
Computers & Geosciences 36 (2010) 1060–1068
Contents lists available at ScienceDirect
Computers & Geosciences
0098-30

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/cageo
Sharing geoscience algorithms in a Web service-oriented environment
(GRASS GIS example)
Xiaoyan Li, Liping Di n, Weiguo Han, Peisheng Zhao, Upendra Dadi

Center for Spatial Information Science and Systems (CSISS), George Mason University, 10517 Braddock Rd, Fairfax, VA 22032, USA
a r t i c l e i n f o

Article history:

Received 13 May 2009

Received in revised form

21 March 2010

Accepted 26 March 2010

Keywords:

Geospatial Web service

GRASS GIS

Service granularity

WSDL description

Concurrent processes

Clustered deployment
04/$ - see front matter & 2010 Elsevier Ltd. A

016/j.cageo.2010.03.004

esponding author. Tel.: +1 301 982 0795; fax

ail addresses: nmg_lxy@hotmail.com (X. Li), l
a b s t r a c t

Effective use of the large amounts of geospatial data available for geospatial research and applications is

needed. In this paper, the emerging SOAP-based Web service technologies have been used to develop a

large number of standard compliant, chainable geospatial Web services, using existing geospatial

modules in software systems or specific geoscientific algorithms. A prototype for wrapping legacy

software modules or geoscientific algorithms into loosely coupled Web services is proposed from an

implementation viewpoint. Module development for Web services adheres to the Open GIS Consortium

(OGC) geospatial implementation and the World Wide Web consortium (W3C) standards. The Web

service interfaces are designed using Web Services Description Language (WSDL) documents. This

paper presents how the granularity of an individual existing geospatial service module used by other

geoscientific workflows is decided. A treatment of concurrence processes and clustered deployment of

Web services is used to overcome multi-user access and network speed limit problems. This endeavor

should allow extensive use of geoscientific algorithms and geospatial data.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The rapid development of network technology has led to an
explosion of data and information. For example, the National
Aeronautics and Space Administration (NASA)’s Earth Observing
System (EOS) satellites alone generate more than 3 terabytes (TB)
of interdisciplinary earth system science data daily (NASA, 2007).
Large volumes of geospatial data are archived at a variety of levels
of processing. These Earth surface observation can be used for
many purposes, among them are hydrological analysis, wildfire
prediction, air pollution monitoring, water and land resource
management and agricultural production estimation.

1.1. The problem domain

Each year a massive amount of funding is spent to collect,
process, manage, and publish large amounts of geospatial data,
but large amounts of the data have not been studied yet, for
several reasons. Data processing is an additional burden and
requires extensive processing time. The users are not familiar
with the data format. The traditional research systems may
involve high costs. One of the biggest problems is how to make
the geospatial data readily available to scientists, policy makers,
and the general public.
ll rights reserved.

: +1 301 345 5492.

di@gmu.edu (L. Di).
The accumulating data should be used effectively for geospa-
tial research and applications. Geographic Information Systems
(GIS) have come to be an indispensable tool for geospatial analysis
and interpretation. They help the users to analyze, manage, and
interpret spatial data. They facilitate geographic analysis and
geographic modeling by scientists, policy makers, and the general
public. A variety of proprietary and open source GIS products have
been developed to meet practically all the basic needs of GIS
users. Some modules to solve specific geoscientific problems are
embedded into the GIS software. For most users, either the
processing functions they want to use may be just a small part of
a software package or some processing functions they need may
not be provided in that software package. Moreover, many
geoscientific algorithms or models use earth observation surface
data to solve different kinds of earth sciences problems. Generally,
these geoscientific algorithms or models created by different
specialists are so complex that the users require considerable
time to learn how to use them. Traditionally, these geospatial
modules or models are developed and used on a local machine.
This situation limits the use of geospatial algorithms or models,
and potentially limits the use of geospatial data in modeling and
analysis. The development of Web service technologies and new
interoperability standards provides a solution to the above
problems. The use of Web service technologies fulfills two crucial
roles: the interoperability of Web services accelerates the sharing
of spatial data and information by applications on different
platforms, and the modularity of Web services promotes the
sharing of specific geospatial functions by a wide range of users.

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2010.03.004
mailto:nmg_lxy@hotmail.com
mailto:ldi@gmu.edu
dx.doi.org/10.1016/j.cageo.2010.03.004

X. Li et al. / Computers & Geosciences 36 (2010) 1060–1068 1061
1.2. Interoperability standards for Web services

Web services are implemented by adopting a collection of
communication standards for the global information society. The
most critical technologies for implementation of Web services are
eXtensible Markup Language (XML) (Bray et al., 2008), Simple
Object Access Protocol (SOAP) (Mitra and Lafon, 2007), Web
Services Description Language (WSDL) (Christensen et al., 2001),
and universal description, discovery and integration (UDDI)
(OASIS, 2004). At its most abstract level, a Web service consists
of an XML document sent to and/or received from a remote
software program (Newcomer, 2002). A service requester delivers
a request message in the form of an XML document to a Web
service and receives a response message in the form of an XML
document from the Web service. XML hides the details of the
underlying transport protocols and provides a platform-indepen-
dent structured information format (Zhao et al., 2007). SOAP can
encode messages to be exchanged between service requesters and
providers. It provides a standard and simple way to structure XML
messages. WSDL is an XML-based schema for describing the
public interface (input/output parameters, and functionality) of a
Web service in a standard and extensible manner. It is not
intended for humans to read. It is generally used to support
interoperable machine-to-machine interaction. Some information
can be obtained from a WSDL document, including the data
types to be exchanged, the operations offered, the protocol used,
as well as the name and location of the Web service. UDDI
is a protocol for publishing and discovering metadata about
Web services. It allows the service provider to register a
Web service in the Catalog Service for the Web (CSW) and
facilitates the service requester’s discovery and access to a Web
service.

It is worth differentiating geospatial Web services as defined
by the Open GIS Consortium (OGC) from Web services in the
e-business world. OGC geospatial Web services have been devel-
oped in parallel with the evolution of Web services defined by the
World Wide Web Consortium (W3C) and the organization for
the advancement of structured information standards (OASIS).
The geospatial Web services discussed in this paper are
implemented using OGC and W3C standards. The reason to
choose OGC standards is that OGC is the only international
organization dedicated to develop geospatial implementation
standards consistent with the international organization for
standardization (ISO), the federal geographic data committee
(FGDC), and the International Committee for information tech-
nology standards (INCITS), and other abstract or content stan-
dards. OGC standards have been fully tested in both NASA’s and
other data providers’ environments. OGC specifications are widely
used by geospatial communities for sharing data and resources
and are becoming ISO standards (Deng and Di, 2009). When there
is no relevant OGC standard, W3C Web services standards will be
adopted.

In a broader sense, geospatial Web services embrace Web
services that handle geospatial data and provide services in
processing geospatial data (Zhao et al., 2007). OGC has published
a series of geospatial Web services specifications for data sharing
and processing. The Web Map Service (WMS), Web Feature
Service (WFS), and Web Coverage Service (WCS) standards are
widely used over the Web. Use of these services makes geospatial
data more easily available. For clarity, this paper refers only to the
customized geospatial Web services complete certain operations
as ‘‘Web services’’. Most geospatial Web services that have been
implemented are classified as ‘‘processing services’’, a taxonomic
group following ISO/DIS 19119 (ISO/TC 211, 2005). Geoprocessing
algorithms can be utilized effectively and shared using the Web
service technologies.
2. GRASS GIS to Web

The geographic resources analysis support system (GRASS) is
an open source geographic information system (GIS) with more
than 350 modules for management, processing, analysis and
visualization of georeferenced data (Neteler and Mitasova, 2008).
It is widely used by universities, government offices, and non-
profit or commercial organizations throughout the world. GRASS
GIS contains modules that can be used for scientific analysis of
geospatial data and solving geospatial problems in many areas, for
example, soil modeling, hydrological modeling, wildfire spread
simulation, and landslide risk mapping. With the increase in the
number and variety of contributions to it, GRASS is expanding,
improving its applications in its traditional fields and attracting
researchers from a wide range of fields.

2.1. Review of previous studies

Some systems based on GRASS GIS functionality provide
geospatial analysis through the Web to meet user needs for a
variety of fields. The first prototype for sharing geospatial
information by connecting GRASS GIS software with the World
Wide Web, GRASSLinks (GRASSLinks, 2002), was developed at the
research program in environmental planning and GIS (REGIS), at
the University of California, Berkeley (Huse, 1995). It enables
execution of sophisticated GRASS GIS functionalities from a Web
browser. GRASSLinks requires that the data be stored in the
GRASS GIS format in one projection and coordinate system. It uses
HTML forms to submit the commands to the server, and responds
and displays the output maps on the Web browser. Other systems
have been designed to provide technical solutions for online
access to GRASS data and functionality by integrating GRASS GIS
and other open source and free software tools into a Web based
client–server environment (Hess, 2002; Raghavan et al., 2002;
Blazek and Nardelli, 2004; Cannata, 2006). These early systems
are not interoperable and not compliant with open standards,
making them available only on the server where each was
implemented. Also public use is limited by the requirement for a
particular data format.

One Web service implementation based on GRASS GIS soft-
ware can be found in the Kepler workflow management system
(Ludascher et al., 2006). A two-step approach in constructing
geospatial processing workflows is proposed in that system. First,
simple conceptual workflows are composed. The validated
conceptual workflows are then transformed automatically into
executable workflows using the information embedded in GRASS
GIS command line modules. The Kepler’s approach aims at using
command line modules in scientific workflow systems. Some
efforts have been made to use GRASS GIS software functionality to
provide geospatial processing to the Internet through OGC’s Web
Processing Service (WPS) standards (Schut, 2007). One example is
the Python Web Processing Service (PyWPS) (PyWPS, 2009).
PyWPS was originally done to connect GRASS GIS and the Web
but it implements OGC’s WPS standard (Cepicky and Becchi,
2007). Another example, currently under development, provides
GRASS GIS functionalities through 521 North’s WPS implementa-
tion, with a special focus on creating a semi-automatic
approach for generating WPS interface descriptions for each GIS
functionality (Brauner, 2008).

2.2. Current activities

Although the systems mentioned above have made it possible
to provide GRASS GIS functionality through the Web, converting
the modules in GRASS GIS into geospatial Web service modules is

X. Li et al. / Computers & Geosciences 36 (2010) 1060–10681062
of value. There would be considerably more value if these geo-
spatial Web services could be dynamically chained to construct
geoprocessing models. The center for spatial information science
and systems (CSISS) at George Mason University had built a
prototype Web service platform on top of the GRASS GIS. A group
of geospatial Web services accessed from the command line had
been developed (Dadi and Di, 2009). Present activities involve
the use of the modularity of Web services to help implement
interoperable communication between different systems, not
merely exposing the functionality of existing geospatial software
as Web services. What make this work special and different from
all the other work is that the Web services are SOAP-based, each
Web service has a WSDL description, and the service input and
output are accessible network points, uniform resource locators
(URLs). As a result, the new geospatial Web services can be used
easily and invoked independently by any client.

In this paper, a typical geospatial Web services implementa-
tion adapts the existing modules in GRASS GIS software: general
commands, imagery commands, raster commands, and vector
commands (Geospatial Web Services Manual, 2010). All these
Web services have been categorized according to the OGC
standard service type taxonomy and registered in the CSW, so
that they can be easily found for use. The service classification
uses standard or proprietary taxonomies to assign a class to a
service, in order to indicate service functionalities explicitly and
facilitate service discovery (Di et al., 2007; Bai et al., 2009). The
name of every service is as simple as possible, semantically
corresponding to the lowest level of the taxonomic hierarchical
structure. The full taxonomic hierarchies for each service have
been automatically included as part of the registration. While
most of the geospatial Web services implementations are based
on GRASS GIS modules, we believe the approach is applicable to
other geoscientific algorithms or models as well.
3. Example implementaion

The functional sizes of individual GRASS service modules are
an important factor affecting their flexibility, applicability, and
reusability in different geospatial Web service models (Di, 2004).
The creation of Web services in the early CSISS work (Dadi and Di,
2009) was based mainly on the command level, as this is the level
of the GRASS functional units. At this level, to do a special task
requires combining several Web services through a workflow
manager, such as the BPEL engines (Zhao et al., 2007). There are
two constraints. If a Web service module’s functionality is too
small, for example if it is at the command level, it will not be self-
contained. If too many functions are integrated into a single
service module, the service module will be reused less than a
smaller but more self-contained module. In general, complexity
and granularity must be balanced. All service modules are
designed with several points in mind. First, they are as reusable
as possible for dynamically constructing executable service
chains. Second, they are loosely coupled, so that they can be
easily used by other geoscientific workflows. Third, they facilitate
easy construction of a service chain; one service’s output could be
the input of another service. The following is an example of a Web
service for extracting stream networks from digital elevation
model (DEM) data.

3.1. Implementation of Web services

Building Web services may be not easy for those users who are
inexperienced with Web service technologies. There are many
ways to build Web services. Theoretically, any programming
language can be used in developing Web services. Web services
can be created using two different approaches: top-down
development and bottom-up development. When creating a
Web service using a top-down approach, a developer first designs
a WSDL file to describe the Web service interface and then
implements the actual service. When creating a Web service using
a bottom-up approach, a developer first develops a Web service
based on the existing application and then generates the interface
description. Bottom-up Web service development is typically
faster and easier. However, because top-down Web service
development begins by writing the WSDL file, it provides better
control over the Web service definitions.

Many Web service toolkits greatly simplify the process of
building Web services. One such toolkit is the Apache Axis, an
open source SOAP server and client (Apache Axis, 2006). Apache
Axis lets developers use the Java language to build Web services.
It is often used with the open source Tomcat application server
(Apache Tomcat, 2009). Axis takes the complexity out of Web
services implementation by allowing the developer to build Web
services using ‘‘WSDL2Java’’ and ‘‘Java2WSDL’’tools. It facilitates
generation of all the codes needed to develop a Web service
including service binding and skeleton code for the server side.
The program codes generated are placed in the pre-defined
package directory. After entering the codes into the service-
binding Java class to implement the required functionality, one
can publish the Web service using Apache Axis running on
Tomcat application server.
3.2. An example of stream extraction Web service

Stream networks are important features for hydrologic
modeling, geomorphologic analysis of the landscape, and many
other applications (Luo et al., in press). Identifying stream
networks using DEM data is a systematic procedure, involving
data collection, data processing and format conversion, algorithm
analysis, algorithm execution, result visualization and result
comparison. In GRASS, the ‘‘r.watershed’’ module uses the D8
single flow direction (SFD) algorithm (O’Callaghan and Mark,
1984) to move flow into a single downslope cell, and the least-
cost search algorithm (Ehlschlaeger, 1989) to traverse the
elevation surface to the outlet (Neteler and Mitasova, 2008).
Stream networks can also be extracted from DEM data using other
GRASS modules based on different algorithms. The ‘‘r.terraflow’’
module offers a multiple flow direction (MFD) algorithm for very
large terrains (Arge et al., 2003). The ‘‘r.flow’’ module uses the
vector-grid (D-infinite) algorithm (Mitasova and Hofierka, 1993;
Mitasova et al., 1996) for a DEM without pits or flat areas. The
procedure to derive a stream network from DEM data using a set
of GRASS command based on the SFD algorithm is as follows:
(1)
 Use the ‘‘r.in.gdal’’ command to import and convert raster data
(e.g., DEM) to the internal GRASS raster format. Note that the
recent GRASS Version 6.4.0RC5 offers the ‘‘r.external’’ com-
mand, which just links an external data set into GRASS so that
import time is drastically reduced (GRASS GIS 6.4.0svn
Reference Manual, 2008).
(2)
 Use the ‘‘g.region’’ command to set the current region to
match the input raster data’s extent and resolution.
(3)
 Use the ‘‘r.watershed’’ command to calculate the flow
accumulation from the DEM data. The flow accumulation
value computed by ‘‘r.watershed’’ for each cell represents the
amount of overland flow that traverses the cell.
(4)
 Use ‘‘r.mapcalc’’ map algebra to threshold flow accumulation.
More detailed stream networks can be extracted from flow
accumulation by setting a threshold parameter on the flow
accumulation map. Since the cells in streams contain either a

X. Li et al. / Computers & Geosciences 36 (2010) 1060–1068 1063
value of ‘‘1’’ or no data, only those cells with flow accumula-
tions greater than the threshold value will be considered
a part of the stream; all other cells are assigned as NULL value.
(5)
 Use the ‘‘r.out.gdal’’ command to export the resulting streams
in GeoTIFF format or use the ‘‘r.to.vect’’ and ‘‘v.out.ogr’’
commands to export the result in ‘‘GML’’ or ‘‘ESRI Shapefile’’
format. Use ‘‘r.thin’’ to thin the resulting raster flow lines
before converting raster lines to vector. The raster representa-
tion of the extracted streams is thinned into the width of
a single cell; the thinning algorithm leads to a better result.
The ‘‘top-down’’ approach is used to develop a Web service. It
starts by designing the interface description. A large fraction of
describing a service is describing the input and output parameters
to be exchanged. The basic point is that the descriptions of most
input parameters should correspond to the parameters and flags
of the original GRASS commands. However, only the key
operational parameters, the requestors must specify, are kept;
other controls and optional parameters of a GRASS command are
set to default values or ignored for simplicity. The number of
input parameters should be reduced to a minimum for an
interface that is designed to be easy to use.

Since much geospatial data can be retrieved from a URL using
the WCS, WMS and WFS services over the Web, the Web services
here are designed to read the available data coming from a URL.
Data inputs may come from various sources with different
formats. Considering the style of coding to be different for
different data inputs, the default data input is specified as a
single-band; one raster layer will be generated for a single-band
data input while multiple raster layers for a multi-band data input
will be generated by GRASS. GeoTIFF and GML, which are
supported by many data format conversion tools and transforma-
tion engines for many data service platforms, and are the best
Web geodata interchange formats. The default data formats in our
implementation in the Web service description file are GeoTIFF
for raster data and GML for vector data. The output parameters of
a Web service are specified as two categories of variables: result
URLs and result format strings. All input and output parameters in
a WSDL file are defined as elements within a complex type. The
WSDL schema of stream extraction Web service describes four
input parameters and two output parameters. The four input
parameters are DEM data URL defined as an xsd:anyURI type, flow
accumulation threshold defined as an xsd:int type, the
enumeration type that represents resulting output format, ‘‘out-

putFormatType’’ (there are three options: GeoTIFF, TIFF, and
ESRI_Shapefile), and the enumeration type ‘‘outputGeoTiffType’’
that represents output GeoTIFF file type (there are eleven options:
Byte, Int16, UInt16, UInt32, Int32, Float32, Float64, CInt16, CInt32,
CFloat32, and CFloat64) if the resulting output format is specified
as GeoTIFF. The two output parameters are the xsd:anyURI type
‘‘returnURL’’ that represents the URL of the resulting stream
map, and the xsd:string type ‘‘returnFormat’’ that represents
format of the output map. A service consumer can write or use
a Web service client (e.g. free open source Web service
testing tool ‘‘soapUI’’ (soapUI, 2010)) to read interface details
of a Web service. The scheme in Fig. 1 is generated from
parsing the WSDL file of the stream extraction Web service
using our own Web service client. Among its contents are the
service name (Raster_StreamExtractionService), operation name
(flowDirectionBasedMethod_GRASS), and input parameters and
their types.

Completion of the stream extraction operation ‘‘flowDirection-

BasedMethod_GRASS’’ needs only two input parameters: sourceURL

(DEM data URL), flowaccum_threshold (flow accumulation thresh-
old), and selection of another two parameters: outputFormatType
and outputGeoTiffType. All the other parameters passed by each
command are encapsulated in the service. This operation
completely hides the details of the implementation of a GRASS
command set, not requiring the user to learn the usage of GRASS
commands (syntax, flags, and parameters).
3.3. Invocation of Web services

Since the geospatial Web services created are standard SOAP-
based services, they can be invoked and consumed by anyone
with their own client applications. The CSISS team has developed
a fully extensible online analysis system (GeOnAS) for using
standards-compliant OGC Web services to discover, retrieve,
analyze, and visualize geospatial and other network data (Di
et al., 2007). All GRASS GIS-based Web services have been
registered in the CSISS CSW and categorized according to OGC
standard service type taxonomy, so that they can be easily
searched for use. GeOnAS allows different Web services modules
to run in parallel and displays the service outputs on its map
panel. It also supports asynchronous Web service invocation, so
that the users need not wait for the responses after sending the
requests. The task submitted will be displayed in the task tree of
GeOnAS’ project panel. This asynchronous invocation method is
especially useful for long-running processes. The users can
continue to do other things or save the current project to their
local machine after entering personal information including email
address, so that later they can get an email notification when the
task has finished.

The CSISS data server provides Landsat (name indicating
Land+Satellite), Moderate resolution imaging spectroradiometer
(MODIS), advanced spaceborne thermal emission and reflection
radiometer (ASTER), and shuttle radar topography mission
(SRTM) data products for searching and downloading. The
following example shows that a non-specialist can easily use
GeOnAS to discover geospatial data and access a Web service to
do online analysis. To invoke the stream extraction Web service,
one ASTER DEM data (ASTGTM_N43W123_dem.tif, the data used
here is at 30 meter/pixel resolution in GeoTIFF format, the
coordinates of the lower-left corner of this tile are 431 north
latitude and 1231 west longitude) with a specified Bounding Box
(between 43.301 and 44.001 latitude and between �122.801 and
�122.001 longitude) is searched and selected for analysis from
the data server. The ASTER DEM data searched can be added into
GeOnAS and displayed on the map panel of GeOnAS, shown in
Fig. 2. The streams database (tiger:usa_river_stream) retrieved
from a WFS server (WFS, 2009) is added into the current project
panel and displayed on the map panel. Fig. 2 represents the actual
streams as blue lines.

The stream extraction Web service has two inputs to control
the stream results: the resolution of the DEM data, and the flow
accumulation threshold. The resolution of DEM data can be
re-specified using the WCS after the data have been selected from
the data server. Here, the DEM data resolution remains 30 m. End
users can easily change the flow accumulation threshold value to
regenerate the streams through GeOnAS. Stream results can be
added into GeOnAS and directly displayed to the users, and the
users can visually compare the results obtained using different
input parameters. The results also can be downloaded to the
user’s local computer for further processing. Fig. 3 shows a screen
capture of the stream result for the study area using a flow
accumulation threshold value of 2000. Fig. 4 shows a screen
capture of the stream result using the flow accumulation
threshold value of 20000. For display purposes, a shaded relief
map is generated for background in Figs. 3 and 4 by invoking
through GeOnAS another topographic shading Web service, which

ASTGTM_N43W123_dem.tif

Fig. 1. Interface details of stream extraction Web service.

Fig. 2. Main window of GeOnAS.

Fig. 3. Resultant stream network using flow accumulation threshold value of 2000.

X. Li et al. / Computers & Geosciences 36 (2010) 1060–10681064
is created based on the GRASS command ‘‘r.shaded.relief’’. For the
same boxed area and same DEM resolution, the resultant stream
network pattern in Fig. 3 includes smaller streams than the
resultant stream network pattern in Fig. 4. This is because the
20000-flow accumulation threshold is so large that some of the
smaller streams cannot be identified.

Fig. 4. Resultant stream network using flow accumulation threshold value of 20,000.

X. Li et al. / Computers & Geosciences 36 (2010) 1060–1068 1065
The stream result shown in Fig. 4 using a bigger flow
accumulation threshold value is consistent with a visual inspec-
tion of Fig. 2. We can see that the stream extraction Web service is
readily accessible through GeOnAS to almost anyone with an
Internet connection. In fact, the geoscientific research community
at most will benefit substantially from the use of Web service
technologies if an existing algorithm is wrapped and made
available as a Web service.
4. Implementation solutions and challenges

To implement customized geospatial Web services, the devel-
opers must determine which operations are to be published, how
to manage the intermediate and temporary file spaces, how to
achieve the best performance in a distributed environment, and
how to secure the system at large (Zhao et al., 2007). Several
challenging problems need to be solved.
4.1. Script execution process

The GRASS structure allows GRASS commands to be comple-
tely controlled from outside through scripts (Neteler and
Mitasova, 2008). Many geoscientific algorithms can be imple-
mented as command line programs. The core of programming
actually focuses on how to write a script file and how to execute
the scripts from within a Java program. The CSISS Web services
are coded in Java. When a Web service is invoked, a Java process is
created. The script file execution process is actually external to
the Java virtual machine.

The exec() method of the java.lang.Runtime class can be used
to call external programs or commands and manage processes
within a Java program. This method executes the specified
string command as a separate process (sub-process) with the
specified environment (array of strings) and working directory.
The actual processing first creates and opens a temporary file,
then, using the Bourne Shell (/bin/sh), writes in the lines, which
include definitions of requisite environment variables and
command lines. The Runtime.exec() method executes this bash
shell script in a separate sub-process. Then, two separate threads
are created to handle the standard input stream and error stream.
The Process.getInputStream() method is used to get a buffered
input stream that is connected to the output of the sub-process,
The Process.getErrorStream() method is used to get the error
stream of the sub-process.

Subsequently, the waitFor() method in the Process class is used
to determine whether or not the current thread should wait.
If there is no error stream and the script file is executed
successfully, waitFor() returns the exit value 0, indicating that
the sub-process terminated normally. If the error stream contains
information about the error, the process will generate an
exception, and terminate script file execution.
4.2. Web service interface description

When Java Web services are built, the specifications in the
WSDL are translated into Java classes. Two Java classes for getting
and setting inputs or outputs will be created for the elements
whose types are ocomplexType4 in the WSDL. There are some
points to note for the encoding mapping from WSDL to Java classes.
(1)
 Null values:
some GRASS command parameters are optional. Java classes
generated from the WSDL should accept null values, so that
execution of the GRASS command from Java code can omit
such parameters if a Web service is called with null values.
Otherwise, execution will yield a validation error. Unadorned
element data types are defined as ‘‘xsd:float’’ and ‘‘xsd:int’’
map to Java primitive types (such as float or int). Java
primitive types cannot be null. The solution for this problem
is to set the nillable¼ ‘‘true’’ attribute to the parameter
elements. An xsd:int element with nillable¼ ‘‘true’’ maps to
the Java primitive wrapper class ‘‘java.lang.Integer’’. An
xsd:float element with nillable¼ ‘‘true’’ maps to ‘‘java.lang.-

Float’’. Java wrapper classes accept null values.

(2)
 Default values:

some GRASS command parameters have default values. In this
case, default values are provided in the definition of these
parameters in the WSDL. This allows clients to present the
default values to the users. The minOccurs¼ ‘‘0’’ attribute for
the element allows clients who do not want to change the
default value to leave it out completely.

X. Li et al. / Computers & Geosciences 36 (2010) 1060–10681066
(3)
 URL array:
some GRASS commands like the ‘‘i.image.mosaic’’ command
and the ‘‘r.patch’’ command can have multiple input data
items. An URL array data type is defined with the ‘‘maxOccurs’’
attribute to indicate the maximum number of occurrences of
the parameter element. Its default value is one. If the value is
greater than one, or unbounded, the element maps to a Java
array.
(4)
 Enumeration type:
the output format may be defined as an enumerated type. For
example, the parameter element ‘‘outputGeoTiffType’’ uses the
otype4 attribute as a reference to the oSimpleType4
‘‘GeoTiffFileType’’. A Java class ‘‘GeoTiffFileType’’ is generated
corresponding to this oSimpleType4 definition. An enu-
meration ‘‘outputGtiffType’’ is defined by restricting the
possible values (11 options) in the WSDL.
(5)
 Documentation:
to make the service descriptions more understandable by
requestors, documentation is added into the WSDL to describe
services, operations, and input–output parameters. An op-
tional odocumentation4 element serves as a container for
human-readable documentation in the WSDL specification.
The service and operation descriptions can be added directly
into a odocumentation4yo/documentation4 tag. The
documentation for data type elements can be handled by
using oannotation4odocumentation4yodocumentatio-

n4o/annotation4 tags with the necessary documentation.
The documentation is interpreted, for the end users by the
client-side application, allowing the users to get the informa-
tion they need to understand what the service does, what
operations are offered, and what data types must be provided.
4.3. Projection and coordinate management

GRASS is a collection of modules, which are run in a special
environment. To use GRASS commands in any script involves
setting a number of shell environment variables and properly
defining GRASS variables (GRASS GIS 6.4.0svn Reference Manual,
2010). In this paper, the variables are preceded by a dollar sign ($).
These variables $GISDBASE, $LOCATION, and $MAPSET are used to
store GRASS spatial data, organize the coordinate system, and to
set the map projection and geographical boundaries. A temporary
GRASS database directory (specified by the variable $GISDBASE)
that contains a temporary location and mapset must first be
automatically created before any geoscientific process is coded.
Each location must have a PERMANENT mapset. The PERMANENT
mapset contains some GRASS projection files (PROJ_INFO, PRO-
J_UNITS, WIND and DEFAULT_WIND). The GRASS projection
definition is stored in these GRASS projection files. To enhance
interoperability and ensure that Web services are independent of
platform, the projection information must be created without the
users/session having to use any explicit conversion steps. The
GRASS projection files of the PERMANENT mapset are created
automatically to predefine map projection and coordinate system
whenever the initial $GISDBASE, $LOCATION, $MAPSET are created.
Some parameters in these projection files—projection name,
datum name, ellipsoid name, projection type, projection units,
resolution, and extent of the project area will be given defaults.
The default map projection is latitude/longitude WGS84 (EPSG
code 4326), which is especially popular and commonly used in
many geoscientific applications.

Numerous sources of data are available for use, including the
data provided by the CSISS data server. It would be prettier to
reproject source data into latitude/longitude WGS84 prior to
invoking any geospatial Web services. Some OGC standards
compliant Web service implementations for exchanging geospatial
data such as CSISS WCS (GeoBrain, 2010) and GeoServer (GeoSer-
ver 2010) are able to reproject data from one geographic projection
to another. Users whose data are in different projections can use
these Web services to reproject into a common projection. The
‘‘r.in.gdal’’ and ‘‘v.in.ogr’’ commands are used to import data to
GRASS in the implementation described here. The ‘-oe’ flag is used
in these two commands to override the projection check. The
optional parameter ‘location’ is used to automatically create
projection information for the input data while creating the new
location. Completion of the script file containing the input
command will create the PROJ_INFO and the PROJ_UNITS files to
record the projection information associated with a current
location. Thus, the programs help automatically locating, accessing
and using disparate spatial data. The users do not need to know any
information about the projection or bounding box of the input data.
The programs are easy to use without session/user management.
If the projection information of the input data is not available and
a new GRASS location cannot be created automatically, a message
such like ‘‘A datum name was specified without transformation
parameters’’ occurs when reading the input stream of the script
execution sub-process, an exception with this message will be
thrown to a client, and the script execution will be stopped.

4.4. Error report handling

Error reports, which can deliver useful diagnostic information
to the users so that the users can find out what went wrong and
decide what to do for the next request, are very meaningful to the
Web service’s end-user. In addition to using the traditional Java
method of handling exceptions, an attempt is made to report the
error information to the client when an exception is generated
during any step of a shell script execution when Web services are
invoked. In a script execution sub-process, an exception will be
generated and Boolean False returned to the calling function in
the Java parent process if the command line is not executed
normally. The program running would be stopped after generat-
ing an exception. The error message being written to the error
stream should be sent to the client. The Web services in this
system are deployed with Apache Axis, which automatically turns
the exceptions into a SOAP fault. Non-axis clients cannot receive
custom Java exceptions. Instead an AxisFault is sent back to the
calling applications, so that the exceptions can be caught by
different types of clients (axis client calls or dynamic proxy).

The AxisFault comes from RemoteException, which has a
method ‘‘makeFault’’ that creates an AxisFault given a passed
exception. A new instance of AxisFault is created for each function
that executes a script in the Java parent process. The error
message is stored in a message string. If there is any failure in the
script execution sub-process, the return value of the executable
function is false. The corresponding fault string message with a
meaningful description of the error will result in an AxisFault

being sent to the client. These equivalent exceptions are also
caught when Axis faults are on the client side. The largest amount
of work is in the construction of proper, detailed Axis faults rather
than in wrapping exceptions. What errors could occur must be
anticipated and error information for shell script execution in
each step is specified.

4.5. Concurrent connection

Large numbers of diverse users may try to connect to the same
Web service or several different services at the same time.
A major challenge of this work is to overcome multi-user
access problems and network speed limits. GRASS itself supports

X. Li et al. / Computers & Geosciences 36 (2010) 1060–1068 1067
multiple concurrent user sessions. Two or more sessions, by either
the same user or different users, can execute GRASS on one CPU
(different terminal) at the same time. For the Web services
framework described here, all Web service requests are assumed
to be from the same user. Multiple combined scripts are executed
concurrently for the same user.
(1)
 Passing the environment variables
A set of GRASS scripts performs a specific geoscientific task.
The exec() method runs a script in a separate sub-process.
When the exec() call is complete, the child process ends. Its
environment will not be visible to any other child processes of
the parent process. If one script file is to interoperate with
other scripts, just like ‘‘co-processes’’ in the same Java parent
process, a set of identifiers for the independent environment
variables is required. A variant $env is defined to support
passing the environment variables to the child process in the
exec() method used. A ‘‘Workspace’’ class is created to provide
direct support for passing GRASS and environment variables
to the processes. This class contains the two functions to
set/get the GRASS environment variables array, which saves
all related GRASS variables and environment variables. The
values of all the parameter variables are pre-defined in a
properties file, which is read by an instance of the Java
Properties object. When a Java program calls the exec()
method, a Workspace object instance will be passed as an
argument into a child process from the Java parent process.
An array env[] in which all related environment variables have
been set for a command script using the Workspace function
also will be passed into this child process. The passing of a
Workspace object ensures the use of the same environment
variables for all child processes throughout a Web service
invocation. This implementation also allows the passing of
environment variables in a set of GRASS shell scripts being
executed for a Web service that has been invoked.
(2)
 Create a unique GRASS settings file
A GRASS settings file is specified by the environment variable
$GISRC. The GRASS settings file specifies where GRASS is
located in the system and where the GRASS database
(specified by the variable $GISDBASE), the GRASS location
(specified by the variable $LOCATION_NAME), and the GRASS
mapset (specified by the variable $MAPSET) are located in the
current process. This $GISRC file usually contains a couple of
environment variables that GRASS reads when GRASS exe-
cutes its commands. It will automatically be created in the
user’s home directory, specified by the variable $HOME, which
has been pre-defined before passing the environment vari-
ables. To allow concurrent Web service requests, each request,
that is to say each Java process, should create its own $GISRC

file when the initial environment variables are defined.
Otherwise, if the running environment for the GRASS
commands is not set properly, one script execution sub-
process triggered by a Web service request will stop another
from working. A unique $GISRC file should be created in the
user’s home directory ($HOME) by placing a random number
(constructed from the system date/time values and two-digit
randomly generated integers) in the file name. When this
$GISRC file is passed into the script file to execute, each GRASS
script file executed has its own GRASS database directory.
The ‘‘g.gisenv’’ command can be executed from a script file to
set $GISDBASE/$LOCATION_NAME/$MAPSET parameters in the
GRASS settings file for the current process. Most GRASS
modules would obtain the current GRASS variable settings
from the $GISRC file when they are executed. Subsequently,
‘‘g.gisenv set¼LOCATION_NAME¼ ’’ in the script file is used to
switch the current location or enter a new location.
(3)
 Clustered deployment
Another problem is the execution speed of GRASS-based Web
services. In general, the response time of Web services
depends mainly on the execution time for the GRASS
command line, the data size, the algorithm computing time,
and the speed of the Internet connection. Some requests can
take 1–2 min or more to return to the clients. The largest
amount of time is spent in importing data into GRASS using
the ‘‘r.in.gdal’’ command (From GRASS 6.4 onwards,
‘‘r.external’’ can be used to overcome this problem. It allows
a user to link an external GDAL supported raster file without
importing data into GRASS), calculating, and exporting the
result. If more requests come, more system resources will be
consumed, and running speed will become slower. To solve
this problem, all Web services are deployed in a clustered
environment to spread the workload among multiple proces-
sors in the cluster. The clustered environment provides more
capacity and high availability than a single server would
provide. Since our Web services are developed as stateless and
do not need user/session management, they can easily be
distributed in the cluster environment. The CSISS cluster uses
four machines, all of which have the same operating system,
run in the same environment, reside on the same subnet, and
have shared folders. Apache Axis can help balance loads. Each
node installs Axis with the Tomcat server. All geospatial Web
services are deployed on each node. Apache 2.2 or a later
version is installed on the head node to offer the ability to
balance traffic among multiple applications and redirect
incoming requests to the remaining node (Apache Module,
2010). Before all Web services are deployed in a clustered
environment, the Apache server on the head node and Axis
with the Tomcat server on the other three nodes must be
configured. The Apache server runs as a load balancer (for the
Web server) at the front-end to distribute traffic among
multiple Web application server nodes in the backend. The
external clients send traffic to a single IP address (one head
node). The load balancer splits incoming requests into
individual request at the deploying backend operational
application servers.
Many tests have proved that the cluster environment is faster
and more reliable than the corresponding non-distributed
application. There may be a bottleneck problem, with capacity
temporarily degraded if one of the application nodes goes down
for some reason, e.g. if the network connection fails or the load
balancer fails to redirect incoming requests to the remaining
nodes. Ways to provide higher availability for the load balancer
are needed.
5. Conclusions

A number of standard, interoperable, Web-executable geospatial
Web services have been developed to provide geospatial processing
and analysis based on GRASS GIS software or/and some existing
geoscientific algorithms for raster and vector data processing. All
these Web services can be readily used for research in any part of
the world. The major results of this paper are as follows:
(1)
 Implemented geospatial Web services will undoubtedly
improve the efficiency of geoscientific research and bring
the geoscientific algorithms or modules to the Web, thus
broadening its use. Compared to traditional research work-
flows, which are often standalone and trivial, users can access
the OGC standards-compliant Web service as easily as their
local PC’s.

X. Li et al. / Computers & Geosciences 36 (2010) 1060–10681068
(2)
 Use of the geospatial Web services dramatically and widely
encourages scientists and other potential users to use
geospatial data extensively.
(3)
 The technology developed in this paper can be applied to
other important research areas, for example natural disasters,
global warming and environmental control, and weather
modeling and agriculture management (actually, most spe-
cialized packages and more related research models will be
integrated into the system as the work going on and after its
completion).
Future work will focus on the management of process
innovation, network load balance monitoring, and especially on
distributed computing, to further resolve how to effectively
communicate with a client to avoid a server overload for long
running processes. Although clustered deployment and asynchro-
nous invocation of Web services support multiple concurrent
connections, the code should be more stable and robust.
Furthermore, extending service taxonomy is critical for Web
service classification and registration.
Acknowledgements

This work is supported by a grant from the National
Aeronautics and Space Administration (NASA) GeoBrain project
(HM1582-04-1-1021, PI: Dr. Liping Di). Special thanks to Dr. Barry
Schlesinger for his detailed comments on this paper.
References

Apache Axis, 2006. Web services—axis, version 1.4. The Apache Software
Foundation [accessed 11 May 2010].

Apache Module, 2010. Apache module mod_proxy_balancer version 2.2. The
Apache Software Foundation [accessed 11 May 2010].

Apache Tomcat, 2009. Apache Tomcat, version 6.0.26. The Apache Software
Foundation [accessed 11 May 2010].

Arge, L., Chase, J.S., Halpin, P., Toma, L., Vitter, J.S., Urban, D., Wickremesinghe, R.,
2003. Efficient flow computation on massive grid terrain datasets. Geoinfor-
matica 7 (4), 283–313, http://dx.doi.org/10.1023/A:1025526421410.

Bai, Y., Di, L., Wei, Y., 2009. A taxonomy of geospatial services for global service
discovery and interoperability. Computers & Geosciences 35 (4), 783–790,
doi:10.1016/j.cageo.2007.12.018.

Blazek, R., Nardelli, L., 2004. The GRASS server. In: Proceedings of the Free & Open
Source Software (FOSS)/Geographic Resources Analysis Support System
(GRASS) Users Conference 2004, Bangkok, Thailand, 8 pp. /http://www.
gisdevelopment.net/proceedings/fossgrass/papers/The%20GRASS%20Server.
pdfS, [accessed 11 May 2010].

Brauner, J., 2008. Providing GRASS with a Web Processing Service interface. In:
Pebesma, E., Bishr, M., Bartoschek, T. (Eds.), Proceedings of the Sixth
Geographic Information Days, IfGIprints Nr. 32. Institut fur Geoinformatik,
Munster, pp. 8 [accessed 11 May 2010].

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F. (Eds.), 2008.
Extensible Markup Language (XML) 1.0 (fifth edition). The World Wide Web
Consortium (W3C). /http://www.w3.org/TR/xml/S [accessed 11 May 2010].

Cannata, M., 2006. Linking GRASS with chameleon, geo-analysis on the Web.
Geographic Resources Analysis Support System (GRASS)/OSGeo-News 4, 9–13
[accessed 11 May 2010].

Cepicky, J., Becchi, L., 2007. Geospatial processing via Internet on remote
servers—PyWPS. OSGeo Journal 1, 39–42 [accessed 11 May 2010].

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S. (Eds.), 2001. Web
Services Description Language (WSDL) 1.1. The World Wide Web Consortium
(W3C). /http://www.w3.org/TR/wsdlS [accessed 11 May 2010].

Dadi, U., Di, L., 2009. Creating Web service interfaces and scientific workflows
using command line tools: a GRASS example. In: Proceedings of the 17th
International Conference on Geoinformatics, Fairfax, VA, USA, pp. 1–6.
10.1109/GEOINFORMATICS.2009.5293464.

Deng, M., Di, L., 2009. Building an online learning and research environment to
enhance use of geospatial data. International Journal of Spatial Data
Infrastructures Research 4, 77–95.

Di, L., 2004. GeoBrain-A Web services based geospatial knowledge building
system. In: Proceedings of NASA Earth Science Technology Conference 2004,
Palo Alto, CA, USA, 8 pp. CD-ROM. /http://esto.nasa.gov/conferences/
estc2004/papers/a1p5.pdfS [accessed 11 May 2010].

Di, L., Zhao, P., Han, W., Wei, Y., Li, X., 2007. GeoBrain Web service-based online
analysis system (GeOnAS). In: Proceedings of the NASA Earth Science
Technology Conference, College Park, MD, USA, 7 pp, CD-ROM. /http://esto.
nasa.gov/conferences/nstc2007/papers/di_liping_a2p2_nstc-07-0064.pdfS
[accessed 11 May 2010].

Ehlschlaeger, C., 1989. Using the AT search algorithm to develop hydrologic models
from digital elevation data. In: Proceedings of the International Geographic
Information Systems (IGIS) Symposium, Baltimore, MD, USA, pp. 275–281.

GeoBrain, 2010. NASA EOS Higher Education Alliance (NEHEA)—Geobrain
Products. Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA [accessed 11 May 2010].

GeoServer, 2010. GeoServer version 2.0.1. GNU General Public License [accessed 11
May 2010].

Geospatial Web Services Manual. Center for Spatial Information Science and
Systems, George Mason University, Fairfax, VA [accessed 11 May 2010].

GRASS GIS 6.4.0svn Reference Manual, 2008svn. r.external command. The Open
Source Geospatial Foundation [accessed 11 May 2010].

GRASS GIS 6.4.0svn Reference Manual, 2010svn. GRASS variables and environment
variables. The Open Source Geospatial Foundation , [accessed 11 May 2010].

GRASSLinks, 2002. OSU IPPC GRASSLinks 3.2beta: Public Access GIS. Oregon State
University’s Integrated Plant Protection Centre, Corvallis [accessed 11 May
2010].

Hess, S., 2002. GRASS on the Web. In: Proceedings of the Open Source Free
Software GIS–Geographic Resources Analysis Support System Users
Conference 2002, University of Trento, Italy, 14 pp. /http://www.ing.unitn.
it/�grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Hess_Sigrid.
pdfS [accessed 11 May 2010].

Huse, S.M., 1995. GRASSLinks: a new model for spatial information access for
environmental planning. Unpublished Ph.D. Dissertation, University of
California, Berkeley, CA, USA.

International Standards Organization/Technical Committee (ISO/TC) 211, 2005.
ISO 19119. Geographic Information–Services, 75, /http://www.iso.org/
iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39890S
[accessed 11 May 2010].

Ludascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao,
J., Zhao, Y., 2006. Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice & Experience 18 (10), 1039–1065,
doi:10.1002/cpe.994.

Luo, W., Li, X., Molloy, I., Di, L., Stepinski, T., Web service for extracting stream
networks from DEM data. GeoJournal on GIS and Built Environment, in press.

Mitasova, H., Hofierka, J., 1993. Interpolation by regularized spline with tension: II.
Application to terrain modelling and surface geometry analysis. Mathematical
Geology 25 (6), 657–669.

Mitasova, H., Hofierka, J., Zlocha, M., Iverson, L.R., 1996. Modelling
topographic potential for erosion and deposition using GIS. International
Journal of Geographical Information Science 10 (5), 629–641, http://dx.doi.org/
10.1080/02693799608902101.

Mitra, N., Lafon, Y. (Eds.), 2007. SOAP Version 1.2 Part 0: Primer (second edition).
The World Wide Web Consortium (W3C). /http://www.w3.org/TR/soap12-
part0/S [accessed 11 May 2010].

National Aeronautics and Space Administration (NASA), 2007. Earth system
science data resources: tapping into a wealth of data, information, and
services, NP-2007-11-859-GSFC, 71 pp. URL: /http://daac.ornl.gov/
ESSDR112007.pdfS [accessed 11 May 2010].

Neteler, M., Mitasova, H., 2008. Open Source GIS: A GRASS GIS Approach 3rd edn.
Springer, New York, USA 406pp.

Newcomer, E., 2002. Understanding Web Services: XML, WSDL, SOAP, and UDDI.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA 332pp.

O’Callaghan, J.F., Mark, D.M., 1984. The extraction of drainage networks from
digital elevation data. Computer Vision, Graphics, and Image Processing 28 (3),
323–344, http://dx.doi.org/10.1016/S0734-189X(84)80011-0.

Organization for the Advancement of Structured Information Standards (OASIS),
2004. Introduction to UDDI. Important Features and Functional Concepts, 11
[accessed 11 May 2010].

soapUI, 2010. SoapUI, the leading tool for Web service testing, version 3.5.1.
Eviware [accessed 11 May 2010].

PyWPS, 2009. Python Web Processing Service version 3.1.0. Help Service–Remote
Sensing, Benesov u Prahy, Czech Republic [accessed 11 May 2010].

Raghavan, V., Masumoto, S., Santitamont, P., Honda, K., 2002. Implementing an
online spatial database using the GRASS GIS environment. In: Proceedings of
the Open Source Free Software GIS–Geographic Resources Analysis Support
System Users Conference 2002, University of Trento, Italy, 5 pp. /http://www.
ing.unitn.it/�grass/conferences/GRASS2002/proceedings/proceedings/pdfs/
Raghavan_Venkatesh.pdfS [accessed 11 May 2010].

Schut, P. (Ed.), 2007. OpenGIS Web Processing Service (OGC 05-007r7, Version:
1.0.0). Open Geospatial Consortium (OGC) Inc., USA.

WFS, 2009. Web Feature Service Version 1.0.0. /http://ws.csiss.gmu.edu:8080/
geoserver/wfsS [accessed 11 May 2010].

Zhao, P., Yu, G., Di, L., 2007. Geospatial Web services. In: Hilton, B.N. (Ed.),
Emerging Spatial Information Systems and Applications. IDEA Group
Publishing, Hershey, PA, USA, pp. 4–36.

dx.doi.org/10.1016/j.cageo.2007.12.018
http://www.gisdevelopment.net/proceedings/fossgrass/papers/The%20GRASS%20Server.pdf
http://www.gisdevelopment.net/proceedings/fossgrass/papers/The%20GRASS%20Server.pdf
http://www.gisdevelopment.net/proceedings/fossgrass/papers/The%20GRASS%20Server.pdf
http://www.w3.org/TR/xml/
http://www.w3.org/TR/wsdl
http://esto.nasa.gov/conferences/estc2004/papers/a1p5.pdf
http://esto.nasa.gov/conferences/estc2004/papers/a1p5.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/di_liping_a2p2_nstc-07-0064.pdf
http://esto.nasa.gov/conferences/nstc2007/papers/di_liping_a2p2_nstc-07-0064.pdf
http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Hess_Sigrid.pdf
http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Hess_Sigrid.pdf
http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Hess_Sigrid.pdf
http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Hess_Sigrid.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39890
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39890
dx.doi.org/10.1002/cpe.994
dx.doi.org/10.1080/02693799608902101.3d
dx.doi.org/10.1080/02693799608902101.3d
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/
http://daac.ornl.gov/ESSDR112007.pdf
http://daac.ornl.gov/ESSDR112007.pdf
dx.doi.org/10.1016/S0734-189X(84)80011-0.3d
http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Raghavan_Venkatesh.pdf
http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Raghavan_Venkatesh.pdf
http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Raghavan_Venkatesh.pdf
http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Raghavan_Venkatesh.pdf
http://ws.csiss.gmu.edu:8080/geoserver/wfs
http://ws.csiss.gmu.edu:8080/geoserver/wfs

	Sharing geoscience algorithms in a Web service-oriented environment (GRASS GIS example)
	Introduction
	The problem domain
	Interoperability standards for Web services

	GRASS GIS to Web
	Review of previous studies
	Current activities

	Example implementaion
	Implementation of Web services
	An example of stream extraction Web service
	Invocation of Web services

	Implementation solutions and challenges
	Script execution process
	Web service interface description
	Projection and coordinate management
	Error report handling
	Concurrent connection

	Conclusions
	Acknowledgements
	References

