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a b s t r a c t

Spatial technologies present possibilities for producing frequently updated and accurate habitat maps,

which are important in biodiversity conservation. Assemblages of vegetation are equivalent to habitats.

This study examined the use of satellite imagery in vegetation differentiation in South Africa’s Kruger

National Park (KNP). A vegetation classification scheme based on dominant tree species but also related

to the park’s geology was tested, the geology generally consisting of high and low fertility lithology.

Currently available multispectral satellite imagery is broadly either of high spatial but low temporal

resolution or low spatial but high temporal resolution. Landsat TM/ETM+ and MODIS images were used

to represent these broad categories. Rain season dates were selected as the period when discrimination

between key habitats in KNP is most likely to be successful. Principal Component Analysis enhanced

vegetated areas on the Landsat images, while NDVI vegetation enhancement was employed on the

MODIS image. The images were classified into six field sampling derived classes depicting a vegetation

density and phenology gradient, with high (about 89%) indicative classification accuracy. The results

indicate that, using image processing procedures that enhance vegetation density, image classification

can be used to map the park’s vegetation at the high versus low geological fertility zone level, to

accuracies above 80% on high spatial resolution imagery and slightly lower accuracy on lower spatial

resolution imagery. Rainfall just prior to the image date influences herbaceous vegetation and,

therefore, success at image scene vegetation mapping, while cloud cover limits image availability. Small

scale habitat differentiation using multispectral satellite imagery for large protected savanna areas

appears feasible, indicating the potential for use of remote sensing in savanna habitat monitoring.

However, factors affecting successful habitat mapping need to be considered. Therefore, adoption of

remote sensing in vegetation mapping and monitoring for large protected savanna areas merits

consideration by conservation agencies.

& 2009 Elsevier GmbH. All rights reserved.
Introduction

Updated habitat spatial data are a fundamental requirement in
conservation management of the varied biodiversity in protected
areas (Mehner et al. 2004; Weiers et al. 2004). The spatial
technologies of remote sensing and GIS provide possibilities for
production, storage and rapid updating of habitat maps (Lucas
et al. 2007; Nagendra 2001; Weiers et al. 2004), given the threats
to the stability of habitats from human and natural factors (Bock
et al. 2005). For protected areas in tropical and subtropical areas
where droughts are frequent, such as Kruger National Park in
South Africa, the need for accurate and updated habitat state
spatial data is particularly acute. Despite the technology’s
. All rights reserved.
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capabilities, some of which have been demonstrated in the
southern Africa region (e.g. McCarthy et al. 2005; Ringrose et al.
1988, 2003; Verlinden & Masogo 1997) and elsewhere (e.g. Sader
et al. 1991) routine use of remote sensing in mapping and
monitoring changes in habitats and vegetation types has not been
adopted fully by conservation agencies, including in developed
countries (Bock et al. 2005; Lucas et al. 2007), and the more
expensive and time consuming field surveys (Lucas et al. 2007;
Mehner et al. 2004) are still the more common approach. For
Kruger National Park (KNP), research utilising parts of the park as
a study area has demonstrated the potential role of remote
sensing in ecosystem assessments (e.g. Landmann 2003; Mutanga
& Skidmore 2004; Mutanga et al. 2004; Verbesselt et al. 2007).

Vegetation assemblages are the equivalent of habitats (Lucas
et al. 2007), although terrestrial habitats are generally delineated
based on vegetation and topography. Both vegetation and
topography are related to geology, the former through the
nutrients in the soil from the parent rock material, and the latter
through inherent geological resistance to lithospheric-altering
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agents of weathering, erosion and mass wasting that create various
relief features. Whereas it is relatively more challenging to map
topography using remotely sensed images, vegetation mapping
using images from sensors operating in the visible through to the
mid-infrared spectral regions is feasible, depending on the spectral
and spatial resolution of the sensor (Lillesand et al. 2004). The
mapping and monitoring of habitats has benefited from the
technical improvements to sensors on board earth orbiting environ-
mental satellites since the launch of the first satellites, particularly
improvements in spectral and spatial resolution.

A number of factors can influence the success of habitat
mapping using remotely sensed imagery. The images used should,
ideally, be taken at a time of year when discrimination between
key habitats is most marked (Lucas et al. 2007). In addition to the
spatial and spectral resolution of the sensor, synoptic coverage of
large swaths of habitats by satellite images is important for
habitats with large spatial extent. Although there is often a trade-
off between spatial detail and the need for synoptic coverage of
large swaths of habitat (Weiers et al. 2004), use of images from
high spatial resolution sensors has been shown to produce more
accurate habitat maps (Mehner et al. 2004). The approaches to
image processing (supported by ecological knowledge of the area;
Bock et al. 2005) are also important for successful habitat
mapping by remote sensing. Image classification approaches are
commonly used (e.g. Congalton et al. 2002; Mehner et al. 2004;
Ringrose et al. 1988, 2003; Sader et al. 1991; Weiers et al. 2004)
but their accuracy also depends on the image classification
algorithm used, i.e. ‘hard classifiers’ or the relatively newer soft
classifier approaches like spectral mixture analysis (Lillesand et al.
2004). Hard classifiers tend to impose distinct habitat boundaries
when in reality zones of intersection between different vegetation
types separate the habitats, whereas soft classifiers produce more
realistic habitat maps with the percentage of each class found in
each pixel (Mehner et al. 2004) but are more complex and require
detailed field data. Principal Component Analysis (PCA), a
technique for reducing the dimensionality of remotely sensed
imagery and thereby increasing the computational efficiency of
the classification process (Eklundh & Singh 1993; Lillesand et al.
2004) has been utilised in enhancing images as part of the image
classification process (e.g. Call et al. 2003; Conese et al. 1993; Lee
et al. 1990). The Normalised Difference Vegetation Index (NDVI),
which is based on the high reflectance in the near infrared and
absorption in the red spectral ranges by healthy vegetation
(Lillesand et al. 2004) is also commonly utilised in vegetation
enhancement on images (Kerr & Ostrovsky 2003), NDVI being
high (0.3–1) in vegetated areas.

The size and nature (characteristics) of the habitats are also an
important factor in accuracy of habitat mapping, irrespective of
which image processing algorithms are used. For example, Lucas
et al. (2007) have shown that segmentation (rule-based classifica-
tion) of Landsat ETM+ images gave a good representation of the
distribution of habitats (and agricultural land) for the more
extensive, contiguous and homogenous habitats that were
mapped with accuracies exceeding 80% but accuracies were lower
for more complex, broadly defined habitats. Sader et al. (1991)
used hard classifiers in classification of Landsat TM imagery to
map bird habitat and showed that mature forest habitat could be
identified with high accuracy (93%) but classification accuracy for
major vegetation succession stages was low.

This research utilised satellite imagery to assess the vegetation
(habitat) types of Kruger National Park (KNP) in South Africa. KNP
has well established geology-related habitat (vegetation) strata,
some based on land systems and others based on vegetation. The
aim of the research was to establish the extent to which the
geology derived vegetation zones of the park can be reproduced
from satellite imagery. The usefulness of such imagery as a source
of updated spatial data on the park’s vegetation is then assessed.
In terms of spatial and temporal resolution, currently available
multispectral satellite imagery broadly seem to be either of high
spatial but low temporal resolution or low spatial but high
temporal resolution. Therefore, in this research images at two
spatial resolution scales were utilised, first the high spatial
resolution (30 m) Landsat Thematic Mapper/Enhanced Thematic
Mapper plus (TM/ETM+), and secondly the lower spatial resolu-
tion (250 m) MODIS (Moderate Resolution Imaging Spectrometer)
scale. A combination of unsupervised and supervised maximum
likelihood classification of images enhanced using PCA and the
Normalised Difference Vegetation Index (NDVI) was employed in
the process. The accuracy of the vegetation zone mapping was
judged against the established field survey-derived geology map
of the park. Unlike previous remote sensing studies of KNP (e.g.
Landmann 2003; Mutanga & Skidmore 2004; Mutanga et al.
2004; Verbesselt et al. 2007) this study synoptically examines the
role of geology in influencing the spectral response of the
vegetation in the park.
Study area

Kruger National Park is a large (19,633 km2) narrow north-
south swathe of terrestrial (savanna) habitats located on the
eastern edge of South Africa (Fig. 1, inset) that was first
proclaimed in 1898 and established in its current size in 1926.
The northern half of the park forms part of the Great Limpopo
Transfrontier Park which encompasses protected areas in the
neighbouring countries of Zimbabwe and Mozambique (Weis
et al. 2002; Wolmer 2003). Conservation of ecological integrity in
the park involves vegetation conservation, in addition to animal
conservation (Wolmer 2003). For such large conserved areas in
southern Africa, discriminating and mapping the vegetation types
by remote sensing is potentially useful in monitoring the state of
the protected areas, thereby providing timely spatial data upon
which to base conservation management strategies. The park has
been stratified in a number of ways (e.g. by landscapes, by land
systems, by vegetation), including the Gertenbach-Venter
vegetation classification scheme (Fig. 1). This is chosen in this
study because it is not too detailed for the spatial resolution of the
images used but at the same time it preserves the essential
features of the vegetation of the park. This classification scheme is
a reworking of the older 35-zone (Gertenbach 1983), landscape
based stratification of KNP (KNP GIS Section, 2008, personal
communication). The characteristics of the vegetation classes in
the Gertenbach-Venter scheme are related to geology, as
summarised in Table 1. The area is underlain by a variety of
rocks of sedimentary, igneous and metamorphic origin, with
inherent fertility differences (Fig. 2). As shown in Fig. 2, generally
the eastern (hilly) half of the park is made of more fertile basalt
lithology, while the western half is underlain by less fertile
lithology that includes granite, gneiss and arenite. The region in
which KNP is located receives summer rains, from October/
November to March/April.
Methods

Image selection

Vegetation phenology state guided the timing of imagery
utilised. Although there are variations due to edaphic and
topographic factors, most woody species in the area develop
spring leaf between mid-September and mid-November, and are
in full mature leaf from December to May, with the peak rainfall
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Fig. 1. Location and vegetation classification (based on the Gertenbach-Venter scheme) of Kruger National Park. Letters in the legend are the established abbreviated

references to each of the respective full class descriptions. Legend symbols do not refer to their geologic conventional meanings. See Table 1 for description of the vegetation

classes. Vegetation map source: SANParks, 2008.
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period being December-January (Shackleton 1999). The phenology
of herbaceous species responds to the rains. Being a protected
area, human harvesting of vegetation is not a perturbation factor
and apart from elephant damage of woodlands through tree
felling and uprooting (Eckhardt et al. 2000) and dry season fires,
the trees in the park have no major destructive agents. Rain season
images were judged to be ideal for mapping the vegetation of
Kruger National Park, because the vegetation is at high produc-
tivity then, limited only by geologically related edaphic factors
(e.g. soil fertility), position in the landscape, wildlife grazing and
occasional droughts. Dry season imagery was not ideal because the
vegetation is largely leafless in winter (May-August) and also
because of occasional fire damage (van Wilgen et al. 2000). Late
fires (September-November) damage emerging spring leaf in the
vegetation, which has implications on spectral response of the
vegetation on early rain season imagery in that such fires leave dark
‘burn scars’ on the vegetated landscape. In the absence of such and
other major perturbations, vegetation differences as influenced by
geological fertility factors can best manifest in the rain season and
mapping them by remote sensing was deemed best performed in
this season. However, although suitable from the vegetation
phenology point of view (peak in vegetation productivity), the rain
season presents difficulties in image availability for the area, due to
cloud cover during the peak rainfall period (December-January).

Because of the large size of KNP (about 280 km long and nearly
70 km wide, Fig. 1), the large swath (185 x 185 km) 30 m spatial
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Table 1
Characteristics of Kruger National Park vegetation classes under the Gertenbach-Venter classification system.

Code Vegetation name (dominant tree species) Other (geology)

A Combretum spp./Terminalia sericea woodland Located on granite and gneiss; sandy soil in uplands with clay soil in lowlands; woodland with

sweet, mixed sparse grass.

B Terminalia sericea/Dichrostachys cinerea open tree savanna Located on granite and gneiss; coarse reddish deep soil in uplands and clay soil in lowlands; with

mixed, sweet and tall sour grasses.

C Mixed montane savanna Located on granite and gneiss; very shallow stony soil in uplands with clay soil in lowlands; with

mixed sour and sweet grasses.

D Alternate Combretum apiculatum woodland/

Cholophospermum mopane tree savanna

Located on granite and gneiss with sand in the uplands and clay on lowlands; woodland with

mixed and sweet grasses.

E Burkea africana/Kirkia acumunata tree savanna Sandy soil; woodland with sparse to moderate sweet grass.

F Acacia welwitschii tree thicket Located on ecca shales with clay soil; with short sweet grass.

G Cholophospermum mopane forest Located on ecca shales and clay soil; with sweet grass.

H Terminalia sericea woodland Sandy soil (clay in places); woodland with sparse to moderate sweet grass.

I Sclerocarya birrea/Acacia nigrescens open tree savanna Located on basalt and dark clay soil; with sweet grass.

J Cholophospermum mopane shrubveld Located on basalt and shallow clay soil; with sweet and mixed grasses.

K Cholophospermum mopane/ Commiphora glandulosa/

Andansonia digitata tree savanna

Mostly on basalt; sandy soil and alluvial plains; with sparse short sweet grass.

L Combretum apiculatum woodland Located on rhyolite/basalt with shallow stony soil on upperlands and dark clay soil on the lower

plains; with sweet grass.

M Combretum apiculatum woodland/Colophospermum mopane

woodland

Located on rhyolite/basalt with shallow stony soil on upperlands and dark clay soil on the lower

plains; with sweet grass.

N Baphia massaiensis/Guibourtia conjugate high shrub thickets Located on basalt and shallow clay soil; with sweet and mixed grasses.

SOURCE: Summarised from Gertenbach, 1983.
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resolution Landsat TM/ETM+ made images from this sensor the
ideal high spatial resolution imagery for use, in comparison with
those from multispectral sensors with nearly comparable (like
SPOT HRV/HRVIR, 20 m) or higher (e.g. IKONOS, 4 m) spatial
resolution. Four Landsat scenes are needed to cover the whole of
KNP, whereas more scenes would be needed if SPOT or IKONOS
images were used. Because of cloud cover the most recent
summer Landsat images (November 2007-February 2008) were
not usable and, consequently, older image scenes from the 2005/
2006 and 2006/2007 rain seasons were utilised (Table 2). Cloud
cover problems also prevented the use of same month, same year
and same sensor (TM or ETM+ only) images even for these older
images. However, the vegetation was phenologically similar on all
the Landsat image dates because they were rain season images and,
with the exception of the 16 November 2005 (WRS 169-76) image,
all the images were from the same (2006/2007) rain season,
differing only in terms of the cumulative amount of rains at image
acquisition time. Two Landsat scenes (168-77 and 169-76) cover
most of the park and the other two cover only small fractions
(Fig. 3a). All the Landsat images were at level L4 (path orientated)
processing level, and were subsequently projected as part of
preprocessing. Although Landsat 7 experienced a Scan Line
Corrector (SLC) problem in May 2003, causing large gaps at image
edges (SLC-off data), a large overlap between the images from scenes
169-76 and 168-78 meant that a more central section of the ETM+
image was utilised and, therefore, no interpolation to fill data gaps
was necessary for the image. A November-December 2006 MODIS
image (Fig. 4a) was obtained from the ORNL DAAC (Oak Ridge
National Laboratory Distributed Active Archive Center 2008) in form
of a 16-day composite grid NDVI (MOD13Q1) product in GeoTIFF
format, and subsequently projected to the same map projection as
the Landsat images as part of image preprocessing procedures.
Image preprocessing

Image processing was undertaken using ERDAS Imagine 9.1
software, with additional mapping and processing undertaken
using ArcGIS 9.0. It was important to utilise a common map
projection for the image scenes used. Using ground control points
that were visually identifiable on the images, the Landsat images
were projected to the UTM WGS84 projection (zone 36S) using
nearest neighbour resampling, with subpixel root mean square
error. From each reprojected image a vector shape file of the same
projection outlining Kruger National Park was used for sub-setting
the section of the image covering the park, resulting in the image
portions (sub-scenes) in Fig. 3a. Because the sub-scenes from WRS
168-77 and 168-78 were acquired on the same day, they were
joined into a mosaic prior to processing for vegetation mapping
(Principal Component Analysis and image classification), whereas
the sub-scenes from the northern half of KNP (WRS 168-76 and
169-76) underwent processing separately, to avoid error from
modification of image data statistics introduced by joining images
from different dates with differing illumination conditions. The
MODIS image was also reprojected to the UTM WGS84 zone 36S
map projection, using nearest neighbour resampling.

Principal Component Analysis (PCA) was used for spectral
enhancement of the Landsat image subsets prior to image
classification for mapping of the vegetation. In the process, all
the multispectral TM/ETM+ bands were used, with the exception
of the thermal bands. The resulting eigen vectors and component
data variance values from the PCA are shown in Table 3a. The
eigen images from principal component 1 (PC1), with more than
98% of the data variance, were selected for use in the ensuing
vegetation mapping primarily because of the high spatial
heterogeneity depicted, which was visually judged to depict the
vegetation heterogeneity of the park best out of the six principal
components (see Fig. 3b, insets). From the eigen vectors in
Table 3a, this component can be interpreted as enhancing all TM
bands due to the positive eigen vectors loading into it for each TM
band. Automated (unsupervised) classification of each of the
selected eigen image scenes using the ISODATA algorithm within
ERDAS was then performed, specifying the number of output classes
as 14, the number of classes in the Gertenbach-Venter classification
scheme (Fig. 1). This initial image classification was subsequently
used during field collection of image interpretation data.
Vegetation mapping and field verification

Two field visit campaigns were undertaken in the summer
(rain season) period of December 2007 – February 2008, the first
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Fig. 2. Geology of Kruger National Park based on lithology (a) and fertility (b). Legend symbols do not refer to their geologic conventional meanings. Source: Council for

Geosciences 1:1 M Geological Map of South Africa, Pretoria, South Africa.

Table 2
List of utilised Landsat and MODIS images covering Kruger National Park.

Image date Sensor Landsat WRS� Spatial resolution

14 December 2006 Landsat 7 ETM+ 168-76 30 m

16 February 2007 Landsat 5 TM 168-77 30 m

16 February 2007 Landsat 5 TM 168-78 30 m

16 November 2005 Landsat 5 TM 169-76 30 m

03 December 2006 MODIS - 250 m

� Scenes 169-76 and 168-77 collectively cover most of the park, while scenes

168-76 and 168-78 cover only small portions (see Fig. 3a).
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(December 2007) for purposes of obtaining field condition image
interpretation data, and the second (February 2008) as part of
verification of accuracy of vegetation mapping. The sampling
design of field locations for the image interpretation data
collection field work was established after the initial automatic
(unsupervised) clustering of the image data into 14 clusters
(approximating the number of classes in the Gertenbach-Venter
classification scheme, Fig. 1). Thereafter, 14 locations representing
the respective initial clusters and in proximity to the park’s public
access roads were visited, mainly in the southern section of KNP.
During the visits vegetation description information (vegetation
density and Gertenbach-Venter class) was recorded, photographs
taken for future reference and GPS readings of the locations taken.
Accessibility is a constraint to field sampling in mapping
biodiversity of such inaccessible wilderness areas using remote
sensing (e.g. Buchanan et al. 2008; Fuller et al. 1998), often
resulting in a statistically less representative sampling design. In
this work the ideal field sampling design would have been a
stratified random sampling scheme (elaborated by McCoy 2005),
with the number of sample points per cluster (stratum)
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Fig. 3. Landsat TM/ETM+ image sub-scenes (RGB 432) of Kruger National Park depicting images used in the study (a), result of image processing showing vegetation density

image classification (b), and extent of correlation between image derived vegetation analysis and the Gertenbach-Venter vegetation classes of KNP (red lines) in comparison

with geologic fertility strata (c). The image in (b) is from classification of the inset eigen images of principal component 1 of the respective sub-scenes in (a) whose eigen

vectors are shown in Table 3a. The capital letters in (c) refer to the Gertenbach-Venter vegetation classes in Fig. 1 and Table 1.

Fig. 4. MODIS 3 December 2006 NDVI image of Kruger National Park showing variation in greenness of the park’s vegetation (a), the image classified into vegetation density

classes (b) and the relationship between the vegetation density classes and the park’s geologic fertility zones (c) (compare with Fig. 2).

C. Munyati, T. Ratshibvumo / Journal for Nature Conservation 18 (2010) 169–179174
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Table 3
Eigen vectors, data variance values and spectral signatures from principal

component analysis of the Landsat image sub-scenes utilised for the vegetation

mapping of Kruger National Park.

(a) Eigen vectors and data variance values for principal component 1 (PC1)

PC1 from sub-

scene 169-76,

16 November

2005

PC1 from sub-

scene 168-76,

14 December

2006

PC1 from

mosaic of sub-

scenes 168-77

and 168-78,

16 February

2007

TM1 0.39964 0.41793 0.46343

TM2 0.19428 0.20084 0.21540

TM3 0.27233 0.26416 0.23812

TM4 0.31803 0.33199 0.45376

TM5 0.70207 0.69219 0.63118

TM7 0.36652 0.35479 0.27900

% variance 99.053 99.366 98.159

(b) Class spectral signature statistics from PC1 eigen image

Class name Class mean in PC1 St. deviation (s)

Dense vegetation 141.4 6.79

Sparse vegetation 153.4 4.70

Very sparse vegetation 166.0 5.28

Dry with very sparse vegetation 149.6 3.67

Dry grassland 159.9 6.14

Other dry or bare land 187.7 12.38

Water 65.4 14.16
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dependent on its size. A less subjective vegetation density
quantification method, for example using densiometer crown
cover estimates, would also have improved the field site
categorisation of vegetation density. The 14 sites served as
training areas for subsequent image interpretation for classifica-
tion purposes. Descriptive data from a further 23 accessible sites
representing these clusters were recorded in February 2009 for
purposes of improving the representation from training areas,
bringing the total number of training sites to 37. Because the goal
of field work after initial clustering in unsupervised classification
is to identify the information class represented by each cluster
(McCoy 2005), this additional descriptive work was useful in
further confirming the vegetation condition represented by the
clusters. Such qualitative field vegetation descriptions have
commonly been utilised and shown to be adequate for purposes
of image classification (e.g. Brandt & Townsend 2006; Cingolani
et al. 2004; Ravan et al. 1995; S�a et al. 2003) and are sometimes
the only practical option when there are time and hazard
constraints, compared to quantitative descriptions on field plots
(Treitz et al. 1992). Treitz et al. (1992) established that a
qualitative approach to field-plot description produces a more
statistically accurate digital classification of remotely sensed data
than does the detailed (TWINSPAN) quantitative ground informa-
tion. In this work we faced season-related time constraints and, to
some extent, accessibility and the hazard of wildlife, necessitating
the use of qualitative descriptive data, which was taken from
training sites extending approximately 100x100 m and selected on
the basis of vegetation homogeneity. Therefore, the field data
were collected from homogenous training sites encompassing at
least three 30 m Landsat pixels.

The initial field work revealed that the initial 14 clusters
resulting from unsupervised classification did not match the 14
Gertenbach-Venter vegetation classes (Table 1) and could not be
named consistently. However, the field work revealed that the
initial 14 clusters could be regrouped into six cover classes
representing variation in vegetation density and phenology stage,
namely dense vegetation, sparse vegetation, very sparse vegeta-
tion, dry with very sparse vegetation (i.e. dry areas with very
scattered trees), dry grassland, and other dry (or bare) land
(Table 3b). Because KNP is wholly in the savanna biome, we
utilised the following definition of savanna in assigning class
vegetation density thresholds: ‘‘woodland (savanna) is typically
vegetation with a grass-dominated herbaceous layer and scattered
low to tall trees; it includes the closed woodland and open
woodland of Edwards (1983) with a tree cover less than 75% and
generally greater than 1%’’ (Mucina & Rutherford 2006). Implicit
in this definition is the inherent scattered tree nature of savannas.
Therefore, based on the definition and site specific observations
we devised a scheme in which we categorised woody vegetation
cover Z60% as dense vegetation, 50 - o 60% as sparse vegetation,
and o50% as very sparse vegetation, for purposes of field site tree
cover differentiation. Subsequently, a supervised maximum like-
lihood classification of each of the principal component Landsat
image subsets was performed using the six vegetation density
classes (class names based on field visit training sites) plus a
water class, and the resulting thematic layers were then combined
into a mosaic covering the whole of KNP. The MODIS NDVI
product image obtained was also processed so as to produce this
six class vegetation density gradient. A number of studies (e.g.
Kogan et al. 2003; Kumar et al. 2007) have shown the NDVI and
related vegetation indices to be successful in depicting vegetation
density (Kerr & Ostrovsky 2003). The NDVI thresholds indicative
of the different density classes vary depending on the vegetation
type. On the MODIS NDVI image, the vegetation in the vicinity of
our training sites exhibited NDVI values 40.40 for dense
vegetation, 0.30-o0.40 for sparse vegetation, and o0.30 for very
sparse vegetation. Because the training sites were selected on the
basis of homogeneity and were large enough for spatial inference
to the 250 m MODIS pixel, these NDVI thresholds were utilised in
the classification of the MODIS NDVI image into the vegetation
density gradient classes. Though working at the 500 m pixel scale,
Chongo et al. (2007) report comparable indicative MODIS NDVI
November mean values of 0.35-0.65 for unburned areas in KNP
from 2001, 2002 and 2003 images. Water (in rivers, artificial water
provision holes) was largely indistinguishable at the 250 m pixel
scale on the MODIS image and, therefore, the MODIS classification
excluded the water class.

Accuracy assessment for the resulting vegetation density
image classification was undertaken using a stratified random
sample of 256 pixels for the Landsat classification only, primarily
because the 250 m pixel representation of the MODIS image made
field location of sample pixels more difficult. Since the location of
the sample pixels was completely random in the park, they could
not easily be visited because the majority of them were far from
the park’s public access roads and could only be reached on foot, a
very arduous and time consuming process (also potentially
dangerous due to possible animal attacks). Twenty seven (27) of
the randomly generated sample locations were in proximity
(o 1 km) of the park’s public access roads and were, therefore,
visited in February 2008 as part of classification accuracy
assessment. For the remaining 229 random sites, the approach
by Buchanan et al. (2008) involving use of the high spatial
resolution (0.61-2.40 m) QuickBirds imagery on GoogleEarths
as reference data was adopted for this work. Because the
GoogleEarth images are georeferenced in latitude and longitude
(degrees, minutes, seconds) we converted the coordinates of the
remaining 229 randomly generated accuracy assessment points to
degrees, minutes and seconds, and navigated to each site to verify
correctness of the respective class assignments. Although the
ideal would have been to use field visits (or aerial photographs) as
reference data, these images were utilised as substitute due to
accessibility problems and have been found to be useful as
reference data for remote wilderness areas where accessibility is a
problem (Buchanan et al. 2008). Because of the high spatial
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resolution of the GoogleEarth imagery (acquired during the rain
season), individual trees were discernable, enabling the estima-
tion of tree cover percentage in relation to the image classification
classes used, and a comparison with the Landsat image using
identifiable features (trees, paths) for scale. The resulting overall
classification accuracy was 89.1% (KHAT ¼ 87.6%; Table 4).

The resulting six class classification of the Landsat and MODIS
images depicting a vegetation density gradient was then evalu-
ated to assess the extent to which the Gertenbach-Venter
vegetation classes were reproduced. A process of classification
class merger was then performed in order to match the classes
with the geologic fertility zones (high versus low, Fig. 2) of the
park. The low fertility zone could be approximated by merging the
dense vegetation, sparse vegetation, and very sparse vegetation
classes, with the remainder of the classes largely delineating the
high fertility zone (relationship between fertility and tree
community structure explained in Discussion section). Dense
vegetation, sparse vegetation, and very sparse vegetation classes
collectively indicate tree cover and, therefore, woodland (savanna;
Table 4
Landsat image classification accuracy assessment.

(a) Classification error matrix

Classification data Reference data

Class 1 Class 2 Class 3 Cla

Class 1 (Dense vegetation) 47 3

Class 2 (Sparse vegetation) 45 2

Class 3 (Very sparse vegetation) 5 34 1

Class 4 (Dry+very sparse vegetation) 5 28

Class 5 (Dry grass) 1 2

Class 6 (Other dry or bare land) 2

Class 7 (Water)

Total 47 53 42 33

Producer’s accuracy (%) 100 84.9 81.0 84

Overall accuracy ¼ 89.1%

KHAT (overall) ¼ 87.6%

(b) Relationship between image classification and field description for 27 accessible

Site GPS coordinates (UTM,

meters)

Field description Ima

clas

1. 358124, 7233722 Scattered trees and dry grass Spa

2. 357394, 7231952 Thick acacia bush Den

3. 357733, 7229751 Scattered trees, shrubs and grass Spa

4. 355103, 7227678 Scattered trees, shrubs and grass Spa

5. 354641, 7227490 Shrubs, grass, herbs; 95% open Bar

6. 353159, 7220696 Very open (about 90% open), few trees/

grass

Spa

7. 359536, 7220696 Water hole, bare parts, woodlands Dry

8. 346965, 7236433 Sabie river riparian vegetation Spa

9. 333109, 7236281 Scattered trees, hyparrhenia grasses Bar

10. 326680, 7234168 Sparsely vegetated, lots of grass Spa

11. 326160, 7234540 Densely vegetated Den

12. 324704, 7226786 Sparsely vegetated, dry grass Spa

13. 335192, 7210629 Kopjie (rock hill), short shrubs surrounding Den

14. 356817, 7195676 Dense vegetation Spa

15. 369999, 7279340 Dense vegetation, scattered shrubs, dry

grass

Spa

16. 375192, 7201869 Tree-grass mixture, nearly 50% tree cover Dry

17. 388046, 7215956 Dense vegetation with dry grass Den

18. 362835, 7238450 Acacia thickets with bare ground Spa

19. 368696, 7253325 Sparse vegetation Spa

20. 379000, 7267770 Sparse dry trees and dry grasses Dry

21. 377631, 7277329 Sparse vegetation Spa

22. 377129, 7297282 Grassland area with sparse trees Spa

23. 373989, 7307625 Dry grass Dry

24. 366871, 7335370 Woodland, nearly 50% tree cover Spa

25. 364056, 7343534 Predominantly mopane trees, 60% cover Den

26. 353298, 7360482 Predominantly short mopane shrubs Den

27. 341321, 7354448 Short mopane shrubs with grass Den
see definition above), hence their merger into one class. Accuracy
assessment of this final geological fertility vegetation map was
then performed. The 256 random points generated for accuracy
assessment of the Landsat image classification were retained and
utilised in statistical assessment of the accuracy of the Landsat
and MODIS-derived final classification maps approximating the
two geological fertility strata of the park.
Results

The results of the vegetation density classification using
Landsat imagery are shown in Fig. 3b. The vegetation mapping
scheme was successful in reproducing some of the riparian
vegetation, but the 14 Gertenbach-Venter vegetation classes
(Fig. 1) are largely indistinguishable (Fig. 3b). However, at the
less detailed stratification level of the two geological fertility
zones (Fig. 2), the Landsat vegetation mapping scheme does
approximate the high and low fertility zones of the park (compare
ss 4 Class 5 Class 6 Class 7 Total User’s accuracy (%)

50 94.0

47 95.7

40 85.0

5 38 73.7

52 1 56 92.9

1 19 22 86.4

3 3 100

58 20 3 256

.8 89.7 95.0 100

accuracy assessment sample sites

ge classification class (* ¼ incorrect

sification)

Gertenbach-Venter class (Fig.

1)

rse vegetation D

se vegetation D

rse vegetation D

rse vegetation D

e, dry A

rse vegetation * A

with sparse vegetation A

rse vegetation H

e, dry * D

rse vegetation E

se vegetation E

rse vegetation B

se vegetation * C

rse vegetation * A

rse vegetation * A

, very sparse vegetation A

se vegetation D

rse vegetation G

rse vegetation A

, very sparse vegetation G

rse vegetation G

rse vegetation F

grassland F

rse vegetation J

se vegetation L

se vegetation L

se vegetation D
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Table 5
Comparison between the geological fertility map of Kruger National Park and the image processing classification of vegetation into geological fertility zones based on a

random sample of locations.

Geology map Landsat classification correctly classified points MODIS classification correctly classified points

High fertility 104 sample points 80 ( ¼ 77%) 68 ( ¼ 65%)

Low fertility 152 sample points 130 ( ¼ 86%) 103 ( ¼ 68%)

Totals 256 sample points 210 ( ¼ 82%) 171( ¼ 67%)
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Figs. 3c and 2b). The Landsat vegetation mapping correctly
assigned 82% of the random points used in accuracy assessment
into their respective high and low fertility zones of the park
(Table 5), with an overall KHAT (K^) statistic of 0.75, indicating
that it avoided 75% of the errors that a completely random
classification would generate. The spatially more homogenous
low fertility zone was better mapped by the Landsat mapping,
with 86% accuracy compared to 77% for the spatially more
fragmented high fertility zone.

The results of vegetation mapping using the rain season MODIS
image are shown in Figs. 4b and c. Like the Landsat imagery,
vegetation mapping using the MODIS image was unable to separate
the 14 Gertenbach-Venter vegetation classes but was able to
distinguish between the high fertility and low fertility zones of
KNP, with 67% overall accuracy (Table 5). However, unlike the
mapping results from the Landsat imagery, MODIS mapping was
only marginally more accurate in correctly assigning the random
points to the spatially more homogenous low fertility zone (68% of
the random pixels) compared to the spatially more fragmented high
fertility zone (65% of the random pixels), which can be attributed to
the lower spatial resolution of MODIS in that on the lower (250 m)
MODIS spatial resolution, some vegetation on linear and isolated
small patches of the high and low fertility zones (see Fig. 2b) could
not be mapped as distinct from that in the surrounding fertility zone,
compared to the case with the higher (30 m) Landsat TM/ETM+
spatial resolution. The MODIS vegetation mapping with an overall
accuracy of 67% avoided only 57% of the errors that a completely
random classification would generate (K^ ¼ 0.57). However, the
accuracy of the MODIS mapping was not significantly different from
that of the Landsat mapping (w2

¼ 0.1108, P 4 0.05), which can be
attributed to the fact that linear and isolated small patches of the
high and low fertility zones are only a small fraction of the respective
contiguous and larger zones in their category (Fig. 2b).

Therefore, vegetation mapping using Landsat TM and MODIS
imagery of the summer (rain season) period when vegetation is at
high productivity showed that the vegetation of KNP is not separable
on the basis of the 14 class Gertenbach-Venter classification scheme
(Fig. 1) that uses dominant tree species for class definition (Table 1).
However, the 14 classes are also related to the underlying geology of
the park (compare Figs. 1 and 2) and from the results of this work
the vegetation of KNP can reasonably be delineated (accuracies of
67-82%) using Landsat and MODIS imagery on the basis of geologic
fertility as shown in Figs. 3 and 4, using image processing techniques
that differentiate vegetation density and vigour. This implies that the
underlying geology of KNP has a strong influence on vegetation
community structure and density and, thereby, intensity of
reflectance in the visible-mid infrared spectral regions, which can
be detected by moderately to high spatial resolution sensors
detecting reflected electromagnetic radiation with broad spectral
resolution in the visible, near and mid infrared spectral regions.
Discussion

The low fertility and high fertility substrates of KNP, through
edaphic and landscape characteristics, influence the vegetation
structure and density to a sufficiently strong extent that the
spectral reflectance characteristics between the two zones are
distinguishable on multispectral remotely sensed imagery, as
shown in this study. The soils of the high fertility zone, derived
from basic rocks (including basalts; Fig. 2), are fine textured and
support mainly multiple-stemmed shrubs, whereas the low
fertility zone’s soils (parent lithology being granitic gneiss, etc)
are coarse-textured, supporting mixed savanna woodlands (Fraser
et al. 1987). These are the contrasting tree community structures
that are distinguishable on multispectral images. The ability to
map the high fertility and low fertility vegetation zones of KNP
from remotely sensed imagery is significant for monitoring the
park’s vegetation, because a number of ecological analyses of
relevance to conservation management of the park have used the
contrast between the two, or the influence of either or both. In a
study of long-term change in woody vegetation cover (trees and
shrubs combined) in the park, Eckhardt et al. (2000) established
that woody cover increased by 12% on granite (low fertility)
substrates but decreased by 64% in basalt (high fertility) areas
between 1940 and 1998, the decline in large trees was attributed
to the interaction between regular, frequent fires and utilisation
by elephants. The severe changes in tree density on the basaltic
plains in KNP are a cause for concern (Brits et al. 2002). The low-
versus high-fertility zone contrast also has implications for fire
frequency in the park. According to van Wilgen et al. (2000), fires
tend to be more frequent in the southwest (low fertility) section of
the park compared to the high fertility southeast partly because
the low nutrient status of the soils in the southwest section
results in relatively low grazing pressure, resulting in grass fuels
accumulating during the rain season, in contrast with the high
fertility (basalt substrate) southeast section where grasses are
more palatable and tend to be heavily grazed.

The low separability of the vegetation species based Gerten-
bach-Venter vegetation zones of KNP (Table 1) on broad band
multispectral imagery such as Landsat TM and MODIS is
attributable partly to the spectral resolution of the Landsat
Thematic Mapper (TM) and the MODIS sensor, collectively with
broad bands in the visible, near and mid infrared spectral regions
that are unable to differentiate tree species spectral reflectance,
and partly to the overlaps in species composition of the vegetation
zones. Higher spectral resolution hyperspectral imagery processed
using sub-pixel classification techniques potentially could differ-
entiate the trees species spectrally, but would probably still not
reproduce the vegetation zones because of the species composi-
tion overlaps. For example, vegetation zones D, G, J, K, and M
(Table 1) have one common tree species, Cholophospermum

mopane, while zones A, D, L and M all have Combretum species
in common (with zone C being ‘mixed’). Therefore, out of the 14
zones, 7 zones (A, C, D, G, J, K, L, and M) or 50% of the vegetation
types are of mixed species composition. Although the tree species
which these vegetation zones have in common occur in different
abundances and in combination with other species, the general-
ised spectral signature on the broad spectral ranges of multi-
spectral imagery results in low separability. This low spectral
separability due to common species in the vegetation zones of
KNP explains why the vegetation was only broadly distinguishable



ARTICLE IN PRESS

C. Munyati, T. Ratshibvumo / Journal for Nature Conservation 18 (2010) 169–179178
on the basis of geologic fertility (Figs. 3 and 4). For broadly defined
habitat types, the results from this study are comparable with
results from similar broad habitat type mapping studies using
remote sensing in similar savanna environments (e.g. Ringrose
et al. 2003).

Using the 85% minimum accuracy threshold for Level I
mapping by the 2000 South African National Land Cover
(NLC2000) project (Fairbanks et al. 2000), the Landsat image
classification accuracy of 89.1% makes the methodology employed
in distinguishing the high and low geological fertility zones of
KNP in this study sufficiently reliable, making the results
indicative of the potential of monitoring the habitats of the park
using remote sensing on the basis of this broad geological fertility
stratification. The Landsat image dates utilised, though from
different months (November, December, February; Table 2), were
mostly from the same (2006/2007) rain season, differing only in
terms of the cumulative amount of rainfall. The November to early
December period is towards the start of the rain season, hence the
presence of dry grass and burn scars (burn scars were incorpo-
rated into the dry grassland class) in the image scenes (scene 169-
76 in Fig. 3a) and because the rains were rather low and ended
early in the 2006/2007 season, the February 2007 image
acquisition period of two of the Landsat images used was
equivalent to the November-December 2006 period in that by
then some of the grass had dried out. The MODIS image was from
the same period of the 2006/2007 rain season as most of the
Landsat images, making the results of the vegetation mapping
using the MODIS image comparable. There also was a burn scar on
the MODIS scene (compare Figs. 4a and 3a).

Sensor differences for the Landsat images utilised have little
effect on the results because the same multispectral bands on
Landsat TM and ETM+ images (visible, near- and mid-infrared
bands) were used, and with respect to these bands (apart from
calibration) there have been no changes in spatial or spectral
resolution between the TM and ETM+ sensors (Lillesand et al.
2004) which were the two sensor characteristics that were central
to the analysis in this study. Differential atmospheric effects on
the different Landsat image dates had little effect on the accuracy
of the results because images from different dates were processed
separately. In image classification involving a multidate Landsat
TM image data set, as long as the training data for the
classification are separately derived from the respective images
being classified, as was the case in this work, atmospheric
correction is unnessesary (Song et al. 2001) and, therefore,
differential atmospheric effects (scattering and absorption) have
little effect on the analysis. The eigen images selected for further
use in vegetation mapping from the Landsat images (Table 3;
Fig. 3b) were appropriate. PCA is (inherently) scene dependent
(Eklundh & Singh 1993), and different factor loadings for the same
variables (TM bands in this case) can result from different scenes,
which need to be interpreted as appropriate to determine
usefulness for the particular analysis (Call et al. 2003; Conese
et al. 1988, including minority pixels of interest (Cheng et al.
2006). Woody vegetation cover in the sections depicted by the
two principal component images is unlikely to have changed
between the two successive rain season dates of the images used
in deriving them.

The large north-south spatial dimension of KNP implies that
using the high spatial resolution low swath width images from
sensors on satellites such as SPOT, IKONOS, OrbView, QuickBird,
etc, though likely to result in greater spatial detail of vegetation in
large protected areas like KNP, would present even more synoptic
coverage and date difference difficulties than those encountered
in this study (illustrated in Fig. 3a). There is scope for the
combined use of such high spatial resolution imagery as
supplement to large swath width, high temporal frequency, low
spatial resolution imagery such MODIS in habitat monitoring for
large protected savanna areas in a two scale analysis framework;
using the low spatial resolution imagery as indicator of sections of
habitat to study at greater detail. In Kruger National Park, MODIS
imagery is already routinely utilised to monitor fires, using two
images a day (KNP GIS Section, 2008, personal communication),
which could be adopted by savanna protected area authorities in
the rest of Africa when technical facilities are availed (e.g. there
are MODIS imagery receiving stations in South Africa and none in
much of the rest of Africa). As shown by this study broad scale
vegetation zone mapping for large savanna habitats can be
accomplished using common image processing algorithms backed
by ecological knowledge of the habitats represented, through
careful selection of sensor, image processing method and timing
of imaging acquisition period. The resulting habitat mapping is
potentially useful in the management of the protected areas in
enabling rapid update of habitat state and quantifying the spatial
changes for purposes of possible management intervention as
deemed necessary. There is, therefore, potential for adoption of
such routine habitat mapping and monitoring using remote
sensing and GIS in the conservation of large protected savanna
areas.
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