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Abstract. The global network FLUXNET supplies environmental scientists with valuable data
on ecosystem exchange processes along with meteorological measurements. Ecosystem charac-
teristics at these sites can be efficiently complemented by remote sensing data from the MODIS
sensors on-board the NASA satellites Terra and Aqua. The ORNL DAAC makes resampled
MODIS key products as so called ’Land Product Subsets’ available. These subsets comprise
selected MODIS products in a 7x7 km grid centered on FLUXNET sites. One of these products
is the leaf area index (LAI). Despite the frequent application of MODIS LAI data in ecosystem
models, there is still no consensus on its usage and the employment of the additionally provided
quality criteria (QC). In this study, we analyze the effects of various QC filters, spatial aggre-
gations and sensor choices on magnitude and temporal dynamics of LAI data at six FLUXNET
sites. Additionally, we assess the sensitivity of a simple soil-vegetation-atmosphere-transfer
(SVAT) model on differently post-processed LAI times series. It is found that it is advantageous
to combine the products of both sensors. The consideration of quality assessments is essential,
but the QC application is not straightforward for forest sites and the QC choice can have signif-
icant effects on the resulting LAI time series with considerable consequences on the outcome
of subsequently applied SVAT models.
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1 INTRODUCTION

Continuous eddy covariance measurements by micro-meteorological flux towers have become
indispensable in monitoring the exchange of energy, carbon and water fluxes between the terres-
trial surface and the atmosphere. The global network FLUXNET [1] merges these valuable data
collected around the world in a comprehensive database and provides the scientific community
an unique opportunity to establish understanding of ecosystem exchange processes and set up,
calibrate and validate models to predict ecosystem behavior in a changing environment [2,3].

However, flux towers can only catch a glimpse on ecosystem processes given their point
measurement nature which stands in contrast to the usually more extensive, spatially contin-
uous model application scale. Satellite remote sensing, instead, offers spatially continuous
information and can consequently help to dissolve the dilemma of having scattered point mea-
surements on the one hand and the need to analyze and predict exchange processes at a local,
regional or even global scale on the other hand by bridging the gap between these scales [4,5].
Furthermore, remote sensing can provide ecosystem characteristics that are time-consuming or
difficult to gather in the field [6]. Vice versa, the validation of remote sensing products relies on
continuous measurements such as done at the FLUXNET sites [7,8].

The MODIS sensor on-board the satellites Terra and Aqua launched within the framework of
NASA’s EOS program (Earth Observing System) has proven itself a key sensor in remote sens-
ing of ecosystem dynamics and land surface processes [9]. In this respect, MODIS data have
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been widely applied in studies to detect the vegetation physiological status [10, 11]. The syn-
ergetic interaction between micro-meteorological tower measurements, modeling and remote
sensing is supported by the Oak Ridge National Laboratory Distributed Active Archive Cen-
ter (ORNL DAAC): This institute makes resampled key remote sensing products from MODIS
(Moderate Resolution Imaging Spectroradiometer) as so called ’MODIS Land Product Subsets’
freely available. These files are provided in an easy to handle ascii-format and comprise selected
MODIS land products in a 7x7 km grid centered on FLUXNET and other field measurement
sites. One of these subset products retrieved by radiative transfer modeling with MODIS Terra
and Aqua data is ’MOD15A2’ or ’MYD15A2’, respectively, which provides 8-day estimates
of the leaf area index (LAI[m2m−2]) accompanied by the closely related FPAR (Fraction of
Absorbed Photosynthetically Active Radiation) [12].

The dimensionless LAI defined as one-sided surface area of leaves and needles per ground
area [13,14] is a main biophysical driver in ecosystem models [15–17]. The MODIS LAI prod-
uct is also increasingly frequently used in applications such as numerical weather forecasting or
hydrological modeling [18, 19]. The MODIS algorithm to retrieve the LAI is based on inverse
radiative transfer modeling; in case of its failure under unfavorable conditions, an empirical
back-up algorithm is triggered [20]. Quality criteria provide information about the suitability of
the individual retrieval with respect to the algorithm path, the detector state, geometry problems
and cloud conditions [21].

The MODIS LAI product is considered as having reached the second validation stage what
means that it has been evaluated in several field studies oversufficient time periods, and all ma-
jor biomes have been covered by analysis. Over all biomes, the LAI shows an accuracy of 0.66
(root mean squared error) according to the validation website of the MODIS Land Team [22].
Still, several problems persist even in the actual Collection 5 and the user is confronted with the
problem of how to use the product data. This situation is reflected by the different approaches
using MODIS LAI data and comparing it with other LAI data sources as well as the ongoing
development of smoothing techniques and alternative algorithms [23–25]. Consequently, when
combining MODIS LAI subsets with FLUXNET data the user has tomake several decisions
regarding the data post-processing: Which quality filter shall be applied? Should neighboring
pixels be considered and if yes, how wide shall the data window be drawn in the 7x7 pixel
subsets? Shall only Terra or Aqua data be used or shall they becombined? These questions
have to be answered before methods are picked to fill missing data and smooth the time series
as necessary.

Usually, MOD15A2, hence the more extensively validated Terra product, is downloaded by
researchers, but [26] showed that there are no significant differences between the two sensors
at the continental and tile scale and concluded that the combination of them helps to enlarge
the number of high quality retrievals. However, on a pixel bypixel basis there occur large dif-
ferences sometimes. The problem of choosing an appropriateLAI quality filter at FLUXNET
sites has been tackled differently in MODIS LAI studies: Allvariations are used from selecting
only those values signed as ’best’ to no filtering: For example, [27] preferred data flagged as
’best’, [28] and [29] recognized all ’good’ data, [25] screened low quality data not marked at
least as ’good’ and those contaminated with clouds, [30] filtered out cloud contaminated pixels,
and [31] averaged over all values. [26] advise to use back-upretrievals with care. Likewise, the
question whether surrounding pixels should be taken into account and if yes how many pixels
around the tower should be used has been answered differently by scientists: For example, only
the central tower pixel is considered by [27]; in other studies, 3x3, 5x5 or 7x7 mean or median
averaging windows are drawn around the tower pixel with the purpose of better representing
the flux tower footprint and reducing geolocation and pixel-shift errors with the additional ad-
vantage of reducing the number of missing data points [31–33]. The latter problem of spatial
and temporal discontinuity is an inherent characteristic of remote sensing data in the visible and
near infrared due to the sensitivity of the radiance to cloudcover, snow and increased aerosol
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loading. Several studies have recently dealt with this problem and developed spatial-temporal
smoothing, filtering and gap-filling techniques [18,25,34,35]. These approaches make, together
with complex statistical and modeling techniques, again usage of quality flag and land class fil-
tering as well as spatial averaging around a center pixel. However, the analysis of effects of
these basic methods and their modification have been somewhat neglected in the literature.

In what follows, we analyze explicitly the effects of some fundamental post-processing
methods on the magnitude, temporal variability and consistency of MODIS LAI values ex-
emplarily at six FLUXNET sites of different vegetation classes from an end user perspective.
Specifically, we illustrate the impact of several quality filters, assess the consequences of aver-
aging over different window sizes around the tower pixel andcompare Aqua and Terra subsets
and consider the combination of them. Finally, the consequences on the output of a simple
evapotranspiration model (’BUCKUP’) resulting from different LAI input data sets are evalu-
ated.

2 DATA

2.1 Study sites

Six FLUXNET test sites in North America are selected (Table 1): Duke Forest, North Car-
olina, USA, Howland, Maine, USA, Harvard Forest, Massachusetts, USA, Morgan Monroe
State Forest (MMSF), Indiana, USA, Vaira Ranch, California, USA, and Lethbridge, Canada.
These sites have been arbitrarily chosen between those featuring comprehensive multi-annual
time-series with a good temporal coverage and being often used in the FLUXNET community
(e.g. [36,37]).

Table 1. Characteristics of the study sites according to FLUXNET and LocClim, the FAO Local
Climate Estimator [38]. Geographic location: latitude (lat), west longitude (long). h: elevation.
Vegetation types (VT): evergreen needleleaf forest (ENF),deciduous broadleaf forest (DBF),
grass (G). Koeppen-Geiger climate classes: C: temperate, D: continental, f: fully humid, s:
summer dry, a: hot summer, b: warm summer. Temperature (T) and precipitation (P) are annual
mean averages.

site lat, long h [m] VT climate T [°] P [mm]
Duke 35.98, 79.09 163 ENF Cfa 14.4 1169
Howland 45.20, 68.74 60 ENF Dfb 5.3 1070
Harvard 42.53, 72.17 340 DBF Dfb 6.6 1071
MMSF 39.32, 86.41 275 DBF Dfa 10.9 1032
Vaira 38.41, 120.95 129 G Csa 15.9 544
Lethbridge 49.71, 112.94 960 G Dfb 5.4 398

Duke Forest is an evergreen needleleaf forest plantation ofabout 25 years in a humid cli-
mate with mild winters and hot summers. Its overstorey almost solely consists of loblolly pine
(Pinus taeda L.) with a mean height of about 20 m; 26 differenthardwood species form the rich
understorey [39]. In December of 2002 an ice storm damaged one third of the trees [40]. In the
temperate continental Howland Forest, hardwoods such as red maple and paper birch (Betula
papyrifera) occur among the dominating coniferous speciesas red spruce (Picea rubens), east-
ern hemlock (Tsuga canadensis), balsam fir (Abies balsamea), and white pine (Pinus strobus).
The median stand-age of this boreal-northern hardwood transitional forest is about 100 years.
The canopy height is estimated as 20 m [41]. Harvard Forest ismainly composed by decidu-
ous broadleaf trees with a stand-age of about 80 years. The main species are red oak (Quercus
rubra), red maple (Acer rubrum), black birch (Betula lenta), white pine (Pinus strobus), hemlock
(Tsuga canadensis), white oak (Quercus alba), black oak (Quercus velutina), and hickory (Carya
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ovata) with a mean height of 23 m. The climate is characterized by cold winters and warm sum-
mers [42]. MMSF is also classified as deciduous broadleaf forest dominantly composed by
sugar maple (Acer saccharum), tulip poplar (Liriodendron tulipifera), sassafras (Sassafras al-
bidium), white oak (Quercus alba), black oak (Quercus nigra) with a mean age of almost 80
years. Cold winters and hot summers form a temperate continental climate [43].

The two selected grassland sites represent contrasting ecosystems: Vaira Ranch is located
in the lower foothills of the Sierra Nevada Mountains on managed farmland. The C3 annual
grasses grow in a Mediterranean climate with a distinct drought season in summer [44]. Leth-
bridge, however, east of the Canadian Rocky Mountains, is characterized by a humid climate
with cold winters and warm summers. The short prairie consists of C3 and C4 species [45].

For all sites but Lethbridge, field measured LAI data were available via the website of
AmeriFlux, the regional subdivision of FLUXNET. An overview on the time range with avail-
able measurements from 2002 to 2009, the number of measurements as well as remarks to the
measurements can be found in Table 2.

Table 2. Available field measurements specified by the covered time range and the total number
of sample dates within the whole time perid along with information on the measurements.

site time range number measurement
Duke 2002-2005 8 Multiple techniques assimilated
Howland 2006 7 LAI-2000; 200 m transect every 10 m
MMSF 2002-2006 95 LAI-2000
Harvard 2005-2008 41 33 samples per date
Vaira Ranch 2002-2006 48 Li-Cor 3100, 4 samples per date

2.2 MODIS LAI data

As sensor on-board Terra and Aqua, two sun-synchronous and near-circular satellites, MODIS
scans the earth surface every second day, above 40◦ latitude even every day with a swath width
of 2330 km. The 36 spectral channels in the visible and infrared spectrum have a resolution of
0.4 to 14.4 m and a spatial resolution of 250 to 1000 m with the shorter wavelength having the
greater resolution [46]. To retrieve the LAI products, namely MOD15A1 and MYD15A2, up
to seven spectral bands are utilized to solve the inverse LAIproblem with a radiative transfer
model. The parameters for this model are stored in a look-up table specifically for eight biomes.
If this main algorithm fails, a back-up algorithm is called which regresses the LAI on the basis of
a empirical relationship between the LAI and NDVI (Normalized Difference Vegetation Index).
The final product has a resolution of 1 km. The daily values aremerged to 8-day composite
products to reduce the impact of clouds and aerosols as disturbing factors, whereas the LAI of
the day with the maximum FPAR value is selected for the respective 8-day period [47]. To create
the MODIS Land Subsets, the LAI product is resampled in such away that the center pixel of a
7x7 grid of 1-km pixels contains the FLUXNET tower. The subsets contain six values for every
time step: a LAI as well as FPAR value, their standard deviations, a general and detailed quality
criteria (QC). In this study, MOD15A2 and MYD15A2 are downloaded in ascii-format from
the ORNL DAAC website [48]. The LAI and the general QC are extracted from both sensors.

The general QC provides four quality informations in 8 bits.One quality criterion is called
’MODLAND Q’ and allows a first check on the LAI quality. Since the algorithm path is the
main factor influencing the LAI quality [26, 47], MODLANDQ informs the user if the main
algorithm was used, if the back-up algorithm had to fill in or if the value could not be retrieved
at all. Another quality criterion indicates if the detectorworked for up to 50 % of the channels
or was mainly dead. The cloud state quality bit specifies if the pixel was clear, a significant
cloud coverage or mixed clouds were present, or if the cloud status could not have been iden-
tified. Finally, additional details about the algorithm path are provided: A retrieval with the
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main algorithm without saturation is classified as ’best possible result’, with saturation as ’good
result’. Saturation means, the reflectances do not deliver precise information about the surface
and the canopy radiation transfer model is insensitive to a set of possible canopy realizations,
thus the probability for different LAI values is of the same magnitude. This situation occurs
with increasing frequency for LAI values greater than 4 and affects almost every value greater
than 5 since the reflectances at these high LAI values get moreand more insensitive to LAI
differences [47]. It is further stated in the detailed QC bits if the main algorithm failed and the
back-up algorithm was used due to geometry problems or for other reasons than a bad geometry.
A complete failure is the last possible outcome of the algorithm path analysis.

In this study, we consider following QC cases: unfiltered, cloudless, ’good’ values, ’good’
values without clouds, ’best’ values, ’best’ values without clouds, back-up retrieval and back-up
retrieval without clouds. Terra began to provide MODIS datafrom the beginning of 2000, Aqua
followed in April 2002. In this study, data from both sensorsare recognized from the latter date
when both MODIS products are available until September 2009.

2.3 MODIS land cover data

Additionally, the MODIS land cover product (MCD12Q1) retrieved with data from Terra and
Aqua [49], is downloaded to further characterize the pixelsaround the tower and to filter pixels
of strongly differing land classes. MCD12Q1 subsets are available for the years 2001 to 2005.
They provide annual land class estimations around the towerwith a spatial resolution of 250 m.
Five land classifications are offered. For this study, the third land cover scheme, the so called
’MODIS-derived LAI/FPAR scheme’ has been selected. This scheme distinguishes between 8
vegetation classes beside water, non-vegetated and urban classes: 1. Grasses and cereal crops,
2. shrubs, 3. broadleaf crops, 4. savanna, 5. evergreen broadleaf forests, 6. deciduous broadleaf
forest, 7. evergreen needleleaf forest, 8. deciduous needleleaf forest. These eight classes are
exactly those which are used in the LAI retrieval and have shown to be somewhat more reliable
than the other classifications provided [50].

We assume there have been no substantial land use changes in the areas around the towers
neither in the years 2001 to 2005 nor later on and generate a single land class map for all years
by comparing the corresponding pixels of all five years. Thatland class is assigned to the
pixel that at least occurs three times. After the temporal aggregation, the pixels are spatially
aggregated: A mask with its resolution matching that of the LAI grid is generated, for what
the four corresponding 250-m pixels of each 1-km pixel are examined. That land class which
occurs at least at three of the four sub-pixels is assigned tothe 1-km pixel. If no land class
appears more than two times, this pixel is treated as unclassified and not considered in the
further analysis. Additionally those pixels are excluded from the further study which have
a completely different land cover and consequently not comparable LAI values in relation to
the tower pixel. [25] have shown a land class selection to be superior for spatial aggregations.
However, pixels with another but similar land classes are accepted for the further analysis. Our
reason for this procedure is that the MODIS land cover product often seems to have difficulties
to distinguish between similar vegetation classes, especially in inhomogeneous areas [7, 50].
However, misclassifications in relatively similar biomes have moderate consequences on the
LAI retrieval [50]. For the coniferous, deciduous and mixedforest sites, all the forest classes
5 to 8 are considered as similar. The classes 1 to 4 serve as similar classes for the grassland
sites. The classification problems are clearly evident in the downloaded subsets. For example,
MOD12Q1 classification type 3 cannot detect the loblolly pine plantation within a hardwood
forest, but identifies a broadleaf forest in the whole regionaround the tower. Additionally,
many pixels are variantly classified as shrub, savanna and grass and evergreen and deciduous
forest during the five years; the severe icestorm disturbances and the rich understorey certainly
play a role in this context (see section 2.1). At the grassland sites, the grassland class alternates
spatially and temporally with the savanna class and in some cases with the crop class. The center
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pixels at Vaira are even always classified as savanna. The other three study sites are relatively
uniformly and stably classified. In what follows, only pixels around the tower are taken into
account which have a similar land class as the known vegetation class of the FLUXNET site
according to the method explained above.

3 ANALYSIS

3.1 Overview

In what follows, the frequency of occurrence of the various quality criteria and their effect
upon the seasonal evolution and statistical characteristics of the analyzed LAI time series are
investigated. The various data sets resulting from the application of quality criteria and the
spatial aggregation from 3x3 to 7x7 pixels or mere usage of the tower pixel, respectively, are
thereafter analyzed and presented. Subsequently, the Terra and Aqua data sets are directly
compared and combined to a single time series. Finally, it isshown of which magnitude the
differences of a simple evapotranspiration model are when using various MODIS LAI data sets
as model input.

Fig. 1. Quality sets of MODIS LAI data used in this study. The number are percentages of
the respective superordinate quality set for Terra, Aqua and the combined time series explained
below (listed in this order in %). Cloudy and cloudless values are subsets of the whole quantity
of LAI values. These sets characterized by the cloud state have subsets of back-up and ’good’
quality sets. The sets of ’good’ retrievals have a subset of ’best’ values. The percentages refer
to the directly superordinate set. This means i.e. for the LAI Terra data at Duke Forest, there are
6 % cloudy and 94 % cloudless retrievals. 95 % of the cloudlessdata are classified as ’good’,
only 5 % have been retrieved by the back-up algorithm; 62 % of the ’good’ main algorithm
retrievals achieve even a ’best’ result.

3.2 Quality criteria

3.2.1 Occurrences of QC classes

To characterize the quality sets, the proportion of the various quality classes (unfiltered, ’good’,
’best’ and back-up) with and without clouds as percentage ofall retrievals is quantified as a
first step. Fig. 1 uncovers that significant more LAI values were retrieved under cloud-free
than under cloudy conditions according to the QC bits (59 - 94%). Aqua data tend to have a
little more cloudy pixels than Terra data (up to 6%). Cloudy values have a higher percentage of
back-up values. 68 to 100 % of all retrievals resulted in ’good’ results via the main algorithm
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with the maximum number at Duke Forest and Vaira; at the latter site, the back-up algorithm
has merely had to be triggered. Most ’good’ values are associated with a clear sky (76 - 99 % of
all ’good’ values). Vice versa, the percentage of back-up values increases for cloudy pixels up
to 53 % The ’best’ retrievals make up 62 to 82 % of the ’good’ setat the forest sites and almost
all ’good’ retrievals are ’best’ at grassland sites, so barely no saturation occurred. Overall, about
50 to 64 % of all retrievals achieved a ’best’ result, with theexception of Vaira, where almost
all LAI values are rated as ’best’. Most ’good’ values with clouds belong to the ’best’ quality
set with up to 98 % at forest sites. In contrast, the percentage of ’best’ retrievals amount to 62 -
82 % of the cloud-free ’good’ retrievals.

3.2.2 Seasonal evolution

As a second step to assess the impact of quality criteria on LAI time series, a visual inspection
is carried out. For this purpose, Fig 2 plots the LAI-time series of all pixels for the various
quality sets in following order of increasing filtering: allretrievals, ’good’ retrievals, ’good’
retrievals without clouds, ’best’ retrievals, and ’best’ retrievals without clouds. Earlier plotted
values belonging to the ’lower’, less stringent quality class are therefore covered by the dots
of higher classes; values which are filtered out remain visible. What catches the eye first is
a division of LAI values into two domains: ’best’ values makeup the LAI values from 0 to
about 4m2m−2 and ’good’ values without the ’best’ are located above up to the maximum
LAI. Even in summer, the LAI values are scattered almost throughout the whole range of LAI
values. Unfiltered values which are not overlapped by the higher quality values, hence back-up
values, appear in the whole LAI range, but tend to agglomerate in winter. Often they appear
as a vertical sequence of dots, which can reach values that are lower or higher than the average
at the considered time step. But beside the very low outliersin winter they form a time series
that seems to be not different from higher quality data. In summer the back-up retrievals at high
LAIs even tend to be not as noisy as the values flagged as ’good’and adopt values around the
mean of ’good’ values. Values from cloudy pixels, back-up retrievals and values in the ’best’
set accumulate frequently in clusters in the lower LAI range.

The phenomenon of segmentation of the ’good’ values in the saturation domain above 4
m2m−2 and ’best’ values at forest sites beneath it becomes even more apparent in the mean
multi-year time series (Fig. 4): Whereas they are similar in winter, they diverge strongly in
summer. The time series build from the ’best’ values reach only about 60 % of the summer
level of the time series resulting from the ’good’ values. Since the set of ’good’ comprises the
’best’, the multi-year mean of the ’good’ values without the’best’ retrievals in summer is even
higher. This time series of the ’good’ without the ’best’ in summer is plotted in Fig. 3 and
exhibits significant better seasonal dynamics than the unfiltered time series or the ’best’ time
series as shown in Fig. 2 in blue color. It is generated in the following way: As soon as the
median of the 7x7 LAI values gets greater than 4m2m−2 in spring, all values are deleted which
do not belong to the saturation domain (’best’). This approach is applied for the whole summer
until the median of the LAI gets smaller than 4m2m−2 again. 4m2m−2 is chosen as a limit
because the non-saturation frequency increases drastically according to the product’s theoretical
basis document [47]. And indeed, less than 2 %, in most cases even less than 1% of the ’best’
values are greater than 4m2m−2.

3.2.3 Statistical characteristics

In statistical terms, the single quality sets show differences, too. The means of the quality
sets can be assigned to three groups of similar set means: Unfiltered values, retrievals without
clouds, ’good’ and ’good’ values without clouds form a groupof means, ’best’ retrievals and
those with clouds build another group with lower means, and back-up values, finally, present the
third group with higher means with respect to the other groups. Since there are almost no ’good’
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Fig. 2. LAI time series of the Aqua data sets at Duke (a), Howland (b), Harvard (c), MMSF (d),
Vaira Ranch (e) and Lethbridge (f) showing the various quality criteria classes the LAI values
belong to. These have been plotted in the order unfiltered, ’good’,’good’ without clouds, ’best’,
’best’ without clouds. Dots plotted later cover previous plotted dots. LAI field data are plotted
as a rough reference.
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values with saturation at grassland sites, hence ’good’ values are also rated as ’best’, only two
groups can be identified: unfiltered and main algorithm values as well as back-up values. At the
grasslands there is no tendency regarding the difference between the group means. Within all
groups, retrievals from cloud-free pixels have a higher mean than their unfiltered counterparts,
and a even higher mean than the cloud affected retrievals. The differences between the quality
set means reach values in the range of the LAI magnitude of theunfiltered mean; at MMSF
the difference between the back-up values and the ’best’ amounts to nearly 4 LAI units. The
medians of the quality sets are lower than the means, only theback-up medians are higher
in a few cases. The medians have the same characteristics as the means, but show with up
to 5 LAI units even higher differences between the quality sets. The analysis of the quality
sets’ variances draws a similar picture: lower variances of’best’ and cloudy values and higher
for back-up retrievals compared to the unfiltered and ’good’retrievals. The average variance
of time series without clouds is lower than that of the unfiltered time series. The differences
between the temporal variance of each pixel of the 7x7 pixelswhen compared to each other
are significant larger for time steps with clouds than without cloud coverage, so the temporal
variances are much more unsteady.

Fig. 3. The set of ’good’ values without the ’best’ values in summer. This time series of Terra
at Howland is typical for the analyzed forest sites.

The LAI frequency distributions of the quality sets providean explanation for the differing
means and medians as Fig. 5 demonstrates: The unfiltered values show a frequency distribution
with two peaks around 1m2m−2 as well as 5m2m−2. The ’good’ LAI values form a similar
bimodal frequency distribution pattern with somewhat moredistinct maxima at the most sites.
Likewise, the frequency distribution of the back-up retrievals has two peaks, but these are shifted
towards the upper and lower end of the LAI range. The ’best’ values, however, exhibit an
uni-modal distribution with a peak between 0 and 1m2m−2. Most quality sets free of cloud
contamination show a smaller occurrence of lower values anda higher occurrence of higher
values; this shift to higher values is most distinctive for the back-up sets.

With the non-parametric Kolmogorov-Smirnov-test all quality sets are compared mutually
with each other with respect to their frequency distributions. The results indicate that almost all
quality sets at the forest sites can be assumed to have been drawn from different distributions
with two exceptions: first, the different cloudy data sets ofthe main algorithm - which is simply
a consequence of the fact that the most cloudy data from the ’good’ set are classified as ’best’
since they are in the lower LAI domain and hence not subject tosaturation - and second, the
’good’ values without clouds and the data set without non-saturation values in summer. At Duke
Forest, the ’good’ and the unfiltered set without clouds additionally comply with the null hy-
pothesis that they are from the same distribution and the same is true for the ’best’ sets with and
without clouds. At the grassland sites, unfiltered quality sets and those of the main algorithm
are found to be similar when they have the same cloud status; this similarity is not surprising
since the classes share almost the same elements. The additionally executed Kruskal-Wallis
hypothesis test, a one-way analysis of variance by ranks, draws a similar picture. In summary,
the two applied hypothesis tests show the tendency of the ’best’ sets being different from the
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Fig. 4. Multi-year average of the various quality classes inthe Terra data sets at Duke (a),
Howland (b), Harvard (c), MMSF (d).

Fig. 5. Frequency distributions of the quality sets using the example of Terra data at Duke
Forest and Vaira Ranch. Frequencies of the sets are relativeto the number of all retrievals in the
respective sets.
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other sets at the forest sites and the cloud state playing a significant role when comparing data
sets.

3.2.4 Comparison with field data

A comparison with the available LAI field data is done as next step in comparing the quality sets.
Since the LAI is not measured with the same methods at the testsites and the field measurement
and MODIS scales are different the comparison is executed toshow trends and not to validate
the MODIS LAI data explicitly. The comparison shall serve asan additional piece of the puzzle
of hints regarding the best usage of MODIS LAI data. A visual comparison in Fig. 2 reveals
that the MODIS LAI follows quite good the seasonal LAI dynamics. In the critical summer
season, the field measured LAI values from Harvard and Howland lie in the range spanned by
the ’good’ MODIS values, at Duke Forest and MMSF, however, the field data are located at
the lower end of range of ’good’ values. In winter, however, the MODIS LAI values rather
underestimate the measured data at the needle leaf Duke Forest and tend to overestimate it at
the broadleaf MMSF - a phenomenon which has been often reported before [51].

A quantitative comparison at the three sites with the longest field measured time series
(Harvard, MMSF, Vaira) is carried out by applying the root mean squared error (RMSE), the
bias (as difference between the means) as well as the Nash-Sutcliffe efficiency (EC). TheEC
is widely used in hydrology to evaluate modeled time series with measurements and is defined
as the variance of residuals of predicted (P ) and observed (O) values normalized by the variance
of the observed values and subtracted from one:

EC = 1−
∑n

i=1(Oi − Pi)
∑n

i=1(Oi − Ō)
(1)

This quality criterion ranges from a value of one for a perfect fit to −∞ whereas negative
EC values indicate that the mean of the observed time series would have been superior to the
predictor.
EC, RMSE and bias show a comparable behavior of the unfiltered and ’good’ values with
respect to the field data at the forest sites (Fig. 6a). This istrue for all spatial configurations
from the exclusive use of the tower pixel to the exploitationof all 7x7 pixels with a similar land
class available in the subset whereas it appears that the more pixels are taken into account the
better is the match of field and remote sensing data. If the ’good’ values subject to saturation are
removed in summer comparison statistics improve a little bit. At MMSF and Duke, however, the
’good’ values in the saturation domain are too high comparedto the field data; the consequence
is that the unfiltered LAI data compare best to the field data, since the too low ’best’ values
and the too high ’good’ values in the saturation domain compensate each other. Taking only
the ’best’ values into account, however, the goodness of fit between field and MODIS LAI data
deteriorates and results in a greater bias andRMSE as well as a lowerEC at the forest sites.
The retrievals without clouds tend to be somewhat more concordant with the field measurements
at all sites which is especially apparent at Vaira Ranch (Fig. 6b).

3.3 Spatial aggregation

Figure 6 discussed above has shown that the spatial aggregation by taking the mean of the
considerd pixel window has an influence on the comparabilitywith the field measurements:
The more pixels around the tower are used, the better the fieldand MODIS data are comparable
tendentially. Do the spatial aggregations also have an positive effect on the temporal consistency
of the resulting time series? The temporal evolution duringa typical year without extreme
events as storms, drought or severe fires is supposed to be relatively smooth; MODIS LAI
products, however, tend to show a higher temporal noise thanexpected in a phenologically
sound sense [24,29,52].
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Fig. 6. Quality criteria for the comparison of field measureddata with the MODIS LAI values
for the various quality sets at Harvard (a) and Vaira Ranch (b). The tower pixel (TP) alone as
well as the 3x3, 5x5, 7x7 pixels around the tower pixel are compared with the field measure-
ments.

A comparison of the variancesσ for the tower pixel and spatially aggregated time series
shows indeed a decrease with an increasing pixel window sizein the most cases, whereas at
the same time, the means remain very similar for the aggregations, except for Howland Forest.
An inspection of the Howland time series reveals lower values in winter for the more extensive
aggregations, which is a consequence of a changing tree composition in favor of deciduous
species; this assumption is supported by the MODIS land class map.

But to evaluate the smoothness of the time series, the magnitude of the up-and-downs at
consecutive time steps is even more important, for what reason the smoothness measureδ is
consulted. This method has already been used by [29] to compare the temporal consistency
of MODIS and CYCLOPES LAI time series.δ calculates the difference for each time series
element to the linearly interpolating line between its two adjacent neighbors:

δ = (0.5 · (LAI(t+∆t) + LAI(t−∆t)))− LAI(t) (2)

A single drop of a time series element would for example lead to a highδ value at this time
point, a sudden jump to a high negative value. Histograms of the relative frequencies of all
occurringδ-values show indeed a change of theδ-distributions for the different spatial aggrega-
tions towards the lowδ-bins for the aggregations compared to the tower pixels’δ-values: The
greater the aggregation, the steeper is the decrease and theearlier the frequencies approach zero
occurrences towards largerδ-bins (Fig. 7a).

As second method to measure the smoothness and noise of the LAI time series, frequency
analysis is applied and realized with the Matlab® function ’spa’, which calculates the frequency
response and power spectrum of a signal using Fourier analysis. A smooth, periodic time series
would result in a power spectrum with a sharp peak at low frequencies and low values at higher
frequencies. A highly noisy time series would result in a large horizontal part in the power
spectrum. The application of this method to the various aggregation show a faster drop of the
power spectrum towards high frequencies, the larger the aggregation window around the tower
pixel is. Figure 7b shows this behavior for Lethbridge. The aggregation not surprisingly tends
to blur the difference between the quality sets (Fig. 7b); but still, the cloud filtered time series
has a lower power spectrum at high frequencies and the main algorithm time series without
clouds tends to show even more the characteristics of a slightly smoother time series. Using
only the tower pixel makes it more important to understand and apply the quality flags because
the difference between them gets larger (Fig. 7d). The frequency analysis also shows that the
empirical back-up values are not necessarily more noisy than the main algorithm values.
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Fig. 7. Histogram of relative frequencies ofδ for the spatial aggregations, namely for the time
series of the tower pixel (TP) up to the averaged (median) 7x7pixel window, exemplarily shown
for the unfiltered MMSF Aqua data set (a). Power spectra for the aggregated Lethbridge data
sets (b) and for the various quality classes for the 7x7 aggregation (c) as well as the tower pixel
(d).

3.4 Comparison of Terra and Aqua data

3.4.1 LAI retrievals and quality classes

As a first step of the Terra-Aqua-analysis, we explore the questions of whether it is advantageous
to combine MOD15A2 with MYD15A2. The number of overall retrievals would clearly profit
from the combination of Terra and Aqua. In 6 to 7.4 % of all pixels and retrieval dates one value
lacks in the Terra or Aqua data set but the other is available.In all but a few cases Aqua delivers
2 to 4 % more values than Terra which is mainly a consequence ofa longer gap in the Terra
time series in 2006. The proportions of the quality classes are similar in the two data sets. The
greatest differences occur at Duke and Lethbridge with the Aqua data sets having 3 % or almost
7 %, respectively, less main algorithm retrievals without clouds than Terra. In at least 4 % of
all retrieval dates, the pixel of one data set is cloudy, the other is not. The Canadian grassland
Lethbridge experiences the greatest cloud coverage of about 40 %; the combination of the two
sensors could reduce this amount to 26 %.

3.4.2 Statistical characteristics

But are the two data sets really comparable and hence combinable? Analyzing the statisti-
cal characteristics of the two data sets, it becomes evidentthat the overall means of Terra are
slightly higher than those of the Aqua data sets (0.01 to 0.15m2m−2), only at Duke, the bias
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Fig. 8. Multi-year average LAI at a) Duke, b) Howland, c) Harvard, d) MMSF showing the
long-term difference between the MODIS sensors onboard Terra and Aqua.

constitutes even nearly 0.3m2m−2. The medians are equal in all cases, but again at Duke, the
median differs even by 0.4m2m−2. These differences get evident in the multi-year averaged
LAI-dynamics (Fig. 8) as well as in the frequency distributions (Fig. 9): Average Terra values
in summer are noticeably higher than the Aqua multi-year means, and the relative frequencies of
Terra retrievals in the second half of the LAI range exceed the relative frequencies of Aqua re-
trievals. Vice versa, the Aqua data sets have relatively more LAI values in the lower LAI range.
This is true for both forests and grasslands, even though thephenomenon is less distinctive at
grassland sites.

The residuals of the two sets calculated as Terra minus Aqua values range up to 6m2m−2 in
the forest data sets and up to 3m2m−2 at the grassland data sets. Their frequency distributions
diverge from the normal distribution with a positive kurtosis and skewness rightwards, so the
deviations do not seem to be random but systematic. The Kruskal-Wallis-test denies the null
hypothesis that the two data sets are statistically similarand suggests that they are drawn from
different populations. For higher quality data, the null hypothesis gets somewhat more probable.
According to the RMSE, the differences range from 0.15m2m−2 (Lethbridge) to 1.35m2m−2

(Duke Forest).
Plotting the LAI values from the two data sets directly against each other (Fig. 10) and

counting the occurrences in 0.1m2m−2 wide bins reveals different patterns at the forest and
the grassland sites: In both biomes, the highest frequencies of data points occur around the 1:1
line of a perfect match between the two data sets. At grasslands, the data points in the sensor
space form an elliptic-like shape with some few scattered points around it. At the four forest
sites, however, the scatter pattern clusters in four parts:One part is similar to an ellipse around
the 1:1 line at LAI-values up to 4 and contains the most values. After a gap with no or very
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Fig. 9. Relative frequency of LAI values in bins of 0.5 LAI units as percentage of all retrievals
in the subsets of a) Duke and b) Vaira. Relative frequency distributions at the other study sites
are similar.

few values, this part is continued at along the 1:1 line at higher LAI-values by a second, wider
cluster. Two additional clusters are located in the left upper and right lower quadrant of the
scatter plot, namely at low Terra values and high Aqua valuesand vice versa. In summary, the
data of Terra and Aqua are either very similar or very different, whereas the first possibility
has a significantly higher probability, especially at low LAI values. Taking only values flagged
as ’good’ and without clouds into account, the clusters somewhat narrow, especially those two
clusters indicating high differences get smaller and less dense.

Fig. 10. Bivariate histograms of Terra (x-axes) and Aqua (y-axes) LAI values, exemplarily for
a) MMSF and b) Lethbridge. White presents no occurrence, darkblue shows frequencies of 1,
dark red frequencies of 1000 cases and more.

3.4.3 Combination

Despite the clues for systematic but compared to other criteria rather small differences between
the Terra and Aqua data sets at these test sites, we apply a composition scheme. To generate the
combined LAI values we follow the ’official’ product combination approach [26] but enhance
it with the lessons learned in this study regarding the influence of the cloud state. In doing
so, we first compare the general quality criterion: If one wasretrieved by the main algorithm

Journal of Applied Remote Sensing, Vol. 4, 043557 (2010)                                                                                                                                    Page 15

Downloaded from SPIE Digital Library on 18 Jan 2011 to 128.219.49.8. Terms of Use:  http://spiedl.org/terms



and the other not, we prefer the ’good’ value; if the algorithm path is equal we choose the
cloud free retrieval; if the cloud state is also the same for both sensors, the LAI value with the
higher corresponding FPAR value is taken since this value isassumed to be less atmospherically
affected.

The advantage of the combined product is clearly the higher data availability as already
mentioned above. Due to the preference of ’good’ retrievalswithout clouds in the combination
procedure, the number of these retrievals is enhanced by up to almost 20 % and the number of
time steps at which at least 45 pixels ’good’ retrievals without clouds are available rises by up
to 40 % (Fig. 11). The temporal consistency as described byδ and frequency analysis is merely
promoted by the combination procedure. The average temporal variance shows no decline, too.
The spatial variance at each time step, however, tends to be moderated by the combination of
the two sensors.

Fig. 11. The combined product shows an increased frequency of ’good’ pixels without clouds
for the combined product at every time step (a). The temporalconsistency analyzed withδ ,
instead, shows only a small improvement for the combined time series (b). Plots shown for
Howland.

3.5 Model sensitivity to LAI

The leaf surfaces represent the exchange medium between theplants and the atmosphere. The
LAI as quantity for this exchange surface is consequently a critical variable for all biophysi-
cal models describing fluxes of energy, momentum and matter such as the exchange of carbon
and water [53]. The index is of particular importance to modelers who want to upscale fluxes
measured by eddy-covariance towers [54] or apply biomass models on a global basis or for
agricultural purposes [55]. Since biosphere-atmosphere interactions are more and more im-
plemented in global climate and hydrological models, the LAI is meanwhile also a key input
variable for these model types [56,57].

The Penman-Monteith equation is broadly applied in SVAT (soil-vegetation-atmosphere-
transfer) models involving an estimation of the evapotranspiration [58] and is often executed
depending on LAI [59, 60]. As a final part of the analysis we test the potential consequences
of using various LAI time series based on different quality criteria on the calculation of latent
heat fluxes. To do so, the simple bucket type SVAT-scheme ’BUCKUP’ [61, 62] based on the
Penman-Monteith equation is chosen and executed for the 2004 data of MMSF in a slightly
modified mode:

λE =
∆RN + (ρcpδq)/ra
∆+ γ [1 + (rs/ra)]

(3)
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with λE
[

W m−2
]

being the latent heat flux,∆
[

kg kg−1 K−1
]

the rate of change of satu-
rated specific humidity with temperature,Rn

[

W m−2
]

the net radiation,ρ
[

kg m−3
]

the dry
air density,cp

[

J kg−1 K−1
]

the specific heat of air,δq
[

kg kg−1
]

, γ
[

kg kg−1 K−1
]

the psy-
chrometric constant, and finally the surface and aerodynamic resistancesrs andra in

[

s m−1
]

.
While root zone water storage mainly controls water availability , the canopy and upper soil
interception store, the root zone store as well as a variableground water table act as evapotran-
spiration sources. Rainfall fills the interception store upto its limit. The interception overflow is
assigned to the root zone store whose excess water is transferred to the groundwater table with a
soil dependent time delay. The surface resistancers is updated every time step according to the
actual water availability of the three stores. In this study, BUCKUP is extended by considering
LAI seasonality:rs is assumed to depend inversely proportional to the LAI [53].Furthermore,
the LAI is supposed to alterra by means of the displacement height,D, as well as the roughness
length,RL according to the empirical relations [63] specified in the Appendix A. The model
is run with hourly time steps using temperature, precipitation and humidity as meteorological
boundary conditions. As LAI time series input we use the datafrom Terra, Aqua as well as
the combined data set for the quality classes used in this study. For the combined product,
the various spatial aggregations from the mere use of the tower pixel up to the 7x7 pixels are
applied.

Since the model needs temporally continuous LAI data, we have to use an interpolation
method. At the same time, we want to smooth the time series, since even the time series from
taking the mean of all 7x7 pixels appears not to be physiologically sound. Interpolating and
smoothing for model purposes has been proposed by other authors, too [18, 25, 33–35], which
have used spatial averaging, upper LAI envelope smoothing techniques, adaptive Savitzky-
Golay filtering, asymmetric and double logistic Gaussian filtering or an ecosystem curve fitting
method based on the MODIS vegetation continuous fields product. In this exercise we want
to give the noisy MODIS LAI data as much weight as possible butat the same time fulfill the
contradictory demand of reducing the noise and the influenceof outliers. Therefore, we choose
a combined temporal-spatial interpolation scheme with a cubic smoothing spline method (see
Appendix B). Figure 12a shows the results of this interpolation and smoothing procedure to
daily LAI values for the combined Terra and Aqua data and the various quality data sets.

Fig. 12. (a) MODIS LAI (dots) and interpolated/smoothed LAItime series (lines) of different
quality sets at MMSF, 2004. ”w/o” means data without clouds,”sat. filt.” denotes the data set of
’good’ values without clouds and without LAI values in summer outside the saturation domain
as described above. (b) Cumulative evapotranspiration forthe different LAI input data.

The results of the sensitivity analysis illustrated in Figure 12b) show that the influence of
the sensor choice as well as the quality criteria on the modeloutput is rather small which is not
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surprising since the smoothing blurs the differences between the data sets. However there is
one drastic exception: The ’best’ values produce over 30 % lower cumulative amounts of evap-
otranspiration compared to the measurements and over 25 % compared to the results without
using ’best’ LAI values in summer. This is the case because the model evapotranspiration does
not reach the high evapotranspiration values at daytimes insummer due to the much lower LAI
values. This behavior will have a large impact on the subsequent prediction of individual com-
ponents of the water cycle such as groundwater recharge or run off. Also, patterns of surface
soil moisture availability will be largely biased and estimates of e.g. net primary production
or bio-geochemical processes might be unreliably affected. Fact is, that the LAI time series
at temperate forest sites get more unreliable in the sense ofphysiologically plausible temporal
behavior when using the strictest quality filtering ’best’ and this is true even when exploiting
the data sets of both sensors.

4 DISCUSSION AND CONCLUSIONS

MODIS data from Terra and Aqua sensors in combination with ecosystem exchange data col-
lected from FLUXNET have become central to the development,calibration and evaluation
of soil-vegetation atmosphere transfer models (SVAT) and their regionalization. MODIS land
product subsets provided for long term field measurement sites as from FLUXNET simplify
the assimilation of field and remote sensing measurements for practical usage. Despite the fre-
quent application of MODIS LAI subset data in ecosystem models, there is no consensus on
their post-processing usage and the employment of the provided QC information. In this study
we have analyzed the consequence of several post-processing user choices for six MODIS LAI
subsets at FLUXNET sites (four forests, two grasslands) on the statistical characteristics and
temporal behavior of the resulting LAI time series. The application of quality assessments as
well as differing spatial aggregations from the only use of the tower pixel to the aggregation
of all 7x7 pixels have been studied. The resulting various time series have been compared to
ground-measured LAI values. The data from both sensors havebeen compared and their com-
bination has been considered. Finally, the influence of differing post-processing choices on a
simple SVAT model has been assessed.

The analysis of the quality criteria showed that most Terra and Aqua LAI values have been
retrieved with the main algorithm and without cloud coverage what is an improvement com-
pared to earlier MODIS LAI data collections. This fact has already been shown by [26] for
a provisional collection 5 analysis. The spatial variationwithin the 7x7 pixels is high and the
pixels’ time series are often unstable and vary through the whole LAI range from near 0 to
over 6m2m−2. Cloud filtered time series and main algorithm time series tend to be smoother
than their unfiltered counterparts. Most interesting is however the difference between ’best’ and
’good’ values from the main algorithm: ’best’ values without saturation are significantly lower
than main algorithm retrievals in the saturation domain and- by definition - seldom reach for
forests realistic summer LAI values greater than 4m2m−2. [64] mentions this phenomenon
for forest sites, too. After the deletion of ’best’ values insummer, the LAI time series shows
- although with a considerable range of dispersion - a physiologically sounder temporal evolu-
tion. ’best’ values in summer compare not as good to field dataas the other quality sets. The
unfiltered data sets perform well due to compensation effects of too high saturation domain val-
ues and too low ’best’ LAI values. This is especially true forDuke Forest where the MODIS
time series exceeds the ground-measured LAI values by over 2m2m−2; one reason for this
observation is certainly the land cover classification problem (see section 2.3) as well as general
algorithm problems for coniferous forests [27,65].

Are ’best’ values in summer at forest sites just an artifact of cloudy conditions which have
not been detected by the algorithm or the consequence of an erratic atmospheric correction?
The fact that the most main algorithm retrievals with cloudsare also ’best’ retrievals supports
this assumption as well as the fact that cloudy pixels have the tendency to have lower LAI
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values [26, 27]. Consequently, the end user has to take care when filtering according to the
supposedly most stringent QC, ’best’; the semantic meaningof this adjective can be misleading
when dealing with pixels covered by forests. Nonetheless, the study showed the benefit of using
the provided QC meta data.

The question of spatially aggregating pixel around the tower or not has certainly to be an-
swered from an site specific perspective and depends on the land cover classes involved and
their distribution around the tower. If the emphasis is put on reducing the noise and increasing
the data basis for interpolation and smoothing algorithms to build a more robust seasonal vari-
ation of LAI, as many pixels as the land cover distribution around the tower allows should be
selected. The analysis showed that the smoothness, hence the temporal consistency, of the time
series is enhanced using more pixels. This is consistent with the findings of [25]: In their data
denial exercise to test several interpolation schemes, they used even 9x9 pixels and found it to
be as good or even superior compared to 5x5 aggregations withhaving a higher data coverage
at the same time.

The issue of spatial aggregation is tightly connected to three other post-processing options
for MODIS Land Product Subsets, namely the selection of pixels according to specific land
classes or other criteria as well as the interpolation and smoothing of the time series. The effects
of filtering pixels around the tower on the basis of the MODIS land classification on the resulting
LAI time series have not been analyzed in this study; this aspect needs further attention in
future work. It will also be worthwhile considering to select pixels with respect to the footprint
of the flux tower which depends mainly on the wind speed and direction. How to interpolate
and smooth the LAI time series can certainly be discussed further: as [25] comments, there
is no single interpolation scheme that can serve all purposes and conditions. Further analysis
could analyze the benefits of using a weighting factor according to the LAI standard deviation
delivered in the MODIS product.

Comparing the Terra and Aqua LAI retrievals at the six test sites, a small bias between
the data sets was observed and pixel by pixel comparisons reveal large differences at a small
proportion of the data. These observed large discrepanciesfor a limited number of data values
can certainly be attributed to atmospheric conditions which are challenging for the algorithm.
The cause for the systematic difference is not as obvious. [26] also observed a bias in Terra and
Aqua reflectances and NDVI values at Harvard Forest. They excluded solar zenith angle and
cloud influences and ascribed the discrepancies to erroneous atmospheric corrections, too. It
is also known that Aqua suffers of band-to-band misregistrations of its MODIS sensor in the
Visible and Infrared [66]; it is unclear, however, how this problem affects the LAI retrievals. In
spite of the observed bias, [26] suggested the use of both products. Furthermore, we argue that
the difference between the means of the Terra and Aqua product is small compared to the overall
noise of the time series. Consequently, we have taken advantage of both LAI products and
combined them as described in section 3.4.3 to further increase the reliability of the LAI time
series. The combination of the two data sources increases the percentage of ’good’ retrievals
without cloud coverage by up to 17%. This is consistent with [26] who found a high quality
retrieval increase of 10-20% for woody vegetation. The number of time steps with at least 45
’good’ pixels without clouds increases by an amount of up to 40%. However, the temporal
smoothness of the LAI time series is not improved (see section 3.4.3).

Also, we have analyzed the sensitivity of a simple SVAT modelto the differently post-
processed LAI input data. Predicted rates of evapotranspiration confirmed the previous findings:
The use of ’best’ data introduces a large bias of up to 40 % withpossibly tremendous conse-
quences on the subsequent prediction of individual components of the water balance. However,
these consequences need further investigation and have to be extended to other related research
areas.

Merging all analysis results, we can draw the conclusion that it is advantageous to combine
Terra and Aqua to enhance the data coverage and maximize the number of cloud-free main-
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algorithm retrievals and follow one of two major strategies: to apply no QC filtering and take
all pixels from the subset into account to achieve error nullification, or, alternatively, to make
QC adjustments such as deleting back-up retrievals and those from cloudy pixels as well as
’best’ retrievals belonging to the non-saturation domain when the retrieval can be expected to
belong the saturation domain.

In this study we have discussed the usage of MODIS LAI data from an end-user point
of view. Even though the product is considered as validated it is important to analyze usage
options available to the modeler and quantify their effectson the resulting LAI time series. And
even if product problems and possible pitfalls for the end user have been revealed by this and
other studies, this extensive MODIS LAI database belongs without doubt to the most valuable
information sources on vegetation dynamics the model community has.

APPENDIX A: THE EXTENDED BUCKUP MODEL

The original BUCKUP model as described by [62] is extended inthis study by making the
surface resistancers and the aerodynamic resistancera dependent on the LAI value at each
time step. In doing so,rs is defined to be reciprocally proportional to the LAI.ra is indirectly
modified by the the displacement heightD and the roughness lengthRL according to following
empirical equations [63]:

X = 0.2 ∗ LAI (4)

D = H ∗ (log(1 + 6
√
X) + 0.03 ∗ log(1 +X6)) (5)

RL = HU + 0.3 ∗H ∗
√
X forX < 0.2) (6)

RL = 0.3 ∗H ∗ (1−D/H)forX >= 0.2) (7)

whereH is the vegetation height andHU the understorey height.D andRL are then used to
calculatera empirically. Details can be found in [67].

APPENDIX B: THE SMOOTHING SPLINE METHOD

To interpolate and smooth the time series of all 7x7 LAI values at each time step, a smoothing
spline method as implemented in Matlab® as ”csaps” is employed. The smoothing splinef
minimizes

p
n
∑

w(j)

|y(:, j)− f(x(j))|2 + (1− p)

∫

λ(t)
∣

∣D2f(t)
∣

∣

2
(8)

where x represents in this case the time vector and y the LAI data,j runs from 1 to the maximum
number of entries of the temporal data vector,n. D2 denotes the second derivate. Further,λ is
a weight function andw a weight vector which is set to 1 in this study.p represents a smoothing
parameter; it is chosen by the algorithm depending on the LAIvalues at each time step. Several
data points at the same time steps are recognized as the average. csaps is an implementation of
the FORTRAN routine ’SMOOTH’ [68].
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