases −6 to 3 mm and Ef from 0.33 to 0.57. Table 2 shows
that at Solwezi, disaggregated rainfall accounted for between 23%
and 35% of the observed weekly rainfall variance, with RMSEs
ranging from 25 mm to 45 mm/week, biases of 4 to 10 mm and Ef

of −0.22 to 0.05. The above statistics clearly indicate that disag-
gregating rainfall at Solwezi is much more challenging than at
Ndola. The difference is most likely associated with the strength
of the rainfall signal at the two stations, with Ndola having a
stronger rainfall signal because it lies in the middle of the upper
Kafue basin, while Solwezi is located near the outskirts of the
river basin �see Fig. 3�a��. Using the 336 weeks of observations
between 1962 and 1968, a correlation of 0.10 �or 10%� is statis-
tically significant at the 95% level. Hence, although the prediction
skill does not appear to be strong, the explained variance of
greater than 10% means that the predicted rainfall generally cap-
tured the variability of weekly rainfall.

Skill of Predicted Runoff

For the upper Kafue River Basin, SAC-SMA was calibrated using
the 1962–1983 weekly rainfall and runoff data and validated
using the 1984–1988 data. For the Lunga basin, calibration was
performed using the 1962–1979 rainfall and runoff data and vali-
dated using the 1980–82 data. In this study, SAC-SMA was set to
perform soil moisture accounting operations at weekly time step.
However, internally SAC-SMA accounts for soil moisture distri-
bution between the free and tension storages of the upper and
lower zones in much smaller time increments, the generation of
surface and subsurface flows, and the evapotranspiration �ET�. At

Table 1. Summary Statistics of Statistically Disaggregated Weekly Rain

Year 1984 1985

Explained variance �R2 as %� 59 56

RMSE �mm/week� 29 25

BIAS �mm/week� −6 −1

Efficient coefficient �Ef� 0.53 0.57

Table 2. Summary Statistics of Statistically Disaggregated Weekly Rain-
fall at Solwezi

Year 1980 1981 1982 Average

Explained variance �R2 as %� 23 35 27 23

RMSE �mm/week� 41 29 25 32

BIAS �mm/week� 10 13 4 9

Efficient coefficient �Ef� −0.22 −.33 0.05 −0.17
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the end of each time period, the net channel inflow was essen-
tially the total precipitation input minus ET and the net moisture
assigned to the storage zones.

Performance of SAC-SMA for the Upper Kafue River
Basin

The performance of SAC-SMA for the Kafue River Basin, for
each of the five years between 1984 and 1988, using both histori-
cal and disaggregated weekly rainfall at Ndola is shown in Figs.
9�a and b�. Historical weekly rainfall at Ndola was used as a
benchmark to assess the performance of SAC-SMA when it was
driven by disaggregated weekly rainfall. The summary statistics
corresponding to Figs. 9�a and b� are presented in Tables 3 and 4,
respectively. Table 3 shows that when historical weekly rainfall
data was used, on an annual basis the explained variance between
observed and simulated runoff ranged between 81 and 95%,
RMSE ranged between 37 and 95 mm /week, biases ranged be-
tween −54 to 14 mm and Ef ranged between 0.82 and 0.95. On
the other hand, when disaggregated weekly rainfall was used, the
explained variance between observed and simulated runoff ranged
between 78 and 90%, RMSE ranged between 37 and 92 mm/
week, biases ranged between −36 to 14 mm and Ef ranged be-
tween 0.71 and 0.95. Apparently, the performance of SAC-SMA

Ndola

1986 1987 1988 Average

47 51 34 49.

21 23 39 27

3 −2 2 −0.8

0.46 0.49 0.33 0.46

Fig. 9. Observed and predicted weekly streamflow �m3 /s� for the
Kafue River Basin using �a� observed weekly rainfall; �b� statistically
predicted weekly rainfall
fall at
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only depends marginally on whether disaggregated or historical
weekly rainfall was used. This likely shows that with weekly
rainfall disaggregated from the annual rainfall predicted by the
ANN-GA, SAC-SMA can generally predict the weekly stream-
flow for the upper Kafue basin accurately.

Performance of the SAC-SMA for the Lunga River
Basin

Due to a lack of data, only three years �1980–1982� were used
for validating this sub-catchment and the validation results using
both historical and disaggregated rainfall are shown in Figs. 10�a
and b� and in Tables 5 and 6, respectively. Table 5 shows that the
explained variances between the predicted and observed weekly
streamflow ranged between 72 and 90%, RMSE ranged from 15

Table 3. Summary Statistics of SAC-SMA’s Prediction Skill Using Hist

Year 1984 1985

Explained variance �R2 as %� 95 81

RMSE �mm/week� 37 95

BIAS �mm/week� 4 −54

Efficient coefficient �Ef� 0.95 0.70

Table 4. Summary Statistics of SAC-SMA’s Prediction Skill Using Stati

Year 1984 1985

Explained variance �R2 as %� 90 78

RMSE �mm/week� 51 92

BIAS �mm/week� −2 −36

Efficient coefficient �Ef� 0.90 0.71

Fig. 10. Observed and predicted weekly streamflow �m3 /s� of the
Lunga River Basin using �a� observed rainfall; �b� statistically pre-
dicted rainfall
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to 85 mm/week, biases from −28 to 7 mm /week, and Ef from
0.50 to 0.90. On the other hand, Table 6 shows that the explained
variances between the predicted and observed weekly streamflow
ranged between 61 and 84%, RMSE ranged from 15 to 86 mm/
week, biases from −28 to 7 mm /week, and Ef from 0.50 to 0.83.
In both cases, the high flows could not be predicted accurately.
Apparently the difference in the accuracy of simulated streamflow
based on observed and disaggregated weekly rainfall is marginal.

The prediction skill is generally modest because SAC-SMA
failed to simulate peak streamflows partly because as a lumped-
parameter model, SAC-SMA could not account for the distributed
nature of Lunga’s hydrologic processes. Furthermore, it could be
because model parameters for the upper and lower water zones
were much higher than those suggested in previous studies, peak
flows tend to be under-simulated.

SAC-SMA Model Parameters

Table 7 shows the optimized parameters of the upper Kafue
and Lunga River Basins, calibrated through a combination of
manual and the global optimization algorithm of Duan et al.
�1992�. Fig. 11 shows an example run of how model parameters
got optimized in the optimization process. Using the above pro-
cedure, the upper zone tension moisture capacity and the free
water storages of these two basins were found to be 382–388 and
299 mm, respectively, which were much higher than the upper

eekly Rainfall for the Upper Kafue Basin

1986 1987 1988 Average

87 89 87 88

38 41 55 53

−6 9 14 −8

0.85 0.89 0.82 0.84

Generated Weekly Rainfall for the Upper Kafue Basin

1986 1987 1988 Average

87 82 88 85

37 54 51 57

8 12 14 −0.8

0.87 0.80 0.85 0.83

Table 5. Summary Statistics of SAC-SMA’s Prediction Skill Using His-
torical Weekly Rainfall for the Lunga River Basin

Year 1980 1981 1982 Average

Explained variance �R2 as %� 80 90 72 81

RMSE �mm/week� 85 15 19 40

BIAS �mm/week� −28 2 7 −6

Efficient coefficient �Ef� 0.63 0.90 0.50 0.7

Table 6. Summary Statistics of SAC-SMA Prediction Skill Using the
Statistically Generated Weekly Rainfall for the Lunga River Basin

Year 1980 1981 1982 Average

Explained variance �R2 as %� 72 84 61 72

RMSE �mm/week� 86 18 19 41

BIAS �mm/week� −28 −3 −0.1 −10

Efficient coefficient �Ef� 0.62 0.83 0.50 0.65
orical W
stically
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limits suggested by Gan and Burges �1990a, b� �i.e., 5–250 and
3–30 mm, respectively�. These values were found via automatic
calibration, by starting off with initial parameter values of 29 and
15 mm, respectively. The difference could be partly because the
bounds recommended by Gan and Burges �1990a, 1990b� were
mainly based on North American experience. These large upper
storages probably reflect the high storage capacity attributed to
the dominance of numerous dambos, clays, and sandveldt soils.
The lower zone parameters are within the bounds suggested by
Gan and Burges �1990a, 1990b� but again suggesting that the
basins might have relatively large lower zone storage capacity.
The large storage parameters especially that of the upper zones
partly explain why the peak runoff was under simulated, and also
possibly due to uncertainties associated with observed rainfall
data collected by a limited number of rain gauges.

Even though the parameters derived by the global search rou-
tine of Duan et al. �1992� should be of global optimum quality,
SAC-SMA is still a lumped-parameter, conceptual hydrologic
model that ignores the spatial variation of basin characteristics
�e.g., soil properties, terrain, vegetation� and climate data, that
conceptualizes the essential basin-scale hydrologic processes with
a model structure that is a simplified version of nature which is
highly heterogeneous and complex. Therefore predicting the basin
streamflow by this pragmatic but simplified system inevitably in-
volves a certain degree of uncertainties.

Table 7. Optimal Parameters for the Kafue and Lunga River Basins

Parameter

Kafue
optimized
parameters

�mm�

Lunga
optimized
parameters

�mm� Parameter definition

UZTWM 382 388 Upper zone tension water

UZFWM 299 299 Upper zone free water capacity

UZK 0.06 0.06 Upper zone withdrawal rate

ZPERC 28 24 Maximum percolation rate

REXP 1.001 1.026 Exponent for the percolation
equation

LZTWM 300 253 Lower zone tension water

LZFSM 345 328 Lower zone free water capacity

Fig. 11. Automated calibration run showing the evolution of the
upper and lower zone model parameters
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Summary and Conclusions

This paper developed a framework to integrate wavelet empirical
orthogonal function analysis, artificial neural networks driven by
a genetic algorithm, statistical disaggregation and a lumped pa-
rameter hydrologic model to predict weekly rainfall and runoff
for the Kafue and Lunga River Basins in Zambia, Africa. Results
show that predicted and statistically disaggregated rainfall ex-
plained about 47% of observed rainfall at Ndola �upper Kafue
basin� and 23% at Solwezi. Using this weekly rainfall, the simu-
lated runoff for the upper Kafue and Lunga Rivers accounted for
81% and 72% of the variance of the observed runoff, respectively,
compared to 88% and 81% when historical weekly rainfall were
used.

The results generally show that statistical properties of hydro-
climatic process at Kafue and Lunga River Basins are approxi-
mately stationary, and so statistically generated rainfall may be
used to predict the basin runoff with considerable skill. Since the
weekly streamflow can be predicted at least at three months up to
a year lead time, this procedure can be used to provide reliable
estimates of weekly runoff for the upper Kafue basin at Iteshi-
Teshi reservoir which could be useful for integrated water re-
sources management, especially during years of low rainfall or
drought.
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Notation

The following symbols are used in this paper:
a � scale �or periodic cycle� of the wavelet;
b � translation position along the t-axis of a wavelet

transformation;
C1 � amplitude of the harmonic function;
C� � constant equal to 0.776;
d � vector of coefficients;

Ef � Nash-Sutcliffe coefficient efficiency;
ET � areal evapotranspiration;

ETP � potential evapotranspiration;
ETW � wet environment areal evapotranspiration;

e � eigenvectors;
f � matrix of coefficients;

g1 � empirical constant=14 Wm−2;
g2 � empirical constant=1.2;
M � number of dominant WPCs;
O � observed rainfall, streamflow or SST time series;

Ō � mean of observed rainfall, streamflow or SST time
series;

R
n
* � net radiation;
R � random numbers ranging between −1 and 1;

syx � covariance matrices;
Tp � equilibrium temperature;
Tr � approximation of the linear trend observed in the

average monthly temperature data;
Tr � wavelet principle components �WPCs� time series;
v�t� � vector of random standard normal deviates;
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Ŵ�t� � vector of average monthly temperatures;
w�t� � predicted monthly temperature;
ŵ�t� � average monthly temperature;

Xi � modeled streamflow discharges;

X̄ � mean modeled streamflow discharges;
x�t� � annual or seasonal rainfall;

xk� � anomalies of the SAWP;
y�t� � vector of monthly or weekly rainfall totals;

� j � factor for scale averaging;
�t � sampling period;

�p � slope of the saturation;
� � mother wavelet;
�i � eigen values;
	p � psychometric constant equal to 66.8 Pa / °C; and
� � phase shift in radians.
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