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A B S T R A C T
ESA’s Earth Explorer candidate mission A-SCOPE aims at observing CO2 from space with an active LIDAR instrument.
This study employs quantitative network design techniques to investigate the benefit of A-SCOPE observations in a
Carbon Cycle Data Assimilation System. The system links the observations to the terrestrial vegetation model BETHY
via the fine resolution version of the atmospheric transport model TM3. In the modelling process chain the observations
are used to reduce uncertainties in the values of BETHY’s process parameters, and then the uncertainty in the process
parameters is mapped forward to uncertainties in both in long-term net carbon flux and net primary productivity
over three regions. A-SCOPE yields considerably better reductions in posterior uncertainties than the ground-based
GLOBALVIEW station network. This is true for assimilating monthly mean values and instantaneous values, and it is
true for two potential vertical weighting functions. The strength of the constraint through A-SCOPE observations is
high over the range of observational uncertainties.

1. Introduction

CO2 is the most important anthropogenic greenhouse gas, and
the continued increase of atmospheric CO2 is accepted to be the
major reason for present, observed global warming. The increase
of CO2 is clearly of anthropogenic origin, but it is tempered by
uptake from natural reservoirs. Therefore, understanding and
predicting the cycling of this gas through natural and human-
controlled systems is a matter of special importance. Despite
considerable advances, major questions remain about the mag-
nitude and distribution of present sources and sinks of this gas
as well as their evolution, and their controlling mechanisms, es-
pecially their response to climate change. A clear requirement
is the development of monitoring tools to ascertain the current
sources and sinks and their changes. Such changes may occur as
a result of climate change or of deliberate mitigation strategies.
Hence, the monitoring of CO2 and other greenhouse gases is
immensely important, both for fundamental Earth System Sci-
ence (as a necessary complement to global modelling), and for
international climate policy.

A first awareness of global change began in the late 1950s
when Charles David Keeling from the Scripps Institution
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of Oceanography, San Diego, developed a technique precise
enough to detect the rise in atmospheric CO2. Keeling’s time
series of atmospheric CO2 concentration measurements from
Mauna Loa (Keeling and Whorf, 2002) is an icon of contempo-
rary environmental science. Major observational programs were
subsequently put in place by various institutions from many
different countries to create a global network, providing spa-
tial gradients of CO2 concentrations to constrain location and
strength of CO2 sources and sinks.

The current ground-based in situ measurement network is
mostly based on flask samples which are collected weekly to bi-
weekly. The sampling stations are mainly located at remote sites
to sample the CO2 concentration of the marine boundary layer.
A single flask measurement can be done with a high accuracy
(≈ 0.2 ppmv) such that a homogenized and gap-filled data prod-
uct of this network like GLOBALVIEW (GLOBALVIEW-CO2,
2004) reports uncertainties of 0.5–1 ppmv depending on the
station location. However, the temporal (weekly to biweekly)
and spatial (large gaps for instance in the tropics) resolution
is fairly poor. Since the last few years new continuous at-
mospheric CO2 observations have become available at some
of these remote measurement stations to overcome the limita-
tion in the temporal domain. Nevertheless, the network is still
too sparse to quantify CO2 sources and sinks on a regional
to continental scale. This reflects the underdetermined nature
of the inverse problem of inferring two-dimensional surface
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flux fields from point measurements (Kaminski and Heimann,
2001).

In addition to the ground-based flask and continuous sta-
tion measurement system, there are a number of tall tower sites
around the globe, which also provide in-situ continuous mea-
surements of CO2. These towers supply measurements of CO2

in the continental boundary layer rather representative for re-
gional to continental scale fluxes. For instance, NOAA is running
around ten towers in the United States, and the EU’s CHIOTTO
and then CarboEurope projects have set up around ten towers in
Europe and Siberia. It is expected that this network will further
expand in the future. Furthermore, there is an ever expanding
network (see http://www.fluxnet.ornl.gov) providing local-scale
direct flux observations via eddy covariance techniques.

Remote sensing of atmospheric CO2 from space has the po-
tential to deliver the data needed to substantially reduce the cur-
rently large uncertainties in the spatial and temporal distribution
of CO2 sources and sinks. Several sensitivity studies have eval-
uated the improvement in atmospheric inversion simulations of
CO2 that would be enabled by precise, global space-based inte-
grated column CO2 data. A pioneering study has been performed
by Rayner and O’Brien (2001) who established the required pre-
cision for column-integrated CO2 concentration data to be useful
in constraining surface sources. Using an atmospheric synthesis
inversion the required precision of monthly averaged (uniform
weighting function) column data should be better than 2.5 ppmv
(1.5 ppmv for oceanic coverage only) on a 8◦ × 10◦ footprint
for comparable performance with the existing surface network.
They also reported that space-based column CO2 observations
with 1 ppmv precision were predicted to substantially reduce in-
ferred CO2 flux uncertainties of annual mean fluxes from greater
than 1.2 GtC region−1 yr−1 to less than 0.5 GtC region−1 yr−1

when averaged over the annual cycle and for continent–ocean
basin scale regions. Since then further studies (Pak and Prather,
2001; Rayner et al., 2002; Patra et al., 2003) have essentially
confirmed the message that the overall precision on the mea-
surements, including instrument uncertainties, noise, and un-
certain atmospheric properties, needs to be better than 1% (or
3.6 ppmv) to provide a constraint on CO2 fluxes comparable
with the ground-based network.

More recently some studies have taken into account the char-
acteristics and therefore potential benefits of different types of
satellite instruments in synthetic inversion approaches. For ex-
ample, Houweling et al. (2004) have distinguished between ther-
mal infrared (AIRS) and near infrared (SCIAMACHY, OCO)
spectrometers. The thermal infrared instrument AIRS has the
advantage that it can measure the entire globe independent of
day light or surface albedo, and thus has a relatively high num-
ber of measurements. Because of AIRS’ independency on high
surface albedo it is notably better performing over the oceans
than SCIAMACHY. In contrast, OCO is able to measure in sun-
glint mode over the oceans. A crucial factor is the ability to
measure at low altitudes; therefore the near infrared instruments

SCIAMACHY and OCO will certainly be more favourable as
the thermal infrared instrument has a rather limited sensitivity
to CO2 near the surface. Their overall conclusion is that OCO
will be the most promising satellite concept of those tested.

Miller et al. (2007) and Chevallier et al. (2007) specifically
looked at the contribution of OCO column integrated CO2 re-
trievals (XCO2 ) to the reduction of uncertainties in the estima-
tion of CO2 sources and sinks. Both could show that, given the
estimated error characteristics of the OCO instrument, OCO ob-
servations would significantly reduce the uncertainties of CO2

surface fluxes, in the case of Chevallier et al. (2007) even at
weekly timescale and grid point resolution of the underlying
transport model (2.5◦ × 3.75◦) over land (reduction of 15–40%
of prior uncertainties) and on monthly and basin-wide resolution
over oceans (reduction of 20–40% of prior uncertainties). Two
further recent studies also addressed the assessment of the OCO
mission (Baker et al., 2008; Feng et al., 2009).

Unfortunately the launch of NASA’s OCO mission in Febru-
ary 2009 failed. However, another satellite mission specifically
aimed at measuring CO2 from space, the GOSAT mission of
the Japanese Aerospace Exploration Agency, was successfully
launched in January 2009. GOSAT carries both a thermal and a
near infrared spectrometer. The thermal spectrum provides sim-
ilar information to what AIRS has been measuring, whereas the
near infrared provides information about the total CO2 column,
which is more important for flux estimation. Chevallier et al.
(2009) have quantified the potential of GOSAT data in a sensi-
tivity study similar to the above mentioned studies. They found
that GOSAT should significantly reduce uncertainties in CO2

flux estimations over terrestrial vegetated areas at the scale of
weeks and a few hundred kilometres, over the oceans improve-
ments are only seen over larger scales (e.g. ocean basins and
over a year).

The above-mentioned approaches to convert atmospheric CO2

concentrations into estimates of surface CO2 fluxes are all
based on ‘top-down’ inverse modelling of atmospheric trans-
port. While this approach yields insights into the recent past and
present, it cannot have predictive ability for the future. Future
predictions, in contrast, are based on results from ‘bottom-up’
process-based model simulations. These simulations, however,
lack the rigorous inclusion of the observational constraint.

An alternative method that is fully consistent with both the
philosophy of inverse modelling, and the approach of predictive
modelling employs techniques from variational data assimila-
tion. In a first step both process parameters and initial condi-
tions are estimated with the best possible accuracy using the
best available observational constraints at the appropriate scale
of the problem. A second (prediction or ‘prognostic’) step is
then using not only standard modelling techniques employing
the optimized parameters and initial conditions to arrive at a
forecast, but also techniques of uncertainty propagation to esti-
mate uncertainty ranges for the prediction (Scholze et al., 2007).
This is a significant advance over current modelling techniques.
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The Carbon Cycle Data Assimilation System (CCDAS)
(Scholze, 2003; Rayner et al., 2005) is so far a unique exam-
ple of the above outlined approach. It builds upon the study
by Kaminski et al. (2002) who have used the seasonal cycle of
atmospheric CO2 to constrain a simplified terrestrial biosphere
model. In CCDAS this simplified model is replaced by the more
comprehensive, prognostic terrestrial biosphere model BETHY
(Knorr, 2000; Knorr and Heimann, 2001). CCDAS uses a re-
duced version of BETHY which has no phenology scheme and
no water balance. Instead it uses pre-optimized leaf area index
(LAI) and plant available soil moisture. Global vegetation is
mapped onto 13 plant functional types (PFT). Fifty-seven con-
trol parameters affect the photosynthesis scheme, and both the
autotrophic and heterotrophic respiration schemes. The assimi-
lation of time series of atmospheric CO2 flask data in CCDAS
is controlled by a gradient algorithm, which searches the pa-
rameter space by iterative evaluation of a cost function and its
gradient with respect to the parameters. The gradient informa-
tion is provided efficiently by the model’s adjoint. At the cost
function minimum, an uncertainty of the estimated parameter
set that is consistent with assumed observational and model un-
certainties is approximated by the inverse of the function’s full
Hessian matrix, evaluated for the optimal parameter set up to
machine precision. The calibration process, hence, delivers a set
of optimized parameters, together with their uncertainties (see
Fig. 1).

CCDAS makes considerable use of derivative code, i.e. the
adjoint code providing the gradient of the cost function, the Hes-
sian code used to approximate parameter uncertainties, and Jaco-
bian code to propagate these uncertainties forward. All deriva-
tive code is generated directly from the model’s source code
(Kaminski et al., 2003) by the automatic differentiation tool
Transformation of Algorithms in Fortran [TAF, Giering and
Kaminski (1998)]. Since CCDAS has only 57 parameters, the
evaluation of the full Hessian and the full Jacobian are compu-
tationally feasible.

In this study, we employ CCDAS to explore the benefit of the
concept for ESA’s Earth Explorer candidate mission A-SCOPE,
which differs from the above mentioned concepts for observing
CO2 from space (AIRS, OCO and GOSAT) in that it relies
on an active LIDAR instrument. NASA is pursuing a similar
concept with the ASCENDS mission (Michalak et al., 2008). The
advantages of an active mission are that it does not require the sun
as a light source, and can therefore provide both day and night,
all-seasons and all latitude measurements and thus will provide
an increase in the number of observations by a factor of two
to three compared to passive missions. But more importantly,
such an active mission concept provides a direct measurement
of the atmospheric path and thus can assure the observation of
the entire atmospheric column. This is an advantage over the
OCO and GOSAT concept, which are particularly sensitive to
the presence of aerosols, leading to potentially large gaps in
regions with relatively persistent high levels of aerosols, such as
some tropical regions (e.g. India), southeast Asia, or the Sahara.
Two potential wavelengths, namely 1.6 µm and 2.0 µm, have
been identified because of their high signal-to-noise ratio and
favourable, near-uniform vertical weighting functions (see ESA,
2008 for details on the A-SCOPE mission concept).

As a measure for the performance of A-SCOPE data we use
the posterior uncertainty on regionally aggregated surface fluxes.
Methodologically we are addressing a network design problem
in a quantitative way. Quantitative network design was intro-
duced to biogeochemistry by Rayner et al. (1996), who used
an inverse model of the atmospheric transport to design sur-
face networks, and it was also Rayner and O’Brien (2001) who
first applied the approach to mission design. Kaminski et al.
(2002) demonstrated the application of quantitative network de-
sign techniques for assimilating a synthetic flux measurement
together with global atmospheric CO2 samples and vegetation
greenness approximated by AVHRR observations.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces quantitative network design methods and the

Fig. 1. CCDAS two step procedure: inverse step followed by diagnostic or prognostic step.
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extensions of CCDAS that were necessary to conduct the study.
Section 3 describes and discusses the experiments that have been
performed. Section 4 summarizes the main findings and draws
conclusions.

2. Methodology

Methodologically, assessing the potential of a particular data
stream in terms of quantifying a target quantity belongs to the
class of so-called network design problems. This section gives a
brief introduction to the mathematical formalism for quantitative
network design, and then describes the extensions of CCDAS
that were required to conduct the study.

2.1. Brief introduction to quantitative network design

Quantitative network design uses data assimilation systems and
is, thus, closely linked to data assimilation. Hence, our intro-
duction (following Kaminski and Rayner, 2008) starts off with
the formalism behind Fig. 1. In the formulation of the inverse
problem it is convenient to quantify the state of information
on a specific physical quantity by a probability density func-
tion (PDF): the prior information is quantified by a PDF in the
space of control variables (here, process parameters of BETHY
and the initial concentration), the observational information by
a PDF in the space of observations, and so on. Tarantola (1987)
describes this probabilistic framework in detail and provides ex-
amples. Enting (2002) introduces the same framework with an
exhaustive overview on applications to biogeochemistry.

If the input to the inverse problem can be characterized by
Gaussian PDFs, the model that links control variables to obser-
vations is linear, and the model error follows a Gaussian PDF
as well, then the posterior information is also quantified by a
Gaussian PDF (see Tarantola, 1987). The mean of that PDF is
given by

x = x0 + [
MT C(d)−1M + C(x0)−1

]−1
MT C(d)−1(d − Mx0)

(1)

and the covariance of its uncertainty is given by

C(x)−1 = MT C(d)−1M + C(x0)−1 , (2)

where M denotes the Jacobian matrix of the model, x0 and C(x0)
the mean and covariance of the prior information’s PDF. d and
C(d) denote the mean and the covariance of uncertainty of the
observations. In the inversion procedure the corresponding PDF
has to reflect errors in both the observational process and our
ability to correctly model the observations. We achieve this via

C(d) = C(dobs) + C(dmod) (3)

and by subtracting the mean model and observational errors
from Mx0 and d, respectively. Note that, in practice, these mean
errors are usually difficult to assess.

It is easy to verify that x (from eq. 1) minimizes the cost
function (the exponent of the Gaussian posterior PDF)

J (x̃) = 1

2
[(Mx̃ − d)T C(d)−1(Mx̃ − d)

+ (x̃ − x0)T C(x0)−1(x̃ − x0)] (4)

and that the Hessian matrix H (x̃) of J, i.e., the matrix composed
of its second partial derivatives ∂2J

∂xi ∂xj
, is constant and given by

C(x)−1 = H (x) . (5)

If the model is non linear or any of the PDFs of the inputs are
non-Gaussian, eqs (1) and (2) do not hold anymore. But we can
still approximate the posterior PDF by a Gaussian with mean x
given by the minimum of eq. (4) (with the matrix M generalized
to the non linear model M(x̃)) and covariance given by eq. (5).

In practice, any variational data assimilation system, for ex-
ample, in operational numerical weather prediction or oceanog-
raphy, is based on eq. (4). The optimization mode of CCDAS
uses an iterative procedure to minimize the cost function of eq.
(4), which yields x, and computes C(x) via eq. (5). As long as
the uncertainties in the individual data streams are independent,
the contribution of each of them to the right hand side of eq. (4),
and, hence, also to eq. (5), can be quantified by a separate term
in the sum. In this formalism, the contribution of a synthetic data
set (e.g. synthetic A-SCOPE observations) is to be handled as
follows:

(1) The mean value is generated with the model itself, that
is, the equation d = M(x) is applied, where x is the best possible
parameter value, taken from a minimization of eq. (4) for the
existing observational network.

(2) The covariance of uncertainties (eq. 3) is specified such
as to reflect the expected characteristics of the observational
products generated by the instrument and our ability to simulate
them.

By construction of the synthetic data, their cost function con-
tribution (eq. 4) at the optimum, x, is zero but positive in the
neighbourhood of x. This means the synthetic data increase the
curvature of the cost function. In mathematical terms, the cur-
vature is expressed by the Hessian in eq. (5), which takes full
account of the specified uncertainty in the synthetic data and their
sensitivity to the model parameters. The effect of the synthetic
data is a reduction of posterior parameter uncertainty.

The second step in Fig. 1 is the estimation of a diagnostic or
prognostic target quantity y, in our case some spatio-temporal
mean carbon flux. The target quantity’s PDF can be approxi-
mated by a Gaussian with mean

y = N (x) (6)

and the covariance

C(y) = D′C(x)D′T + C(ymod), (7)
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where N is the model (in Fig. 1 denoted as diagnostic/prognostic
model) that maps the control variables onto the target quantity,
D′ is its linearization around the mean of the posterior PDF of
the control variables, also denoted as the Jacobian matrix of N ,
and C(ymod) is the uncertainty in the model result from errors
in the model. Only if y coincides with one of the observations
used in the inversion step, this uncertainty is already accounted
for in C(x), and we omit the C(ymod) contribution. If N is linear
and the posterior PDF of the control variables Gaussian, then the
PDF of the target quantity is Gaussian as well, and completely
described by eqs (6) and (7).

2.2. Including A-SCOPE data in CCDAS

One of the objectives of this study is to assess the data uncer-
tainty for A-SCOPE that is required to achieve a given posterior
uncertainty in a scalar target quantity σ y. Since we will use a di-
agonal C(d), with only two different entries for data over ocean
and land, respectively denoted by σ 2

d,O and σ 2
d,L, this can be done

in a particularly efficient way.
Denoting the diagonal entries of C(d) by σ 2

d,i, and the corre-
sponding components of (the vector valued function) M and d
respectively by Mi and di, we rewrite the first term of eq. (4) in
least squares form

J (x̃) = 1

2

{∑
i

[Mi(x̃) − di]2

σ 2
d,i

+ (x̃ − x0)T C(x0)−1(x̃ − x0)

}
.

(8)

Taking second derivatives (one with respect to x̃k and one with
respect to x̃l) yields

Hk,l(x̃) = 1

2

∑
i

1

σ 2
d,i

d2(Mi(x̃) − di)2

dx̃kdx̃l

+ Ck,l(x0)−1 . (9)

Accumulating all summands for data over ocean and all sum-
mands for data over land, inserting into eq. (5) yields

C(x)−1 = 1

σ 2
d,O

HA,O + 1

σ 2
d,L

HA,L + H0, (10)

where the Hessian contribution of the prior is denoted by H 0 and
the contribution by A-SCOPE is decomposed into two terms
H A,O and H A,L determined by model characteristics and two
factors depending on the data uncertainties over ocean and land.

Inserting in eq. (7) yields

σ 2
y = D′

(
1

σ 2
d,O

HA,O + 1

σ 2
d,L

HA,L + H0

)−1

D′T + σ 2
y,mod, (11)

where with our scalar target quantity, the Jacobian D′ takes the
form of a row vector. Thanks to this decomposition we can pre-
compute H A,O and H A,L, such that a plot of σ y over σ d can
be produced by pure matrix algebra without further CCDAS
simulations.

For assessing the effect of A-SCOPE as an extension of the
ground-based network, we can repeat the above algebra but
starting from a cost function that has in addition to eq. (8) a
third term representing the fit to the ground-based network. This
situation is also covered by eq. (11), if we generalize the meaning
of H 0 to represent the Hessians of all cost function contributions
except the A-SCOPE term. In other words, in this situation
H 0 denotes the Hessian when inverting against data from the
ground-based network only.

In summary, the simulations require code for the computation
of H 0, H A,O, H A,L and D′. The computation of H A,O and H A,L

requires the extension of CCDAS by the observation operator for
A-SCOPE. Figure 2 shows the forward modelling chain of the
extended CCDAS. The Biosphere Energy Transfer HYdrology
scheme (BETHY, Knorr, 2000; Knorr and Heimann, 2001) is
used to simulate the surface fluxes of CO2 from the terrestrial
vegetation.

Fig. 2. Modelling chain within CCDAS extended to include an A-SCOPE observation operator.
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2.3. Representation of atmospheric transport

Atmospheric CO2 concentrations are modelled by the atmo-
spheric transport model TM3 (Heimann and Körner, 2003), in
its fine 4◦ × 5◦ horizontal resolution, with 19 vertical σ lev-
els. As in Houweling et al. (2004), the model uses meteoro-
logical driving fields for the year 2000 as provided by Kalnay
et al. (1996). Owing to the linearity of the atmospheric trans-
port of CO2, the vector c of the changes in the total column
CO2 (XCO2 ) at each observational location and time in re-
sponse to a given flux field f can be represented by its Jacobian
matrix A

c = Af . (12)

The flux field f is represented in the full 4◦ × 5◦ resolu-
tion of the transport model and monthly temporal resolution. To
compute one column of the Jacobian matrix corresponding to a
given surface grid cell and month, the model is run with a unit
emission in that grid cell and month (Enting, 2002). For each
component of c, the simulated XCO2 value corresponding to the
observational location and time is recorded.

The above procedure would require one model run per grid
cell and month in the period from the start of the CCDAS inte-
gration until the month in which the last XCO2 observation takes
place. To reduce the number of required model runs, we make
two simplifications:

(1) For fluxes more than 4 yr prior to a given XCO2 obser-
vation we assume that their CO2 emission is completely mixed
within the global atmosphere. This means all columns in A cor-
responding to fluxes more than 4 yr ago contain a constant a that
quantifies the response in a completely mixed atmosphere (i.e.
in a one box model).

(2) For fluxes less than 4 yr prior to a given XCO2 observation
but not in the same month or the 2 months before, we assume
that their CO2 emission has the same effect as all other fluxes
emitted in the same latitude band. This means all columns in A
corresponding to fluxes for a given month in said time span and
in a given latitude band have the same response. Here, we use 8
latitude bands.

This means to simulate c the response to the fluxes of 3 months
ff is represented in full spatial resolution (full Jacobian) Af , the

response of the fluxes of 4 yr (actually minus 3 months) fl is
represented in latitudinal band resolution (latitudinal Jacobian)
Al, and the response to all previous years fg by a single number
(global Jacobian) Ag, i.e.

c ≈ Af ff + Alfl + Agfg. (13)

Figure 3 illustrates how the Jacobian is composed by blocks
for full, latitudinal, and global Jacobians. The first row of blocks
belongs to the earliest observations and the last row to the last
observations. The first column belongs to the earliest fluxes and
the last column to the last fluxes. Each block represents the
impact of a particular month of fluxes on a particular month
of concentrations. Concentrations are column integrated, taking
the spectral weighting function and the orbit parameters into
account.

We illustrate the computational savings through the matrix
approximation in a sample calculation with 20 yr of fluxes and
observations in the last year, the set up used for this study. To
provide the full Jacobian, Af , we perform 12 sets of runs over 3
months each. The first covers the period from January to March,
the second the period from February to April, etc. Each set
consists of as many runs as we have grid cells, i.e. 72 × 46
(excluding the poles). We record the concentrations over the 3
months. The annual periodicity of the transport model’s mete-
orological driving data is exploited in the following way: The
simulation starting in December provides the response at the
last concentration month (i.e. December) to fluxes in the same
month, but it is also used to provide the response at the first
concentration month (January) to fluxes 1 month prior. Without
the periodicity we would need two additional sets of runs, for
November and December in the year before the observations
start. On the other hand, the sets of runs starting in November
and December of the last year can be restricted to an integration
period of 2 and 1 months, respectively. In total the computation
of Af requires 39 744 runs over 3 months each, that is, 9936
yr of transport model simulation. To provide the latitudinal Ja-
cobian, Al, we perform 12 sets of runs over 48 months each,
where each set consists of as many runs as we use latitudinal
bands in which all fluxes produce the same response, in our
case 8. In total the computation of Al requires 96 runs over 48
months each, i.e. 384 yr of transport model simulation. Finally,

Fig. 3. Structure of the Jacobian transport matrix.
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the global Jacobian, Ag, requires a single run over, say, 5 yr. By
contrast, without the approximation we would require 244 sets
of runs, with integrations periods decreasing from 244 months
to 1 month. Each set would consist of as many runs as we have
grid cells, that is, 72 × 46. This would produce a total of about
8.2 million years of transport model simulation.

The transport Jacobian is computed in two versions. The first
version (instantaneous Jacobian) uses instantaneous samples at
days 7, 14, 21, 28 of each month, and at 0.00 and 12.00 GMT.
Note that for our assessment the modelled Jacobian does not
need to match the exact date of the observation but only a me-
teorological situation typical for that time of the year. We can
then assign every XCO2 observation to the closest date in the
record. The alternative version of the Jacobian uses monthly
mean concentrations.

2.4. Uncertainties in observations and model

For both Jacobian versions the specification of the data uncer-
tainty is complicated by the fact that the simulated and observed
quantities differ. The observed quantity is XCO2 for a short inter-
val in time and space (almost a point measurement) whereas
the simulated quantity is a mean XCO2 value. The monthly
mean Jacobian simulates a mean over a horizontal grid cell
and 1 month, whereas the instantaneous Jacobian simulates the
mean over a horizontal grid cell and the model time step of
30 min.

Computing the difference between observed and simulated
quantities brings in an additional source of uncertainty reflecting
the error we make when transforming one quantity into the
other. This error is called representation error (see, e.g. Heimann
and Kaminski, 1999). We take this uncertainty into account by
including an additional term C(d rep) in eq. (3)

C(d) = C(dobs) + C(drep) + C(dmod). (14)

C(d rep) is hard to specify. We use a diagonal matrix, with the
square of a constant σ rep on the diagonal. We derive a value based
on the conservative assumption of n point samples of a Gaussian
distributed XCO2 within the grid cell with standard deviation σ het

(‘het’ standing for heterogeneity)

σ 2
rep = σ 2

het

n
, (15)

where σ het can, in principle, be observed. We use a conservative
value of 3 ppmv for the total column, to reflect the fact that we
also sample downstream of large fossil fuel emissions or over
forests in the growing season. For the monthly mean Jacobian
we use n = 30, which is about the (temporally and spatially
varying) average sample size per horizontal grid cell and month,
as derived from orbit simulations using MODIS cloud cover
(Breon et al., 2009). For the instantaneous Jacobian n = 1,
because we use each sample individually. A potential correlation

between cloud cover and XCO2 could be taken into account by a
methodological refinement. First, C(d rep) would not be diagonal
(uncertainty correlation across grid cells). Second, eq. (15) is
too optimistic, because it is based on uncorrelated uncertainties
of samples within the same grid cell. None of this is addressed
in this study.

For our base case with a vertical weighting function based
on the 1.6 µm band (Ehret et al., 2008) we use observational
uncertainties of 0.5 ppm over land and 1.5 ppm over the ocean,
respectively denoted σ obs,L and σ obs,O. This corresponds to the
target and threshold requirements of the A-SCOPE mission as
given in the A-SCOPE Report for Assessment (ESA, 2008).
For the 2.0 µm band we increase the observational uncertainties
by a factor of two. Here again we are slightly optimistic by
neglecting correlations in the observational uncertainties, that is,
by assuming only random errors. This is not too severe, because
the A-SCOPE Report for Assessment (ESA, 2008), assumes
only 10% of the observational uncertainty to be systematic. Also,
calibration against ground measurements may help to build a
model of the systematic error, that is, with a uniform mean
value (bias) plus a random component. The mean value can
then be subtracted from the observations prior to assimilation.
Only the random component then translates into a correlated
uncertainty.

The uncertainty due to model error is also hard to specify. For
the monthly mean Jacobian we use a diagonal form, with the
square of a constant σ mod of 0.5 ppmv on the diagonal. This is
probably conservative given that value we specify here has to
be characteristic for the performance of a state-of-the-art model
with a resolution of 4◦ × 5◦. For the instantaneous Jacobian we
also use a diagonal form but with a σ mod of 1.5 ppmv. We use
this larger value for two reasons. First, the model error is larger
for instantaneous values than for monthly mean values, where
a fraction of the error cancels out. Second, the approximation
of diagonal uncertainties is better for the monthly mean val-
ues than for instantaneous values, where correlated uncertainty
from model error may play a larger role. Correlated uncertain-
ties among a number of observations have the following effect
on the cost function. They reduce the weight in the direction of
the sum (average) of the observations and increase the weight
in the direction of their differences. In our diagonal formulation
we mimic the effect on the average by inflating the uncertainty.
It is important to note that at this point we address only the
residual model error for perfect parameter values and without
any representation error, because the former is addressed by
our method and the latter is accounted for by a separate term
in eq. (14). Also, the positive correlations are partly compen-
sated by processes involving mass conservation (e.g. within a
carbon pool), which tend to create negative correlations among
uncertainties.

For plotting the target uncertainty σ y over the observa-
tional uncertainty σ obs we introduce a scaling factor k for the
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observational uncertainty and combine eq. (11) with eq. (14)

σ 2
y = D′

(
1

kσ 2
obs,O + σ 2

rep + σ 2
mod

HA,O

+ 1

kσ 2
obs,L + σ 2

rep + σ 2
mod

HA,L + H0

)−1

D′T + σ 2
y,mod. (16)

σ y,mod refers to the uncertainty due to errors in the terrestrial
model, and the first term specifies the uncertainty in case we
had a perfect model for y. σ y,mod is, of course, strongly depen-
dent on the model and difficult to assess. In order not to mask
the assessment of A-SCOPE through a rather arbitrary assump-
tion on σ y,mod, we don’t include it in the default computation
of σ y. We do this consistently throughout all experiments, that
is, our A-SCOPE assessment and our benchmark, the ground-
based station network. For both the A-SCOPE assessment and
the benchmark exactly the same model error is to be used in eq.
(16). Owing to the simple dependency of σ y on σ y,mod, one can
easily combine it with the uncertainties we provide. We show,
however, an example calculation that estimates the model er-
ror from an ensemble of terrestrial biosphere models. Cramer
et al. (2001) (Fig. 5) compare NPP and NEP simulated by six
terrestrial biosphere models. Both quantities depend on the pro-
cess representations in the individual models. For the 1990s the
global NPP of the six models spans a range of about 15 GtC
yr−1, while NEP spans a range of about 1.5 GtC, and with one
outlier removed below 0.5 GtC. For the definition of relative
ranges it makes sense to refer to global NPP also for the NEP
range, because NEP is the difference between two large fluxes.
The ranges relative to 60 GtC (a typical value for global NPP,
our model’s global NPP is 64.9 GtC) are then 25% for NPP
and 2.5% for NEP. For our three regions the 25% of NPP are
conservative. The global map in fig 2. of Cramer et al. (1999)
shows a lower relative range (in this study for the 16 models
of the Potsdam NPP intercomparison) over these regions, but a
larger relative range over Africa. This is also confirmed by fig. 1
of Kicklighter et al. (1999) who show the NPP range spanned by
90% of the same models over latitude. Over our 20 yr integration
period the long-term NPP average per year is 2.6 GtC over Eu-
rope, 6.5 GtC over Russia, and 6.1 GtC over Brazil. Associating
the above derived relative ranges with a ±1 standard deviation
interval (again a conservative assumption), yields respectively
for the three regions per year 0.3 GtC, 0.8 GtC, 0.8 GtC for NPP
and 0.03 GtC, 0.08 GtC, 0.08 GtC for NEP. Our computational
example is based on spreads in model simulations representing
the state-of-the-art around the year 2000. We can hope that these
spreads decrease with progress in terrestrial modelling, and with
systematic model calibration against observations. Our example
is also conservative in that the spreads include the parametric
uncertainty (caused by wrong values of the process parameters),
a source of uncertainty that we explicitly specify in eq. (16).

3. Experiments

This section describes the four experiments that are performed
with the extended CCDAS. All experiments are run with the
CCDAS configuration determined by the optimized parameter
values (see Table 1) from Scholze et al. (2007), who use 41
sampling sites from the (GLOBALVIEW-CO2, 2004) network.
The total data uncertainty σ d is 1.08 ppmv per observation on
average. For a detailed description of the parameters we refer to
Rayner et al. (2005). The simulation period covers 20 yr with the
ground-based network sampling over the entire period and A-
SCOPE only in the final year. The Hessian for the ground-based
network (H 0 in eqs 10, 11 and 16) is taken from Scholze et al.
(2007). The same holds for the Jacobian mapping parameter
uncertainty onto flux uncertainty (D′ in eqs 11 and 16). The
experiments use the following seven target quantities: net carbon
flux (NEP) and net primary productivity (NPP) over Europe,
Russia, and Brazil, as well as global NEP for consistency checks.

The experimental setups are as follows:

(1) Base experiment: This experiment applies vertical
weighting for the 1.6 µm band (see Table 2) to the transport
Jacobian with monthly mean concentrations and assumes global
coverage with observational uncertainties of 0.5 ppmv over land
and 1.5 ppmv over ocean plus an uncertainty of 0.5 ppmv re-
flecting model error. The first simulation (Case 1) uses both the
ground-based flask sampling network and A-SCOPE, the second
simulation (Case 2, base case) runs without the ground-based
flask station network and only A-SCOPE sampling, and the third
simulation (Case 3) with the ground-based station network only.
This experiment allows us to assess the benefit of A-SCOPE
and the ground-based flask sampling network separately and in
conjunction. Cases 2* and 2** illustrate the effect of includ-
ing the uncertainty due to model error (σ y,mod term in eq. 16).

(2) Sensitivity to temporal and horizontal sampling: This ex-
periment repeats Experiment 1, Case 2, but with different sam-
pling. Based on the above-mentioned A-SCOPE orbit specifica-
tion by Breon et al. (2009) it assumes sampling of instantaneous
concentrations, for which the sensitivity uses the nearest loca-
tion, day and time of day in the instantaneous transport Jacobian.

(3) Sensitivity to vertical weighting: This experiment repeats
Experiment 1, Case 2, but with the 2.0 µm band vertical weight-
ing (see Table 2) instead of the 1.6 µm band weighting and with
observational uncertainties increased by a factor of two.

(4) Sensitivity to data uncertainties: This experiment repeats
Experiment 1, Case 2 with a joint scaling factor for the two
observational uncertainties over land and ocean in eq. (10) and
samples 25 values of this scaling factor.

Table 3 lists the prior and posterior uncertainties for Exper-
iments 1–3. In Experiment 1, Case 2, which is our base case,
the posterior uncertainties are strongly reduced compared to the
prior uncertainties. This is the case for both NPP and NEP over
all three regions. The strongest reduction occurs for global NEP,
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Table 1. CCDAS parameter values used for the experiments

Number Parameter Value Uncertainty

1 V 25
max(TrEv) 57.6 20

2 V 25
max(TrDec) 108.5 20

3 V 25
max(TmpEv) 40.7 20

4 V 25
max(TmpDec) 51.2 20

5 V 25
max(EvCn) 26.0 20

6 V 25
max(DecCn) 119.1 20

7 V 25
max(EvShr) 130.4 20

8 V 25
max(DecShr) 137.0 20

9 V 25
max(C3Gr) 11.4 20

10 V 25
max(C4Gr) 0.4 20

11 V 25
max(Tund) 35.6 20

12 V 25
max(Wetl) 19.2 20

13 V 25
max(Crop) 95.6 20

14 aJ,V(TrEv) 1.92 5
15 aJ,V(TrDec) 1.99 5
16 aJ,V(TmpEv) 2.0 5
17 aJ,V(TmpDec) 2.0 5
18 aJ,V(EvCn) 1.79 5
19 aJ,V(DecCn) 1.82 5
20 aJ,V(EvShr) 1.97 5
21 aJ,V(DecShr) 1.66 5
22 aJ,V(C3Gr) 1.88 5
23 aJ,V(C4Gr) 9.9 5
24 aJ,V(Tund) 1.86 5
25 aJ,V(Wetl) 1.84 5
26 aJ,V(Crop) 1.92 5
27 αq 0.34 5
28 αi 0.04 5
29 K25

C 445 × 10−6 5
30 K25

O 0.33 5
31 a�,T 1.45 5
32 EKO 36218 5
33 EKC 58637 5
34 EVmax 62045 5
35 Ek 50592 5
36 ERd 42023 5
37 f R,leaf 0.26 25
38 f R,growth 1.12 5
39 fS 0.43 −0.1; +0.2
40 κ 0.59 −0.9; +9.0
41 Q10,f 2.00 −0.5; +0.75
42 Q10,s 1.31 −0.5; +0.75
43 τ f 6.8 −1.0; +3.0
44 β(TrEv) 1.33 25
45 β(TrDec) 1.01 25
46 β(TmpEv) 1.23 25
47 β(TmpDec) 2.55 25
48 β(EvCn) 0.74 25
49 β(DecCn) 1.77 25
50 β(EvShr) 1.21 25
51 β(DecShr) 0.20 25

Table 1. Continued

Number Parameter Value Uncertainty

52 β(C3Gr) 0.77 25
53 β(C4Gr) 0.76 25
54 β(Tund) 1.14 25
55 β(Wetl) 0.56 25
56 β(Crop) 3.26 25
57 offset 336.3 0.3

Notes: Units are V max: µmol(CO2) m−2 s−1, aJ,T : (deg C)−1,
a�,T : µmol(CO2)mol(air)−1(deg C)−1, activation energies E:
J mol−1, τ f : years, offset: ppm, all others unit-less.
Uncertainties are in percentage except for log-normally
distributed parameters for which a range is given. Uncertainties
represent one standard deviation.

Table 2. Input quantities for vertical weighting for
calculation of XCO2 concentration on TM3 fine grid
configuration with 19-σ levels

Level Press (Pa) Weight 1.6 µm Weight 2.0 µm

1 97908.00 0.050 0.107
2 96637.70 0.051 0.106
3 94895.50 0.051 0.105
4 92748.40 0.052 0.103
5 88410.40 0.054 0.100
6 80892.20 0.057 0.094
7 70973.50 0.062 0.085
8 59045.40 0.068 0.073
9 46180.60 0.075 0.058

10 33827.50 0.079 0.043
11 25439.80 0.077 0.031
12 20697.90 0.071 0.025
13 16579.90 0.062 0.019
14 13072.40 0.052 0.015
15 10134.70 0.043 0.012
16 7708.66 0.035 0.009
17 5728.36 0.028 0.007
18 3556.67 0.021 0.005
19 1136.03 0.012 0.003

with a posterior uncertainty of 0.013 GtC yr−1. For a consistency
check we can calculate a lower bound for that value by thinking
of a well-mixed atmosphere that is sampled at the end of the
integration period by all A-SCOPE observations. The number of
observations on the 72 × 48 grid over 12 months is about 40 000,
and the average data uncertainty about 1 ppmv, which yields an
uncertainty of 0.005 ppmv. We can infer, as a single unknown,
a 20 yr global mean NEP by inverting the box model. This
is particularly easy if we assume that the initial concentration
(parameter 57) is known and neglect the contribution of the prior
uncertainty in eq. (2). Using a conversion factor of 20 × 0.5 yr
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Table 3. Prior and posterior uncertainties for all experiments in GtC yr−1

Experiment Case NEP Eur NEP Rus NEP Bra NPP Eur NPP Rus NPP Bra NEP gobal

Prior 0.4500 1.5000 1.1000 0.6600 1.1000 4.9000 52.0000
1 1 0.0052 0.0054 0.0072 0.0100 0.0220 0.0850 0.0092
1 2 0.0054 0.0057 0.0081 0.0100 0.0230 0.0880 0.0130
1 3 0.1700 0.1100 0.2800 0.3300 0.4900 1.2000 0.1200
2 0.0059 0.0050 0.0090 0.0100 0.0220 0.1100 0.0100
3 0.0042 0.0042 0.0060 0.0082 0.0190 0.0750 0.0130
1 2 * 0.0329 0.0814 0.0767 0.3252 0.8128 0.7676 0.8114
1 2 ** 0.0063 0.0099 0.0111 0.0340 0.0844 0.1164 0.0822

ppmv per GtC, we end up with a value of 0.0005 GtC yr−1. This
is consistent with the experiment’s posterior uncertainty of 0.013
for global NEP, which is well above this lower bound.

Note that posterior uncertainties for A-SCOPE derived by
CCDAS are generally lower than those of assessments for the
OCO mission by classical transport inversions (Chevallier et al.,
2007; Miller et al., 2007; Baker et al., 2008) or Kalman filters
(Feng et al., 2009). Their values, however, refer to considerably
shorter temporal averaging periods than our 20 yr. Extending
the averaging period typically reduces the uncertainties owing
to negative correlations in uncertainties along the temporal axis.
This is well known in flux inversions but also holds in CCDAS
(Scholze et al., 2007). A detailed attribution of the differences
in posterior uncertainties to factors such as the averaging period,
the additional constraint through our terrestrial model, and the
mission concept is far beyond the scope of the present study.

The benefit from the observational constraint is limited by
the uncertainty from errors in the terrestrial model. The two
bottom rows of Table 3 (labelled Experiment 1, Cases 2* and
2**) illustrate the effect of including a σ y,mod term in eq. (16)
for the calculation of Experiment 1, Case 2. For Case 2* we
use the values for the example calculation for σ y,mod based on
model spread representing the state-of-the-art around the year

2000 (see Section 2.2). Note that this calculation produces the
total uncertainty in model output, that is, it also includes the
parametric uncertainty, which our method already accounts for.
Hence, assigning this total uncertainty to σ y,mod (the fraction of
uncertainty in model output that is not produced by parametric
uncertainty) is extremely cautious. This is also indicated by the
large uncertainties produced by the prior parameter uncertain-
ties (row 1). Meanwhile a number of benchmarking activities
(e.g. Randerson et al., 2009; Cadule et al., 2010) are aiming at
separating realistic from unrealistic process formulations in ter-
restrial biosphere models. Such activities will drastically narrow
down σ y,mod: To reflect the anticipated progress, Case 2** uses
a σ y,mod of 10% of the above-calculated total uncertainty.

The reduction of uncertainty relative to the prior uncertainty
quantifies the strength of the observational constraint on the
respective target quantity. It is shown for all target quantities
in Fig. 4. For each of the regions, NEP is better observed than
NPP. The comparison between Cases 2 (black bars) and 1 (grey
bars) shows that adding the station network yields only slight
improvement. The constraint by the station network alone is
about a factor 20–40 weaker than the constraint by A-SCOPE.

Uncertainty reductions for Experiments 2 and 3 are in the
same range as for Case 2 of Experiment 1. This means the good

Fig. 4. Uncertainty reduction (relative to prior uncertainty) for A-SCOPE only in black (case 2). For comparison grey bars show uncertainty
reduction for case 1.
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Fig. 5. Posterior uncertainty for A-SCOPE
only as a function of observational
uncertainty.

performance of A-SCOPE is robust against the horizontal and
temporal averaging in the Jacobian and a change of the spectral
band with the associated change in weighting function and ob-
servational uncertainty. In Experiment 2 the inflated uncertainty
for σ mod in eq. (14) meant to compensate for challenges in mod-
elling instantaneous samples as well as possible correlations in
uncertainties due to model error did not degrade the performance
of A-SCOPE.

Experiment 4 enables us to plot the posterior uncertainty in all
seven target quantities over the scaling factor. Figure 5 shows a
modest sensitivity of the target uncertainty to the scaling. This is
because the scaling is deliberately restricted to the observational
uncertainty while uncertainties reflecting model and representa-
tion error are kept constant.

4. Conclusions

The present study investigated the benefit of A-SCOPE obser-
vations in a CCDAS that links the terrestrial vegetation model
BETHY (Knorr, 1997, 2000) to observations of CO2 total col-
umn content via the fine resolution version of the atmospheric
transport model TM3 (Heimann and Körner, 2003). In the mod-
elling process chain the observations are used to reduce uncer-
tainties in the values of BETHY’s process parameters, and then
the uncertainty in the process parameters is mapped forward to
uncertainties in both NEPs and NPP over three regions. Note
that traditional transport inversions cannot handle target quanti-
ties other than NEP.

For the assessment, other sources of carbon dioxide (the so-
called background fluxes) such as fossil fuel emissions, land
use change fluxes and exchange fluxes with the ocean were pre-
scribed to fixed values without uncertainty. We are thus likely to

over estimate the A-SCOPE constraint on the terrestrial process
parameters and, hence, also on the calculated fluxes.

A-SCOPE yields considerably better reductions in posterior
uncertainties than the ground-based GLOBALVIEW station net-
work used by Scholze et al. (2007). This is true for assimilating
monthly mean values and instantaneous values, and it is true for
both the 1.6 µm band and the 2.0 µm band vertical weighting
function. The strength of the constraint through A-SCOPE ob-
servations is high over the range of observational uncertainties
from 0.05 to 1.25 ppmv over land and from 0.15 to 3.75 ppmv
over ocean. A potential A-SCOPE mission would, thus, have a
major impact on our understanding of the global carbon cycle
and narrow down the currently large uncertainties in future cli-
mate simulations owing to the climate-carbon cycle feedback
(Friedlingstein et al., 2006).

The reasons for the strong constraint lie in the real global
coverage and the much larger number of observations compared
to the GLOBALVIEW station network. In contrast to pure trans-
port inversions, the CCDAS approach exploits the powerful con-
straint provided by the terrestrial process formulations within the
vegetation model. The model classifies global vegetation into 13
PFTs grouped according to the plants’ morphology, physiology,
phenology as well as bioclimatic limits. Each PFT has its own
set of process parameters and provides a strong link between the
various regions of occurrence. Hence, an observation over one
region can help to constrain fluxes over another region. For a
model with more PFTs, or spatially varying parameter values,
the observational constraint would be weaker.

Similar to pure transport inversions our study results also de-
pend on the assumptions on uncertainties that reflect model and
representation errors. This study neglected correlated uncertain-
ties for the observations and for the sampling of the horizontal
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mean XCO2 concentrations over a TM3 grid cell. The A-SCOPE
Report for Assessment (ESA, 2008) specifies a systematic error
contribution of as low as 10% to the total observational uncer-
tainty. It is desirable to stay with a mission design that assures
a low and uniform systematic error. This is because calibration
against ground measurements may help to build a model of the
systematic error, for example, with a uniform mean value plus
a random component. The mean value can then be subtracted
from the observations prior to assimilation and only the ran-
dom component enters the inversion in the form of a correlated
uncertainty.

Our estimate of the uncertainty that reflects representation er-
ror is based on independent sampling of the XCO2 concentration
within a horizontal transport model grid cell of 4◦ × 5◦ and an ad
hoc assumed variability of 3 ppmv. This yields a relatively low
representation error. It would be desirable to derive an improved
estimate reflecting observed small-scale variability. Traditional
transport inversions would also benefit in the same way from a
better quantification of representation error.

Any comparison based on published work with classical trans-
port inversions is difficult, because differences in posterior flux
uncertainties are affected by a number of factors such as the con-
straint through the terrestrial model as mentioned above, but also
through differences in averaging periods and regions, transport
model, and mission concepts.

This study has quantified the benefit of A-SCOPE in conjunc-
tion with the ground-based flask sampling network only. Both
observational types are similar in that they constrain the net flux
of carbon dioxide via the atmospheric concentration. There are
or will be, however, further remote sensing data streams avail-
able from optical sensors (e.g. MERIS) or microwave sensors
(e.g. SMOS). Such instruments provide direct constraints on
vegetation phenology (MERIS) or hydrology (SMOS), which
are tightly coupled to the terrestrial carbon cycle. It is expected
that such data streams provide constraints complementary to A-
SCOPE. It is highly desirable to set up a system that can benefit
of this multiple constraint in terms of uncertainty reduction in
carbon fluxes. Since standard transport inversions lack any pro-
cess representation of terrestrial phenology and hydrology, such
a quantitative assessment has to be performed in the framework
of a CCDAS.
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