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Abstract. The global network FLUXNET supplies environmental scientists with valuable data

on ecosystem exchange processes along with meteorological measurements. Ecosystem charac-
teristics at these sites can be efficiently complemented by remote sensing data from the MODIS
sensors on-board the NASA satellites Terra and Aqua. The ORNL DAAC makes resampled
MODIS key products as so called 'Land Product Subsets’ available. These subsets comprise
selected MODIS products in a 7x7 km grid centered on FLUXNET sites. One of these products
is the leaf area index (LAI). Despite the frequent application of MODIS LAI data in ecosystem
models, there is still no consensus on its usage and the employment of the additionally provided
quality criteria (QC). In this study, we analyze the effects of various QC filters, spatial aggre-
gations and sensor choices on magnitude and temporal dynamics of LAl data at six FLUXNET
sites. Additionally, we assess the sensitivity of a simple soil-vegetation-atmosphere-transfer
(SVAT) model on differently post-processed LAl times series. Itis found that it is advantageous
to combine the products of both sensors. The consideration of quality assessments is essential,
but the QC application is not straightforward for forest sites and the QC choice can have signif-
icant effects on the resulting LAI time series with considerable consequences on the outcome
of subsequently applied SVAT models.
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1 INTRODUCTION

Continuous eddy covariance measurements by micro-meteorological flux towers have become
indispensable in monitoring the exchange of energy, carbon and water fluxes between the terres-
trial surface and the atmosphere. The global network FLUXNET [1] merges these valuable data
collected around the world in a comprehensive database and provides the scientific community
an unique opportunity to establish understanding of ecosystem exchange processes and set up,
calibrate and validate models to predict ecosystem behavior in a changing environment [2, 3].

However, flux towers can only catch a glimpse on ecosystem processes given their point
measurement nature which stands in contrast to the usually more extensive, spatially contin-
uous model application scale. Satellite remote sensing, instead, offers spatially continuous
information and can consequently help to dissolve the dilemma of having scattered point mea-
surements on the one hand and the need to analyze and predict exchange processes at a local,
regional or even global scale on the other hand by bridging the gap between these scales [4, 5].
Furthermore, remote sensing can provide ecosystem characteristics that are time-consuming or
difficult to gather in the field [6]. Vice versa, the validation of remote sensing products relies on
continuous measurements such as done at the FLUXNET sites [7, 8].

The MODIS sensor on-board the satellites Terra and Aqua launched within the framework of
NASA's EOS program (Earth Observing System) has proven itself a key sensor in remote sens-
ing of ecosystem dynamics and land surface processes [9]. In this respect, MODIS data have
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been widely applied in studies to detect the vegetationiplogical status [10, 11]. The syn-
ergetic interaction between micro-meteorological towemasurements, modeling and remote
sensing is supported by the Oak Ridge National Laboratosjributed Active Archive Cen-
ter (ORNL DAAC): This institute makes resampled key remaessng products from MODIS
(Moderate Resolution Imaging Spectroradiometer) as $edc@&1ODIS Land Product Subsets’
freely available. These files are provided in an easy to leeaslttii-format and comprise selected
MODIS land products in a 7x7 km grid centered on FLUXNET angeotfield measurement
sites. One of these subset products retrieved by radiativsfer modeling with MODIS Terra
and Aqua data is 'MOD15A2’ or 'MYD15A2’, respectively, whicprovides 8-day estimates
of the leaf area index (LAJm?m~2]) accompanied by the closely related FPAR (Fraction of
Absorbed Photosynthetically Active Radiation) [12].

The dimensionless LAl defined as one-sided surface areaeéseand needles per ground
area[13,14] is a main biophysical driver in ecosystem n®fé—17]. The MODIS LAl prod-
uctis also increasingly frequently used in applicatiorghsas numerical weather forecasting or
hydrological modeling [18, 19]. The MODIS algorithm to iietre the LAl is based on inverse
radiative transfer modeling; in case of its failure undefauarable conditions, an empirical
back-up algorithm is triggered [20]. Quality criteria pide information about the suitability of
the individual retrieval with respect to the algorithm patte detector state, geometry problems
and cloud conditions [21].

The MODIS LAI product is considered as having reached thersgtgalidation stage what
means that it has been evaluated in several field studiesofferient time periods, and all ma-
jor biomes have been covered by analysis. Over all biomed,Ah shows an accuracy of 0.66
(root mean squared error) according to the validation welmdithe MODIS Land Team [22].
Still, several problems persist even in the actual Colbech and the user is confronted with the
problem of how to use the product data. This situation is ceflk by the different approaches
using MODIS LAI data and comparing it with other LAl data soes as well as the ongoing
development of smoothing techniques and alternative ilhgos [23—25]. Consequently, when
combining MODIS LAl subsets with FLUXNET data the user hasrtake several decisions
regarding the data post-processing: Which quality filteil sf&applied? Should neighboring
pixels be considered and if yes, how wide shall the data winde drawn in the 7x7 pixel
subsets? Shall only Terra or Aqua data be used or shall thepibined? These questions
have to be answered before methods are picked to fill missitgahd smooth the time series
as necessary.

Usually, MOD15A2, hence the more extensively validatedderoduct, is downloaded by
researchers, but [26] showed that there are no significéfietelices between the two sensors
at the continental and tile scale and concluded that the o@tibn of them helps to enlarge
the number of high quality retrievals. However, on a pixelpixel basis there occur large dif-
ferences sometimes. The problem of choosing an appropdtguality filter at FLUXNET
sites has been tackled differently in MODIS LAl studies: ¥driations are used from selecting
only those values signed as ’best’ to no filtering: For exam[#7] preferred data flagged as
‘best’, [28] and [29] recognized all 'good’ data, [25] scneel low quality data not marked at
least as 'good’ and those contaminated with clouds, [3@réi out cloud contaminated pixels,
and [31] averaged over all values. [26] advise to use badetrjgvals with care. Likewise, the
question whether surrounding pixels should be taken intowaat and if yes how many pixels
around the tower should be used has been answered diffebgrgtientists: For example, only
the central tower pixel is considered by [27]; in other stsiBx3, 5x5 or 7x7 mean or median
averaging windows are drawn around the tower pixel with thepse of better representing
the flux tower footprint and reducing geolocation and pistift errors with the additional ad-
vantage of reducing the number of missing data points [3]L-B3e latter problem of spatial
and temporal discontinuity is an inherent characteridtremote sensing data in the visible and
near infrared due to the sensitivity of the radiance to cloowkr, snow and increased aerosol
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loading. Several studies have recently dealt with this lgroband developed spatial-temporal
smoothing, filtering and gap-filling techniques [18,2538], These approaches make, together
with complex statistical and modeling techniques, agaagaof quality flag and land class fil-
tering as well as spatial averaging around a center pixelvener, the analysis of effects of
these basic methods and their modification have been someetjacted in the literature.

In what follows, we analyze explicitly the effects of somendiamental post-processing
methods on the magnitude, temporal variability and coestst of MODIS LAI values ex-
emplarily at six FLUXNET sites of different vegetation cdas from an end user perspective.
Specifically, we illustrate the impact of several qualityefis, assess the consequences of aver-
aging over different window sizes around the tower pixel eachpare Aqua and Terra subsets
and consider the combination of them. Finally, the consege® on the output of a simple
evapotranspiration model (BUCKUP’) resulting from diféat LAI input data sets are evalu-
ated.

2 DATA
2.1 Study sites

Six FLUXNET test sites in North America are selected (Table Ruke Forest, North Car-

olina, USA, Howland, Maine, USA, Harvard Forest, Massaeltiss USA, Morgan Monroe

State Forest (MMSF), Indiana, USA, Vaira Ranch, Califortd&A, and Lethbridge, Canada.
These sites have been arbitrarily chosen between thosgifeptomprehensive multi-annual
time-series with a good temporal coverage and being ofted insthe FLUXNET community

(e.g.[36,37]).

Table 1. Characteristics of the study sites according toXdNBT and LocClim, the FAO Local
Climate Estimator [38]. Geographic location: latitude)lavest longitude (long). h: elevation.
Vegetation types (VT): evergreen needleleaf forest (EMELiduous broadleaf forest (DBF),
grass (G). Koeppen-Geiger climate classes: C: temperatepminental, f: fully humid, s:
summer dry, a: hot summer, b: warm summer. Temperature (Ipeacipitation (P) are annual
mean averages.

site lat, long h [m] VT climate T[] P [mm]
Duke 35.98,79.09 163 ENF Cfa 14.4 1169
Howland | 45.20,68.74 60 ENF Dfb 5.3 1070
Harvard | 42.53,72.17 340 DBF Dfb 6.6 1071
MMSF 39.32,86.41 275 DBF Dfa 10.9 1032
Vaira 38.41,120.95 129 G Csa 15.9 544
Lethbridgg 49.71, 112.94 960 G Dfb 5.4 398

Duke Forest is an evergreen needleleaf forest plantati@bofit 25 years in a humid cli-
mate with mild winters and hot summers. Its overstorey atraokely consists of loblolly pine
(Pinus taeda L.) with a mean height of about 20 m; 26 diffeh@ntlwood species form the rich
understorey [39]. In December of 2002 an ice storm damagedtord of the trees [40]. In the
temperate continental Howland Forest, hardwoods suchdasaple and paper birch (Betula
papyrifera) occur among the dominating coniferous spexse®d spruce (Picea rubens), east-
ern hemlock (Tsuga canadensis), balsam fir (Abies balsarmed)white pine (Pinus strobus).
The median stand-age of this boreal-northern hardwooditranal forest is about 100 years.
The canopy height is estimated as 20 m [41]. Harvard Foresgisly composed by decidu-
ous broadleaf trees with a stand-age of about 80 years. Thespecies are red oak (Quercus
rubra), red maple (Acer rubrum), black birch (Betula lenté)ite pine (Pinus strobus), hemlock
(Tsuga canadensis), white oak (Quercus alba), black oadr@Qs velutina), and hickory (Carya
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ovata) with a mean height of 23 m. The climate is charactétizecold winters and warm sum-
mers [42]. MMSF is also classified as deciduous broadleafstodominantly composed by
sugar maple (Acer saccharum), tulip poplar (Liriodendndipifera), sassafras (Sassafras al-
bidium), white oak (Quercus alba), black oak (Quercus nigrith a mean age of almost 80
years. Cold winters and hot summers form a temperate cotéiheimate [43].

The two selected grassland sites represent contrastirmysiems: Vaira Ranch is located
in the lower foothills of the Sierra Nevada Mountains on ngatafarmland. The C3 annual
grasses grow in a Mediterranean climate with a distinct glhoseason in summer [44]. Leth-
bridge, however, east of the Canadian Rocky Mountains, asacterized by a humid climate
with cold winters and warm summers. The short prairie casnsisC3 and C4 species [45].

For all sites but Lethbridge, field measured LAl data wereilalke via the website of
AmeriFlux, the regional subdivision of FLUXNET. An overweon the time range with avail-
able measurements from 2002 to 2009, the number of measoiea®well as remarks to the
measurements can be found in Table 2.

Table 2. Available field measurements specified by the coMéree range and the total number
of sample dates within the whole time perid along with infation on the measurements.

site time range| number| measurement

Duke 2002-2005| 8 Multiple techniques assimilated
Howland 2006 7 LAI-2000; 200 m transect every 10 m
MMSF 2002-2006| 95 LAI-2000

Harvard 2005-2008| 41 33 samples per date

Vaira Ranch| 2002-2006| 48 Li-Cor 3100, 4 samples per date

2.2 MODISLAI data

As sensor on-board Terra and Aqua, two sun-synchronousearecircular satellites, MODIS
scans the earth surface every second day, abdvatdtude even every day with a swath width
of 2330 km. The 36 spectral channels in the visible and ieftapectrum have a resolution of
0.4 to 14.4 m and a spatial resolution of 250 to 1000 m with taeter wavelength having the
greater resolution [46]. To retrieve the LAI products, nmdOD15A1 and MYD15A2, up
to seven spectral bands are utilized to solve the inverseprdblem with a radiative transfer
model. The parameters for this model are stored in a lookble specifically for eight biomes.
If this main algorithm fails, a back-up algorithm is calletiieh regresses the LAl on the basis of
a empirical relationship between the LAl and NDVI (NormatlizDifference Vegetation Index).
The final product has a resolution of 1 km. The daily valuesnaeeged to 8-day composite
products to reduce the impact of clouds and aerosols agldisifactors, whereas the LAl of
the day with the maximum FPAR value is selected for the rase8-day period [47]. To create
the MODIS Land Subsets, the LAl product is resampled in sughyathat the center pixel of a
7x7 grid of 1-km pixels contains the FLUXNET tower. The suksmntain six values for every
time step: a LAl as well as FPAR value, their standard demiasti a general and detailed quality
criteria (QC). In this study, MOD15A2 and MYD15A2 are dowatted in ascii-format from
the ORNL DAAC website [48]. The LAl and the general QC are asted from both sensors.
The general QC provides four quality informations in 8 b@@se quality criterion is called
'MODLAND _Q’ and allows a first check on the LAI quality. Since the altfam path is the
main factor influencing the LAI quality [26,47], MODLANLY informs the user if the main
algorithm was used, if the back-up algorithm had to fill infahe value could not be retrieved
at all. Another quality criterion indicates if the detectaorked for up to 50 % of the channels
or was mainly dead. The cloud state quality bit specifiesef ixel was clear, a significant
cloud coverage or mixed clouds were present, or if the cleéatis could not have been iden-
tified. Finally, additional details about the algorithm Ipaire provided: A retrieval with the
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main algorithm without saturation is classified as 'bessjiae result’, with saturation as 'good
result’. Saturation means, the reflectances do not delnemige information about the surface
and the canopy radiation transfer model is insensitive tetafspossible canopy realizations,
thus the probability for different LAl values is of the sameagnitude. This situation occurs
with increasing frequency for LAl values greater than 4 affielcés almost every value greater
than 5 since the reflectances at these high LAI values get anatenore insensitive to LAl
differences [47]. It is further stated in the detailed QG lifithe main algorithm failed and the
back-up algorithm was used due to geometry problems or f@raeasons than a bad geometry.
A complete failure is the last possible outcome of the atbaripath analysis.

In this study, we consider following QC cases: unfilteredudless, 'good’ values, 'good’
values without clouds, 'best’ values, 'best’ values withdouds, back-up retrieval and back-up
retrieval without clouds. Terra began to provide MODIS dadan the beginning of 2000, Aqua
followed in April 2002. In this study, data from both sensare recognized from the latter date
when both MODIS products are available until September 2009

2.3 MODISland cover data

Additionally, the MODIS land cover product (MCD12Q1) retred with data from Terra and
Aqua [49], is downloaded to further characterize the pigetaind the tower and to filter pixels
of strongly differing land classes. MCD12Q1 subsets ardala for the years 2001 to 2005.
They provide annual land class estimations around the tawtiera spatial resolution of 250 m.
Five land classifications are offered. For this study, thelttand cover scheme, the so called
'MODIS-derived LAI/FPAR scheme’ has been selected. Thisesee distinguishes between 8
vegetation classes beside water, non-vegetated and udsses: 1. Grasses and cereal crops,
2. shrubs, 3. broadleaf crops, 4. savanna, 5. evergreedlbabforests, 6. deciduous broadleaf
forest, 7. evergreen needleleaf forest, 8. deciduous eleadliforest. These eight classes are
exactly those which are used in the LAI retrieval and havewshito be somewhat more reliable
than the other classifications provided [50].

We assume there have been no substantial land use chanpesiireas around the towers
neither in the years 2001 to 2005 nor later on and generategiedand class map for all years
by comparing the corresponding pixels of all five years. That class is assigned to the
pixel that at least occurs three times. After the temporgkeggtion, the pixels are spatially
aggregated: A mask with its resolution matching that of tiAé grid is generated, for what
the four corresponding 250-m pixels of each 1-km pixel a@n@red. That land class which
occurs at least at three of the four sub-pixels is assignedetd.-km pixel. If no land class
appears more than two times, this pixel is treated as urifidgssind not considered in the
further analysis. Additionally those pixels are excludeahtf the further study which have
a completely different land cover and consequently not aradge LAI values in relation to
the tower pixel. [25] have shown a land class selection toupersor for spatial aggregations.
However, pixels with another but similar land classes aoepied for the further analysis. Our
reason for this procedure is that the MODIS land cover prodfien seems to have difficulties
to distinguish between similar vegetation classes, eafhgdh inhomogeneous areas [7, 50].
However, misclassifications in relatively similar biomes/é moderate consequences on the
LAI retrieval [50]. For the coniferous, deciduous and miXeckst sites, all the forest classes
5 to 8 are considered as similar. The classes 1 to 4 serve #darsitasses for the grassland
sites. The classification problems are clearly evident éndbwnloaded subsets. For example,
MOD12Q1 classification type 3 cannot detect the loblollyepptantation within a hardwood
forest, but identifies a broadleaf forest in the whole regaoound the tower. Additionally,
many pixels are variantly classified as shrub, savanna aamb @nd evergreen and deciduous
forest during the five years; the severe icestorm distudgsaad the rich understorey certainly
play a role in this context (see section 2.1). At the grask#ies, the grassland class alternates
spatially and temporally with the savanna class and in s@sexwith the crop class. The center
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pixels at Vaira are even always classified as savanna. Tlee thitee study sites are relatively
uniformly and stably classified. In what follows, only pigedround the tower are taken into
account which have a similar land class as the known vegatatass of the FLUXNET site

according to the method explained above.

3 ANALYSIS
3.1 Overview

In what follows, the frequency of occurrence of the variousldy criteria and their effect
upon the seasonal evolution and statistical charactsisfi the analyzed LAI time series are
investigated. The various data sets resulting from theiegtn of quality criteria and the
spatial aggregation from 3x3 to 7x7 pixels or mere usage ®talver pixel, respectively, are
thereafter analyzed and presented. Subsequently, tha ded Aqua data sets are directly
compared and combined to a single time series. Finally, shmvn of which magnitude the
differences of a simple evapotranspiration model are wisamgwarious MODIS LAl data sets

as model input.

cloudy

Lethbr.: 35/41 /26

good

Duke: 59/61/72
Howland: 47 / 37 / 58
Harvard: 51/49/58
MMSF: 65 /59 / 61
Vaira: 88 /93 /81

64 /61

/
8
Lethbridge: 58 /

cloudless good

Duke: 94 /91 /97 | Duke: 95/95/98
Howl.: 82 /81/89 | Howland: 75/79 /85
Harvard: 83 / 80 / 89| Harvard: 84 / 86 / 92
MMSF: 87 /86 /92 | MMSF: 79/80 /88
Vaira: 94 /94 /98 | Vaira: 100/ 100/ 100
Lethbr.: 65 /59 / 74 | Lethbridge: 91 /88 /88

Fig. 1. Quality sets of MODIS LAI data used in this study. Thenber are percentages of
the respective superordinate quality set for Terra, Aqukthe combined time series explained
below (listed in this order in %). Cloudy and cloudless valaee subsets of the whole quantity
of LAl values. These sets characterized by the cloud state fiabsets of back-up and 'good’
quality sets. The sets of 'good’ retrievals have a subsebedt’ values. The percentages refer
to the directly superordinate set. This means i.e. for theTekra data at Duke Forest, there are
6 % cloudy and 94 % cloudless retrievals. 95 % of the cloudiiesa are classified as 'good’,
only 5 % have been retrieved by the back-up algorithm; 62 %hef'¢ood’ main algorithm

retrievals achieve even a 'best’ result.

3.2 Quality criteria
3.2.1 Occurrences of QC classes

To characterize the quality sets, the proportion of theowsriquality classes (unfiltered, 'good’,
'best’ and back-up) with and without clouds as percentagallafetrievals is quantified as a
first step. Fig. 1 uncovers that significant more LAl valuesemetrieved under cloud-free
than under cloudy conditions according to the QC bits (59 %94 Aqua data tend to have a
little more cloudy pixels than Terra data (up to 6%). Cloudjues have a higher percentage of
back-up values. 68 to 100 % of all retrievals resulted in @jcgesults via the main algorithm
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with the maximum number at Duke Forest and Vaira; at therlaite, the back-up algorithm
has merely had to be triggered. Most 'good’ values are aatativith a clear sky (76 - 99 % of
all ‘'good’ values). Vice versa, the percentage of back-Upagincreases for cloudy pixels up
to 53 % The 'best’ retrievals make up 62 to 82 % of the 'good’'aehe forest sites and almost
all 'good’ retrievals are 'best’ at grassland sites, so lyare saturation occurred. Overall, about
50 to 64 % of all retrievals achieved a 'best’ result, with #xeeption of Vaira, where almost
all LAl values are rated as 'best’. Most 'good’ values witlowtls belong to the 'best’ quality
set with up to 98 % at forest sites. In contrast, the percentdfpest’ retrievals amount to 62 -
82 % of the cloud-free 'good’ retrievals.

3.2.2 Seasonal evolution

As a second step to assess the impact of quality criteria driib® series, a visual inspection
is carried out. For this purpose, Fig 2 plots the LAI-timeisgrof all pixels for the various
quality sets in following order of increasing filtering: a#trievals, 'good’ retrievals, 'good’
retrievals without clouds, ’best’ retrievals, and 'bestrievals without clouds. Earlier plotted
values belonging to the 'lower’, less stringent qualitysslare therefore covered by the dots
of higher classes; values which are filtered out remain MsiltWhat catches the eye first is
a division of LAl values into two domains: ’'best’ values malkge the LAl values from 0O to
about 4m?m~2 and 'good’ values without the 'best’ are located above upht maximum
LAIL. Even in summer, the LAl values are scattered almostuphmut the whole range of LAI
values. Unfiltered values which are not overlapped by thbdriguality values, hence back-up
values, appear in the whole LAI range, but tend to aggloraaratvinter. Often they appear
as a vertical sequence of dots, which can reach values thé&hvaer or higher than the average
at the considered time step. But beside the very low outirevginter they form a time series
that seems to be not different from higher quality data. mser the back-up retrievals at high
LAls even tend to be not as noisy as the values flagged as 'goawtladopt values around the
mean of 'good’ values. Values from cloudy pixels, back-upiegals and values in the 'best’
set accumulate frequently in clusters in the lower LAl range

The phenomenon of segmentation of the 'good’ values in theration domain above 4
m?m~2 and 'best’ values at forest sites beneath it becomes evea apgarent in the mean
multi-year time series (Fig. 4): Whereas they are similar inter, they diverge strongly in
summer. The time series build from the 'best’ values readis ahout 60 % of the summer
level of the time series resulting from the 'good’ valuesac®i the set of 'good’ comprises the
'best’, the multi-year mean of the 'good’ values without thest’ retrievals in summer is even
higher. This time series of the 'good’ without the 'best’ iansmer is plotted in Fig. 3 and
exhibits significant better seasonal dynamics than theterdd time series or the ’best’ time
series as shown in Fig. 2 in blue color. It is generated in tlewing way: As soon as the
median of the 7x7 LAl values gets greater thamZmn —2 in spring, all values are deleted which
do not belong to the saturation domain ('best’). This apphda applied for the whole summer
until the median of the LAI gets smaller tham#m 2 again. 4m?m~2 is chosen as a limit
because the non-saturation frequency increases drasticabrding to the product’s theoretical
basis document [47]. And indeed, less than 2 %, in most casesless than 1% of the "best’
values are greater thand?m 2.

3.2.3 Statistical characteristics

In statistical terms, the single quality sets show diffees; too. The means of the quality
sets can be assigned to three groups of similar set meansdtetadivalues, retrievals without
clouds, 'good’ and 'good’ values without clouds form a graffmeans, 'best’ retrievals and
those with clouds build another group with lower means, aukhip values, finally, present the
third group with higher means with respect to the other gso@ince there are almost no 'good’
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— unfiltered
o~ r ' U
e b good
~ 4 E'l " 'good' w/o
E gl ‘best’
E 2£ + 'best' wio
o e field data
r

500 1000 1500 2000 2500
Fig. 2. LAl time series of the Aqua data sets at Duke (a), Ho@/lgb), Harvard (c), MMSF (d),
Vaira Ranch (e) and Lethbridge (f) showing the various qyaliiteria classes the LAI values
belong to. These have been plotted in the order unfiltereddggood’ without clouds, 'best’,
"best’ without clouds. Dots plotted later cover previoustfe#d dots. LAl field data are plotted
as a rough reference.
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values with saturation at grassland sites, hence 'goodegare also rated as 'best’, only two
groups can be identified: unfiltered and main algorithm \v@agwell as back-up values. At the
grasslands there is no tendency regarding the differenweeba the group means. Within all
groups, retrievals from cloud-free pixels have a highermtean their unfiltered counterparts,
and a even higher mean than the cloud affected retrievaks differences between the quality
set means reach values in the range of the LAl magnitude ofifikered mean; at MMSF
the difference between the back-up values and the ’bestuatado nearly 4 LAI units. The
medians of the quality sets are lower than the means, onlpalck-up medians are higher
in a few cases. The medians have the same characteristibge aseans, but show with up
to 5 LAI units even higher differences between the qualits.s& he analysis of the quality
sets’ variances draws a similar picture: lower variancebesdt’ and cloudy values and higher
for back-up retrievals compared to the unfiltered and 'gaettievals. The average variance
of time series without clouds is lower than that of the unfdtetime series. The differences
between the temporal variance of each pixel of the 7x7 pwélen compared to each other
are significant larger for time steps with clouds than withdoud coverage, so the temporal
variances are much more unsteady.

3 T axa P
: ' " . ey b _"'.. -8
"?n ! I"Q g = f Yy A
AN

1500 — 2000 2500

timesteps

Fig. 3. The set of 'good’ values without the ’best’ values imsner. This time series of Terra
at Howland is typical for the analyzed forest sites.

The LAI frequency distributions of the quality sets provate explanation for the differing
means and medians as Fig. 5 demonstrates: The unfilterezb\&low a frequency distribution
with two peaks around i2m~2 as well as 5n?m 2. The 'good’ LAI values form a similar
bimodal frequency distribution pattern with somewhat maistinct maxima at the most sites.
Likewise, the frequency distribution of the back-up retails has two peaks, but these are shifted
towards the upper and lower end of the LAl range. The 'bedties however, exhibit an
uni-modal distribution with a peak between 0 anchim—2. Most quality sets free of cloud
contamination show a smaller occurrence of lower valuesaahidjher occurrence of higher
values; this shift to higher values is most distinctive fug back-up sets.

With the non-parametric Kolmogorov-Smirnov-test all dtyasets are compared mutually
with each other with respect to their frequency distribugioThe results indicate that almost all
quality sets at the forest sites can be assumed to have ba&n thom different distributions
with two exceptions: first, the different cloudy data setthefmain algorithm - which is simply
a consequence of the fact that the most cloudy data from timd'gset are classified as 'best’
since they are in the lower LAl domain and hence not subjesataration - and second, the
'good’ values without clouds and the data set without namwsdion values in summer. At Duke
Forest, the 'good’ and the unfiltered set without clouds talailly comply with the null hy-
pothesis that they are from the same distribution and the satrue for the 'best’ sets with and
without clouds. At the grassland sites, unfiltered qual@issand those of the main algorithm
are found to be similar when they have the same cloud stdtisssimilarity is not surprising
since the classes share almost the same elements. Theaaltitiexecuted Kruskal-Wallis
hypothesis test, a one-way analysis of variance by ranksysia similar picture. In summary,
the two applied hypothesis tests show the tendency of th&t’’bets being different from the
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other sets at the forest sites and the cloud state playirgn#fisant role when comparing data
sets.

3.2.4 Comparison with field data

A comparison with the available LAI field data is done as nésg $n comparing the quality sets.
Since the LAl is not measured with the same methods at theitestand the field measurement
and MODIS scales are different the comparison is executstida trends and not to validate
the MODIS LAI data explicitly. The comparison shall serveaasadditional piece of the puzzle
of hints regarding the best usage of MODIS LAl data. A visuahparison in Fig. 2 reveals
that the MODIS LAl follows quite good the seasonal LAl dynami In the critical summer
season, the field measured LAI values from Harvard and Halliarin the range spanned by
the 'good’ MODIS values, at Duke Forest and MMSF, howeveg, field data are located at
the lower end of range of 'good’ values. In winter, howevee MODIS LAl values rather
underestimate the measured data at the needle leaf Dukst Boigktend to overestimate it at
the broadleaf MMSF - a phenomenon which has been often expbefore [51].

A quantitative comparison at the three sites with the lohfiekd measured time series
(Harvard, MMSF, Vaira) is carried out by applying the rootanesquared errot{M SFE), the
bias (as difference between the means) as well as the Nasli#f8efficiency (£C). The EC
is widely used in hydrology to evaluate modeled time serigls measurements and is defined
as the variance of residuals of predictéd) &nd observed®) values normalized by the variance
of the observed values and subtracted from one:

20— Bi)
Fe=1=Sr 0,20

This quality criterion ranges from a value of one for a perfiicto —oo whereas negative
EC values indicate that the mean of the observed time seriekii@wve been superior to the
predictor.

EC, RMSE and bias show a comparable behavior of the unfiltered andd’gadues with
respect to the field data at the forest sites (Fig. 6a). Thisiesfor all spatial configurations
from the exclusive use of the tower pixel to the exploitatd@ll 7x7 pixels with a similar land
class available in the subset whereas it appears that the pnals are taken into account the
better is the match of field and remote sensing data. If thedgealues subject to saturation are
removed in summer comparison statistics improve a litieAtiMMSF and Duke, however, the
'good’ values in the saturation domain are too high compéwele field data; the consequence
is that the unfiltered LAl data compare best to the field dateesthe too low 'best’ values
and the too high 'good’ values in the saturation domain campte each other. Taking only
the 'best’ values into account, however, the goodness oéfitben field and MODIS LAl data
deteriorates and results in a greater bias BAdS F as well as a loweF C at the forest sites.
The retrievals without clouds tend to be somewhat more aolaed with the field measurements
at all sites which is especially apparent at Vaira Ranch. (61i).

1)

3.3 Spatial aggregation

Figure 6 discussed above has shown that the spatial agigredmst taking the mean of the
considerd pixel window has an influence on the comparahilith the field measurements:
The more pixels around the tower are used, the better thediieldMODIS data are comparable
tendentially. Do the spatial aggregations also have anipesiffect on the temporal consistency
of the resulting time series? The temporal evolution dudntypical year without extreme
events as storms, drought or severe fires is supposed to divel smooth; MODIS LAl
products, however, tend to show a higher temporal noise ¢xgected in a phenologically
sound sense [24,29,52].

Journal of Applied Remote Sensing, Vol. 4, 043557 (2010) Page 11

Downloaded from SPIE Digital Library on 18 Jan 2011 to 128.219.49.8. Terms of Use: http://spiedl.org/terms



b) —TP

—— 3x3 mean

: N
v 0.6 1

Qo6r M — i == i * 1 5x5 mean

\_/ 7x7 mean

e
. B 0.4 ./‘\./‘\./‘_‘
5 5 . » :/l\:/‘\:/b—l
-3 & 0y 03 S - 0y
& \© O \© > \© NS NS \© S \© & \© NS
§ S s OS\A & c}s > § S s R (}\& 5
S & & & & &
& S & 0

Fig. 6. Quality criteria for the comparison of field measudada with the MODIS LAI values
for the various quality sets at Harvard (a) and Vaira Rangh The tower pixel (TP) alone as
well as the 3x3, 5x5, 7x7 pixels around the tower pixel are gared with the field measure-
ments.

A comparison of the variances for the tower pixel and spatially aggregated time series
shows indeed a decrease with an increasing pixel windowisiflgee most cases, whereas at
the same time, the means remain very similar for the aggoegatexcept for Howland Forest.
An inspection of the Howland time series reveals lower v&inevinter for the more extensive
aggregations, which is a consequence of a changing treeasitiop in favor of deciduous
species; this assumption is supported by the MODIS land creesp.

But to evaluate the smoothness of the time series, the malgnif the up-and-downs at
consecutive time steps is even more important, for whabore#fse smoothness measurés
consulted. This method has already been used by [29] to camipa temporal consistency
of MODIS and CYCLOPES LAI time seriesi calculates the difference for each time series
element to the linearly interpolating line between its twigaaent neighbors:

0= (0.5 (LAI(t+ At) + LAI(t — At))) — LAI(t) (2)

A single drop of a time series element would for example lead highé value at this time
point, a sudden jump to a high negative value. Histogram$efrélative frequencies of all
occurringd-values show indeed a change of thdistributions for the different spatial aggrega-
tions towards the low-bins for the aggregations compared to the tower pixelglues: The
greater the aggregation, the steeper is the decrease agarliee the frequencies approach zero
occurrences towards largébins (Fig. 7a).

As second method to measure the smoothness and noise of thiemeAseries, frequency
analysis is applied and realized with the Maflbnction 'spa’, which calculates the frequency
response and power spectrum of a signal using Fourier asafysmooth, periodic time series
would result in a power spectrum with a sharp peak at low feegies and low values at higher
frequencies. A highly noisy time series would result in @éahorizontal part in the power
spectrum. The application of this method to the various eggfion show a faster drop of the
power spectrum towards high frequencies, the larger theeggfion window around the tower
pixel is. Figure 7b shows this behavior for Lethbridge. Thgragation not surprisingly tends
to blur the difference between the quality sets (Fig. 7b};dbill, the cloud filtered time series
has a lower power spectrum at high frequencies and the mgarithm time series without
clouds tends to show even more the characteristics of atlgliginoother time series. Using
only the tower pixel makes it more important to understardiaply the quality flags because
the difference between them gets larger (Fig. 7d). The frrqu analysis also shows that the
empirical back-up values are not necessarily more noigy i@ main algorithm values.
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(d).

3.4 Comparison of Terraand Aqua data
3.4.1 LAl retrievals and quality classes

As afirst step of the Terra-Aqua-analysis, we explore thetjues of whether it is advantageous
to combine MOD15A2 with MYD15A2. The number of overall retrals would clearly profit
from the combination of Terra and Aqua. In 6 to 7.4 % of all pdand retrieval dates one value
lacks in the Terra or Aqua data set but the other is availdblell but a few cases Aqua delivers
2 to 4 % more values than Terra which is mainly a consequeneelafger gap in the Terra
time series in 2006. The proportions of the quality classesinilar in the two data sets. The
greatest differences occur at Duke and Lethbridge with tipga’data sets having 3 % or almost
7 %, respectively, less main algorithm retrievals withdouds than Terra. In at least 4 % of
all retrieval dates, the pixel of one data set is cloudy, ttheiois not. The Canadian grassland
Lethbridge experiences the greatest cloud coverage oft difidip; the combination of the two
sensors could reduce this amount to 26 %.

3.4.2 Statistical characteristics

But are the two data sets really comparable and hence cobtethaAnalyzing the statisti-
cal characteristics of the two data sets, it becomes evitlanthe overall means of Terra are
slightly higher than those of the Aqua data sets (0.01 to &3 ~2), only at Duke, the bias
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Fig. 8. Multi-year average LAl at a) Duke, b) Howland, c) Hamd, d) MMSF showing the
long-term difference between the MODIS sensors onboand Berd Aqua.

constitutes even nearly 0:8%2m 2. The medians are equal in all cases, but again at Duke, the
median differs even by 0.42m 2. These differences get evident in the multi-year averaged
LAI-dynamics (Fig. 8) as well as in the frequency distrilous (Fig. 9): Average Terra values

in summer are noticeably higher than the Aqua multi-yeanmagand the relative frequencies of
Terra retrievals in the second half of the LAI range exceedétative frequencies of Aqua re-
trievals. Vice versa, the Aqua data sets have relativelyerhéd values in the lower LAl range.
This is true for both forests and grasslands, even thoughhbaomenon is less distinctive at
grassland sites.

The residuals of the two sets calculated as Terra minus Agju@s range up to?m =2 in
the forest data sets and up terdm 2 at the grassland data sets. Their frequency distributions
diverge from the normal distribution with a positive kuiitoand skewness rightwards, so the
deviations do not seem to be random but systematic. The EKRWkllis-test denies the null
hypothesis that the two data sets are statistically siraitar suggests that they are drawn from
different populations. For higher quality data, the nulbbthesis gets somewhat more probable.
According to the RMSE, the differences range from 0:1%n 2 (Lethbridge) to 1.35n2m 2
(Duke Forest).

Plotting the LAI values from the two data sets directly agaieach other (Fig. 10) and
counting the occurrences in Oi>m 2 wide bins reveals different patterns at the forest and
the grassland sites: In both biomes, the highest frequenéigata points occur around the 1:1
line of a perfect match between the two data sets. At grads)ahe data points in the sensor
space form an elliptic-like shape with some few scatteradtp@round it. At the four forest
sites, however, the scatter pattern clusters in four p@m& part is similar to an ellipse around
the 1:1 line at LAIl-values up to 4 and contains the most valudser a gap with no or very
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few values, this part is continued at along the 1:1 line ahdid Al-values by a second, wider
cluster. Two additional clusters are located in the leftarpgnd right lower quadrant of the
scatter plot, namely at low Terra values and high Aqua vatunesvice versa. In summary, the
data of Terra and Aqua are either very similar or very différevhereas the first possibility
has a significantly higher probability, especially at lowlhalues. Taking only values flagged
as 'good’ and without clouds into account, the clusters sonag narrow, especially those two
clusters indicating high differences get smaller and lessd.

1000
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Fig. 10. Bivariate histograms of Terra (x-axes) and Aquaxgs) LAl values, exemplarily for
a) MMSF and b) Lethbridge. White presents no occurrence, llagshows frequencies of 1,
dark red frequencies of 1000 cases and more.

3.4.3 Combination

Despite the clues for systematic but compared to otherieritather small differences between
the Terra and Aqua data sets at these test sites, we apply@osition scheme. To generate the
combined LAl values we follow the ’official’ product combitian approach [26] but enhance
it with the lessons learned in this study regarding the imfbeeof the cloud state. In doing
so, we first compare the general quality criterion: If one wegeved by the main algorithm
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and the other not, we prefer the 'good’ value; if the algaritpath is equal we choose the
cloud free retrieval; if the cloud state is also the same @hlsensors, the LAI value with the
higher corresponding FPAR value is taken since this valasssmed to be less atmospherically
affected.

The advantage of the combined product is clearly the high&a dvailability as already
mentioned above. Due to the preference of 'good’ retriewatisout clouds in the combination
procedure, the number of these retrievals is enhanced hy ajpbst 20 % and the number of
time steps at which at least 45 pixels 'good’ retrievals withclouds are available rises by up
to 40 % (Fig. 11). The temporal consistency as describetldnd frequency analysis is merely
promoted by the combination procedure. The average teriwyemiance shows no decline, too.
The spatial variance at each time step, however, tends tooolenated by the combination of
the two sensors.
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Fig. 11. The combined product shows an increased frequefrigpad’ pixels without clouds
for the combined product at every time step (a). The tempmasistency analyzed with,
instead, shows only a small improvement for the combinee t@ries (b). Plots shown for
Howland.

3.5 Model sensitivity to LAI

The leaf surfaces represent the exchange medium betweelatite and the atmosphere. The
LAI as quantity for this exchange surface is consequentlyitecal variable for all biophysi-
cal models describing fluxes of energy, momentum and maitgdr as the exchange of carbon
and water [53]. The index is of particular importance to medewho want to upscale fluxes
measured by eddy-covariance towers [54] or apply biomasietsmn a global basis or for
agricultural purposes [55]. Since biosphere-atmosph#aractions are more and more im-
plemented in global climate and hydrological models, theé IsAmeanwhile also a key input
variable for these model types [56, 57].

The Penman-Monteith equation is broadly applied in SVATil{gegetation-atmosphere-
transfer) models involving an estimation of the evapotpaasion [58] and is often executed
depending on LAI [59, 60]. As a final part of the analysis we the potential consequences
of using various LAI time series based on different qualitiyecia on the calculation of latent
heat fluxes. To do so, the simple bucket type SVAT-scheme 'BUE [61, 62] based on the
Penman-Monteith equation is chosen and executed for thé @8ta of MMSF in a slightly
modified mode:

_ ARy + (pcp‘SQ)/Ta

A= At (rofra)]

3)
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with \E [W m~2] being the latent heat flux) [kg kg~! K '] the rate of change of satu-
rated specific humidity with temperatur®,, [WW m~?2] the net radiationp [kg m 3] the dry
air density,c,, [J kg~! K~'] the specific heat of aifig [kg kg~'], v [kg k¢! K~'] the psy-
chrometric constant, and finally the surface and aerodynegsistances, andr,, in [s m*l].
While root zone water storage mainly controls water avdilghj the canopy and upper soll
interception store, the root zone store as well as a vargolend water table act as evapotran-
spiration sources. Rainfall fills the interception storeaijis limit. The interception overflow is
assigned to the root zone store whose excess water is tnausfe the groundwater table with a
soil dependent time delay. The surface resistadée updated every time step according to the
actual water availability of the three stores. In this sttBly CKUP is extended by considering
LAI seasonality:r, is assumed to depend inversely proportional to the LAl [B3iithermore,
the LAl is supposed to altet, by means of the displacement height,as well as the roughness
length, RL according to the empirical relations [63] specified in thep@pdix A. The model

is run with hourly time steps using temperature, precifptagind humidity as meteorological
boundary conditions. As LAI time series input we use the dieden Terra, Aqua as well as
the combined data set for the quality classes used in thdy.stBor the combined product,
the various spatial aggregations from the mere use of thertpixel up to the 7x7 pixels are
applied.

Since the model needs temporally continuous LAl data, wes liawise an interpolation
method. At the same time, we want to smooth the time seriese gEven the time series from
taking the mean of all 7x7 pixels appears not to be physioldlyi sound. Interpolating and
smoothing for model purposes has been proposed by othesrautho [18, 25, 33—-35], which
have used spatial averaging, upper LAl envelope smootléngniques, adaptive Savitzky-
Golay filtering, asymmetric and double logistic Gaussigetiihg or an ecosystem curve fitting
method based on the MODIS vegetation continuous fields ptodu this exercise we want
to give the noisy MODIS LAI data as much weight as possibledtihe same time fulfill the
contradictory demand of reducing the noise and the influehoetliers. Therefore, we choose
a combined temporal-spatial interpolation scheme withkaccsmoothing spline method (see
Appendix B). Figure 12a shows the results of this interpofaand smoothing procedure to
daily LAI values for the combined Terra and Aqua data and Hréous quality data sets.
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Fig. 12. (a) MODIS LAl (dots) and interpolated/smoothed LiAhe series (lines) of different
quality sets at MMSF, 2004. "w/0” means data without clotidaf. filt.” denotes the data set of
‘good’ values without clouds and without LAI values in sunmmetside the saturation domain
as described above. (b) Cumulative evapotranspiratiothéodifferent LAl input data.

The results of the sensitivity analysis illustrated in Fega2b) show that the influence of
the sensor choice as well as the quality criteria on the mogkplut is rather small which is not
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surprising since the smoothing blurs the differences betwtee data sets. However there is
one drastic exception: The 'best’ values produce over 30Wel@umulative amounts of evap-
otranspiration compared to the measurements and over 25¥pazed to the results without
using 'best’ LAl values in summer. This is the case becausertbdel evapotranspiration does
not reach the high evapotranspiration values at daytimssrinmer due to the much lower LAI
values. This behavior will have a large impact on the subsetgprediction of individual com-
ponents of the water cycle such as groundwater rechargenaffuAlso, patterns of surface
soil moisture availability will be largely biased and estit@s of e.g. net primary production
or bio-geochemical processes might be unreliably affecteatt is, that the LAI time series
at temperate forest sites get more unreliable in the sengkysiologically plausible temporal
behavior when using the strictest quality filtering ’bestdahis is true even when exploiting
the data sets of both sensors.

4 DISCUSSION AND CONCLUSIONS

MODIS data from Terra and Aqua sensors in combination wittegstem exchange data col-
lected from FLUXNET have become central to the developmealipration and evaluation
of soil-vegetation atmosphere transfer models (SVAT) #dr tregionalization. MODIS land
product subsets provided for long term field measuremees sis from FLUXNET simplify
the assimilation of field and remote sensing measuremengsdatical usage. Despite the fre-
quent application of MODIS LAI subset data in ecosystem ngdbéere is no consensus on
their post-processing usage and the employment of theqedv@C information. In this study
we have analyzed the consequence of several post-progessnchoices for six MODIS LAI
subsets at FLUXNET sites (four forests, two grasslandsherstatistical characteristics and
temporal behavior of the resulting LAI time series. The aatlon of quality assessments as
well as differing spatial aggregations from the only usehaf tower pixel to the aggregation
of all 7x7 pixels have been studied. The resulting varioneetseries have been compared to
ground-measured LAl values. The data from both sensorslhese compared and their com-
bination has been considered. Finally, the influence o€diffy post-processing choices on a
simple SVAT model has been assessed.

The analysis of the quality criteria showed that most TendAqua LAI values have been
retrieved with the main algorithm and without cloud coveraghat is an improvement com-
pared to earlier MODIS LAl data collections. This fact haseatly been shown by [26] for
a provisional collection 5 analysis. The spatial variatigthin the 7x7 pixels is high and the
pixels’ time series are often unstable and vary through thelevLAl range from near O to
over 6m?m 2. Cloud filtered time series and main algorithm time series t® be smoother
than their unfiltered counterparts. Most interesting is &y the difference between 'best’ and
'good’ values from the main algorithm: ’best’ values with@aturation are significantly lower
than main algorithm retrievals in the saturation domain ahy definition - seldom reach for
forests realistic summer LAl values greater tham2m 2. [64] mentions this phenomenon
for forest sites, too. After the deletion of 'best’ valuessiimmer, the LAI time series shows
- although with a considerable range of dispersion - a plygically sounder temporal evolu-
tion. 'best’ values in summer compare not as good to field dattihe other quality sets. The
unfiltered data sets perform well due to compensation effgfdioo high saturation domain val-
ues and too low 'best’ LAl values. This is especially true Barke Forest where the MODIS
time series exceeds the ground-measured LAl values by owet2~2; one reason for this
observation is certainly the land cover classification foh(see section 2.3) as well as general
algorithm problems for coniferous forests [27, 65].

Are 'best’ values in summer at forest sites just an artifdaoudy conditions which have
not been detected by the algorithm or the consequence ofraticesitmospheric correction?
The fact that the most main algorithm retrievals with cloads also 'best’ retrievals supports
this assumption as well as the fact that cloudy pixels haeetéhdency to have lower LAI
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values [26, 27]. Consequently, the end user has to take daee ¥iltering according to the
supposedly most stringent QC, 'best’; the semantic meaofitigjs adjective can be misleading
when dealing with pixels covered by forests. Nonetheldégsstudy showed the benefit of using
the provided QC meta data.

The question of spatially aggregating pixel around the tawenot has certainly to be an-
swered from an site specific perspective and depends onrbectaver classes involved and
their distribution around the tower. If the emphasis is put@ducing the noise and increasing
the data basis for interpolation and smoothing algorithortsuild a more robust seasonal vari-
ation of LAl, as many pixels as the land cover distributioaward the tower allows should be
selected. The analysis showed that the smoothness, hentatphoral consistency, of the time
series is enhanced using more pixels. This is consistehtthgt findings of [25]: In their data
denial exercise to test several interpolation schemeg,ubed even 9x9 pixels and found it to
be as good or even superior compared to 5x5 aggregation$axihg a higher data coverage
at the same time.

The issue of spatial aggregation is tightly connected tedlather post-processing options
for MODIS Land Product Subsets, namely the selection oflpigecording to specific land
classes or other criteria as well as the interpolation arabsining of the time series. The effects
of filtering pixels around the tower on the basis of the MOLH®d classification on the resulting
LAI time series have not been analyzed in this study; thiseispeeds further attention in
future work. It will also be worthwhile considering to sel@ixels with respect to the footprint
of the flux tower which depends mainly on the wind speed anection. How to interpolate
and smooth the LAI time series can certainly be discussatidur as [25] comments, there
is no single interpolation scheme that can serve all pugpasd conditions. Further analysis
could analyze the benefits of using a weighting factor adngrtb the LAI standard deviation
delivered in the MODIS product.

Comparing the Terra and Aqua LAl retrievals at the six tetssia small bias between
the data sets was observed and pixel by pixel comparisoegalrarge differences at a small
proportion of the data. These observed large discrepafai@slimited number of data values
can certainly be attributed to atmospheric conditions Wiaie challenging for the algorithm.
The cause for the systematic difference is not as obvio6$ 8o observed a bias in Terra and
Aqua reflectances and NDVI values at Harvard Forest. Theluégd solar zenith angle and
cloud influences and ascribed the discrepancies to errsretowspheric corrections, too. It
is also known that Aqua suffers of band-to-band misregisima of its MODIS sensor in the
Visible and Infrared [66]; it is unclear, however, how thi®plem affects the LAI retrievals. In
spite of the observed bias, [26] suggested the use of bottupte. Furthermore, we argue that
the difference between the means of the Terra and Aqua prsdsroall compared to the overall
noise of the time series. Consequently, we have taken aayardf both LAI products and
combined them as described in section 3.4.3 to further &ser¢he reliability of the LAI time
series. The combination of the two data sources increaseseiitentage of 'good’ retrievals
without cloud coverage by up to 17%. This is consistent W] who found a high quality
retrieval increase of 10-20% for woody vegetation. The neindj time steps with at least 45
'good’ pixels without clouds increases by an amount of up @04 However, the temporal
smoothness of the LAI time series is not improved (see se&ié.3).

Also, we have analyzed the sensitivity of a simple SVAT madethe differently post-
processed LAl input data. Predicted rates of evapotraausmirconfirmed the previous findings:
The use of 'best’ data introduces a large bias of up to 40 % pasibly tremendous conse-
quences on the subsequent prediction of individual comutsra# the water balance. However,
these consequences need further investigation and haeestddnded to other related research
areas.

Merging all analysis results, we can draw the conclusiohithsiadvantageous to combine
Terra and Aqua to enhance the data coverage and maximizeauthken of cloud-free main-
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algorithm retrievals and follow one of two major strategigsapply no QC filtering and take
all pixels from the subset into account to achieve errorificdtion, or, alternatively, to make
QC adjustments such as deleting back-up retrievals ane tlos cloudy pixels as well as
'best’ retrievals belonging to the non-saturation domalrewthe retrieval can be expected to

belong the saturation domain.

In this study we have discussed the usage of MODIS LAl datenfem end-user point
of view. Even though the product is considered as validatédimportant to analyze usage
options available to the modeler and quantify their effectshe resulting LAI time series. And
even if product problems and possible pitfalls for the eret iave been revealed by this and
other studies, this extensive MODIS LAI database belongsoui doubt to the most valuable

information sources on vegetation dynamics the model conitihnbas.

APPENDIX A: THE EXTENDED BUCKUP MODEL

The original BUCKUP model as described by [62] is extendethia study by making the
surface resistance, and the aerodynamic resistancedependent on the LAI value at each
time step. In doing sa;, is defined to be reciprocally proportional to the LA, is indirectly
modified by the the displacement heightand the roughness lengity, according to following

empirical equations [63]:
X =0.2x*LAI

D = H % (log(1 4+ VX) 4 0.03  log(1 + X))
RL =Hy +03%H VX forX <0.2)
RL=03xHx(1—D/H)forX >=0.2)

where H is the vegetation height and;; the understorey heightD and RL are then used to

calculater, empirically. Details can be found in [67].

APPENDIX B: THE SMOOTHING SPLINE METHOD

To interpolate and smooth the time series of all 7x7 LAl valaeeach time step, a smoothing
spline method as implemented in Matfahs "csaps” is employed. The smoothing splifie

minimizes
n

P> ly(od) — FEG)P + (1 - p) / At | D)

w(g)

where x represents in this case the time vector and y the L&l glauns from 1 to the maximum

(4)
(5)
(6)
(7)

(8)

number of entries of the temporal data vectorD? denotes the second derivate. Furtheis

a weight function ana a weight vector which is set to 1 in this stugyrepresents a smoothing
parameter; it is chosen by the algorithm depending on theviahles at each time step. Several
data points at the same time steps are recognized as thgavesaps is an implementation of

the FORTRAN routine 'SMOOTH’ [68].
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