
A comparative study of a multilayer and a productivity (light-use) efficiency
land-surface model over different temporal scales

Paul Alton *, Per Bodin

Geography Dept., University of Swansea, Swansea, Wales SA2 8PP, UK

Agricultural and Forest Meteorology 150 (2010) 182–195

A R T I C L E I N F O

Article history:

Received 16 February 2009

Received in revised form 5 October 2009

Accepted 9 October 2009

Keywords:

Radiative transfer

Light-use efficiency

Eddy-covariance

Global carbon cycle

Model comparison

Model inversion

A B S T R A C T

Several recent studies suggest that a simple productivity efficiency model (PEM), based on daily or

weekly light-use efficiency, is sufficient to represent the exchange of carbon, water and energy at the

land-surface. At the same time, many global land-surface models are becoming more process-based,

simulating at high temporal resolution the interception of direct and diffuse sunlight at different depths

within the canopy. Quantifying the accuracy and limitations of both types of model has become of great

importance. The current study compares a PEM with a more complex (and computationally expensive)

multilayer model operating at timesteps as short as 30 min (JULES-SF). Each model is optimised against

observed fluxes (net carbon exchange, latent heat, sensible heat and net radiation) within the FLUXNET

archive for an unprecedented number of sites (30) and site-years (71). Our main finding is that, after

optimisation, the process-based multilayer model performs significantly better than the PEM on all

timescales (daily and seasonal). However, the difference in model performance appears to diminish with

an increase in measurement timescale. Thus, on average, the modelling efficiency increases from 0.32

(daily) to 0.46 (seasonal) using the PEM approach (r2 ¼ 0:53!0.71), whilst it remains close to 0.6 for

JULES-SF on both timescales (r2 ¼ 0:69!0.75). We find that the maximum number of biophysical

parameters that can be tuned against site fluxes (4 observables) is quite limited (typically 3–4). This

inference applies to both models despite their considerable difference in complexity.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Global land-surface models (LSMs) traditionally adopt simple
algorithms for reasons of computational expediency (Raupach and
Finnigan, 1988; Sellers et al., 1996a, 1997). Recently, however,
some global LSMs have increased in complexity, especially with
respect to canopy light-interception (Dai et al., 2004; Alton et al.,
2007b; Mercado et al., 2009). This change is in recognition of the
important role played by cloud and diffuse sunlight in the accurate
predictions of carbon, water and energy exchange (Gu et al., 1999;
Roderick et al., 2001; Gu et al., 2002; Lyons, 2002; Niyogi et al.,
2004). At the same time, some authors find simple empirical LSMs,
once calibrated against observations, provide sufficient accuracy
for most purposes. For example, the productivity efficiency model
(light-use efficiency or epsilon model), which is forced by daily,
weekly or monthly climate, and takes no explicit account of
vertical canopy structure, is shown to reproduce Gross Primary
Productivity (GPP) fairly well at several carbon-monitoring eddy-
covariance sites at least on longer (weekly and monthly)
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timescales (Medlyn et al., 2003; Sims et al., 2005; Yuan et al.,
2007). Such models are well suited to available satellite data.
Indeed, a PEM algorithm allows global GPP to be derived on a daily
basis using MODIS estimates of absorbed photosynthetically active
radiation (PAR; Running et al., 2004; Zhao et al., 2005; Heinsch
et al., 2006. A coarse timestep is also better suited to currently
available meteorological forcing data although reconstructed
datasets on shorter (3-hourly) timesteps are starting to become
available (Dirmeyer et al., 1999; Sheffield et al., 2006).

All global LSMs, especially the more process-based, require a
large number of input biophysical parameters to represent carbon,
water and energy exchange at the vegetated land-surface. For
example, the Met.Office Surface Exchange Scheme (MOSES; Cox
et al., 1999) and the Lund-Potsdam-Jena model (LPJ; Zaehle et al.,
2005) contain, about 50 and 40 parameters, respectively. Within the
model, many of these parameters assume different values according
to biome or Plant Functional Type (PFT). Although field measure-
ments are available for parameterization of global LSMs, many
biophysical properties are not well known across all PFTs (Sellers
et al., 1995). A considerable advantage of the PEM-approach is that it
reduces significantly the number of prescribed parameters.

One way to use a LSM is to optimise against site fluxes and then
scale globally. Indeed, Falge et al. (2002) emphasize the urgent
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need to calibrate global LSMs more rigorously in this way. The
recent expansion of the FLUXNET archives (Baldocchi et al., 2001;
Falge et al., 2002) provides a long-awaited opportunity to calibrate
global LSMs against carbon, water and energy fluxes recorded at a
large number of sites and for several PFTs.

In this study, we calibrate two global land-surface models by
comparing model output against observed carbon, water and
energy fluxes from 30 sites (71 site-years) contained in the
Marconi FLUXNET archive. The two models span a large range in
complexity. The simpler model is forced with daily climate and
yields GPP according to light-use efficiency. The more complex
model is a process-based approach forced by half-hourly climate
which takes account of changes in leaf nitrogen, microclimate and
light interception with depth through the canopy. It has recently
been enhanced to take explicit account of leaf orientation, diffuse
sky radiance and sunfleck penetration, and is therefore one of the
most complex LSMs that operate globally, at least in terms of
canopy light-interception (Alton et al., 2005, 2007a,b). For both
models, the most influential parameters are determined by
sensitivity analysis and then optimised to produce closest
agreement with observed carbon, water and energy fluxes
recorded at site-level. The main scientific research question can
be summarised as follows: once optimised, how accurately can
each of the LSMs reproduce site-level carbon, water and energy
fluxes measured over different timescales (half-hourly, daily and
seasonally) and by how much does the process-based, multilayer
model perform better than the simple PEM?

2. Methods and materials

The methodology consists of two main parts: (1) a sensitivity
analysis to determine the most influential parameters within the
model; and (2) the use of FLUXNET archival data to optimise (tune)
the model and to assess its performance at site-level. The two parts
are carried out for a relatively simple productivity efficiency model
(JULES-PEM) and a more complex, multilayer, process-based
model (JULES-SF). The following sections describe the models
(Section 2.1), the datasets (Section 2.2) and the two parts of the
methodology (Section 2.3).

2.1. Land-surface modelling

The more complex model (JULES-SF) is based on the Met.Office
Surface Exchange Scheme (MOSES; Cox et al., 1999), after a series
of enhancements (Alton et al., 2007a; Mercado et al., 2007; Alton,
2008). Detail for the land-surface model, including important
equations, are contained in Appendix A. Here we focus on the main
differences between JULES-SF and JULES-PEM which concern
primarily the representation of the canopy.

The energy calculation central to JULES (Joint UK Land
Environmental Simulator) is the Penman–Monteith approach
(Monteith, 1965), ensuring the balance of ingoing and outgoing
fluxes at the land-surface. Within JULES-SF, stomatal conductance,
transpiration and photosynthesis are calculated in each of five leaf
layers, before summing to produce total values for the entire
canopy (Alton et al., 2007a; Mercado et al., 2007). Enhancements
for sunfleck penetration, explicit leaf orientation and diffuse
sunlight permit a more realistic canopy response under both direct
sunlight and cloud (Alton et al., 2005, 2007a). Leaf photosynthesis
for the C3 and C4 pathways are derived using the co-limitation
model of Collatz et al. (1991, 1992) which is conceptually similar to
the biochemical model of Farquhar et al. (1980). Input to the model
consists of meteorological (forcing) driving data, LAI phenology
and biophysical parameters. We use the AVHRR (satellite-derived)
LAI which possesses a 10-day temporal resolution and a spatial
resolution of 0.25 � or �20 km (Los et al., 2000). The satellite
timeseries is normalised so that the peak, growing season LAI is
equal to LAImax . LAImax is a PFT-specific parameter and is included
in the parameter sensitivity analysis discussed below.

To create the productivity efficiency model (JULES-PEM) we use
the same soil hydrology and soil respiration as JULES-SF. However,
we make the following simplifications with respect to canopy,
surface reflectance and climatic forcing:
1. C
anopy GPP is estimated according to total solar irradiance and
light-use efficiency (LUE; Monteith, 1977; Gower et al., 1999;
Medlyn et al., 2003; Yuan et al., 2007):

GPP ¼ e� fPAR� IPAR � FSMC � FT (1)

where e is the potential light-use efficiency (g m�2 MW�1), IPAR

is the PAR incident at the top of the canopy (MW�1) and fPAR is

the fraction of absorbed PAR. Eq. (1) replaces an estimation of

gross productivity within each leaf layer before summing all

layers to produce GPP for the entire canopy. The stresses on leaf

productivity owing to temperature and soil moisture content, FT

and FSMC in Eq. (1), remain as before (Appendix A).

2. T
o simplify the calculation of autotrophic respiration, the carbon

use efficiency (CUE) is prescribed:

CUE ¼ NPP

GPP
(2)

where NPP is the net primary productivity (Running and

Coughlan, 1988; Waring et al., 1998; de Lucia et al., 2007). This

replaces the calculation of leaf respiration within each canopy

layer, based on foliar temperature and nitrogen content, which

is then scaled in JULES-SF according to the ratios of plant-to-leaf

nitrogen and growth-to-maintenance respiration to yield total

autotrophic respiration (Eqs. (11) and (13) in Appendix A).

Within the literature, PEMs are adopted for both GPP

(Choudhury, 2001; Medlyn et al., 2003; Heinsch et al., 2006;

Yuan et al., 2007) and NPP (Potter et al., 1993; Goetz and Prince,

1996; Gower et al., 1999; Ruimy et al., 1999; Barrett, 2002;

Running et al., 2004). The implementation within JULES-PEM of

both CUE and e permits comparison with both types of model.

3. T
he vertical gradients in leaf nitrogen, photosynthetic capacity

and boundary-layer resistance are not modelled within JULES-
PEM. Total stomatal conductance of the canopy (gc;
mol m�2 s�1) is estimated via the diffusion equation:

gc ¼
Ac

ca � ci
(3)

where Ac and ca are, respectively, the canopy net productivity

(mol m�2 s�1) and the ambient CO2 concentration (mol mol�1;

e.g. Cox et al., 1998). The quantity ci (mol mol�1) is the leaf CO2

concentration which is often observed to be constant over a

wide range of conditions (Wong et al., 1979; Long and Hutchin,

1991; Campbell and Norman, 1998, although see Houborg et al.,

in press). It is now prescribed as an input parameter, rather than

calculated as an internal variable using the Ball–Berry relation

(Eq. (14) in Appendix A). Ac follows from GPP- RL where the total

leaf respiration within the canopy, RL, is given by:

RL ¼
RPM

PL
¼ GPP

PL
� 1� CUE� Rgrow

1� Rgrow
(4)

where RPM , PL and Rgrow are, respectively, the plant maintenance

respiration, the plant-to-leaf nitrogen ratio and the growth-to-

maintenance ratio (Appendix A). Note that we constrain RL� 0

in Eq. (4) (otherwise RL is negative when CUE is very high) and

gc=0 when RL�GPP (stomatal closure).
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o account is taken of the directionality of solar radiance
(diffuse/direct). Albedo pertaining to the whole surface (soil +
vegetation) is prescribed for the visible and near-infrared
wavebands via the parameters albpar and albnir, respectively.
This replaces the two-stream calculation based on soil albedo,
LAI and leaf optical properties (Sellers et al., 1996a).
5. A
 daily climatology is employed by averaging the half-hourly
climatology used in the complex model.

In summary, 5 parameters introduced into JULES-PEM replace
15 parameters required for JULES-SF. Parameters are assigned
ble 1
fault (literature) values for the input biophysical parameters. Where there are suffic

lowing order: broadleaf forest (BL), needleleaf forest (NL), C3 grassland (C3), C4 grassla

m the following sources and references therein: Baldocchi and Harley (1995) for param

et al. (2002) and Asner et al. (2003) for 5; Cosby et al. (1984) and Dirmeyer et al. (19

00) for 14; Jackson et al. (1996) for 16; Collatz et al. (1991) and Sellers et al. (1996a,

lesinger (1992) for 21; Singsaas et al. (2001) for 22; Williams (1991) for 23 and 24; Far

ld and Mooney (1986); Schulze et al. (1994); Meir et al. (2002) for 26 and 27; Bolstad

91) for 29 and 30; Ryan (1991b) for 31; Campbell and ?Schrader et al. (2004); Hendric

is et al. (2000); Meir et al. (2002); Dang et al. (1998) for 34; Udo and Aro (1999) for 3

98) for 38, Yuan et al. (2007) for 39, Wong et al. (1979) for 40, de Lucia et al. for 41, B

ive radiation, near-infrared radiation and Leaf Area Index.

umber Model(s) Name Value Uncertainty

1 SF/PEM z1u 10 5

2 SF/PEM z1t 10 5

3 SF/PEM SMCi 0.62 0.11

4 SF/PEM h 25 20 1 1 2 5 5 0.5 0.5 1.0

5 SF/PEM LAImax 4.3 4.4 3.1 3.1 1.5 1.4 2.3 1.4 1.4

6 SF/PEM b 7 4

7 SF/PEM sathh 0.035 0.015

8 SF/PEM satcon 0.0073 0.0037

9 SF/PEM SMCV 0.42 0.04

0 SF/PEM hcap 1.26e6 0.07e6

1 SF/PEM hcon 0.27 0.05

2 SF ag 0.18 0.08

3 SF/PEM cc �200 100

4 SF/PEM dcatch0 0.2 0.1

5 SF infil 4 4 2 2 2 1

6 SF/PEM Dr 0.33 0.33 0.2 0.2 0.11 0.05

7 SF b1 0.89 0.09

8 SF b2 0.89 0.09

9 SF/PEM Q10(leaf) 2.3 0.5

0 SF/PEM k 1.8e �8 1.3e �8

1 SF/PEM Q10(soil) 2.3 0.7

2 SF QE 0.07 0.02

3 SF RNIR 0.50 0.05

4 SF RPAR 0.10 0.05

5 SF Fd 0.020 0.015

6 SF Ne f f 28 16

7 SF Na 3.0 3.0 1.5 1.5 3.0 1.0 1.0 0.5 0.5

8 SF/PEM PL 8 4 4 4 4 3 1.6 1.6 1.6 1

9 SF TPAR 0.05 0.05

0 SF TNIR 0.30 0.15

1 SF/PEM Rgrow 0.25 0.10

2 SF/PEM Tl 5 10

3 SF/PEM Th 40 10

4 SF krub 0.15 0.10

5 SF/PEM PS 0.50 0.05

6 SF gmin 0.03 0.02

7 SF m 8 4

8 SF/PEM dzm 0.05 0.05 0.1 0.1 0.1 0.025 0.025 0.

0.05 0.05

9 PEM e 2 1

0 PEM ci 20 8

1 PEM CUE 0.5 0.3

2 PEM albpar 0.20 0.15

3 PEM albnir 0.40 0.30
default values from the literature in Table 1 whilst the salient
differences between JULES-SF and JULES-PEM are summarised in
Table 2. Whilst it might have been possible to employ a pre-
existing PEM to compare with JULES-SF, our chosen method
ensures that any differences between the models, in terms of
performance and behaviour, can be attributed to the simplifica-
tions we have made rather than the diverse origin and construction
of each model. Such a modular approach is advocated by Knorr
and Heimann (2001). We recognise that our chosen PEM is
simple and that, within at least one recent version of the PEM, a
more elaborate calculation of canopy stomatal conductance
ient data to indicate significant differences amongst PFTs, values are given in the

nd (C4) and tundra shrubland (SH). Default values and their uncertainties are taken

eters 1 and 2; main text for 3 (Section 2.2); Cox (2001) and Alton et al. (2007a) for 4;

99) for 6–11; Barnsley (2007) for 12; Newman (1969) for 13; Ramirez and Senarath

b) for 17 and 18; Tjoelker et al. (2001) for 19; Schlesinger (1997) for 20; Raich and

quhar et al. (1980); Lloyd et al. (2002); Law et al. (1999); Bolstad et al. (2004) for 25;

et al. (2004); Law et al. (1999); Lloyd et al. (2002); Ryan (1991a) for 28; Williams

kson et al. (2004); Al-Khatib and Paulsen (1999) for 32 and 33; Carswell et al. (2000);

5; Misson et al. (2004); Sellers et al. (1996a,b) for 36 and 37, Campbell and Norman

arnsley (2007) for 42 and 43. PAR, NIR and LAI are, respectively, photosynthetically

Units Description

m Height above canopy for measurement of

wind speed

m Height above canopy for measurement of

temperature & humidity

– Initial soil moisture as fraction of saturation

m Height to top of canopy

0.5 m Peak LAI of growing season

– Clapp–Hornberger exponent

m Absolute soil matric suction at saturation

mm s�1 Hydraulic conductivity at saturation

m3 m�3 Volumetric soil moisture at saturation

Jm�3 K�1 Dry heat capacity of soil

Wm�1 K�1 Dry thermal conductivity of soil

– Soil albedo for solar radiation

m Critical potential for soil moisture stress

kg m�2 Change in water-holding capacity w.r.t. LAI

– Enhancement factor for infiltration of top soil

m Root exponential scale-depth

– Light-Rubisco photosynthetic co-limitation factor

– Sucrose photosynthetic co-limitation factor

– Fractional change in leaf respiration per 10 K

change in temperature

kg m�2 s�1 Decompositional rate of soil carbon

– Fractional change in soil decomposition per 10 K

change in temperature

mol mol�1 Top-of-canopy quantum efficiency to absorbed PAR

– Leaf reflectance in NIR waveband

– Leaf reflectance in PAR waveband

– Leaf dark respiration as fraction of leaf

photosynthetic capacity (Vcmax)

m mol g�1 s�1 Ratio Vcmax (m mol m�2 s�1) to leaf nitrogen (g m�2)

1.0 g m�2 Leaf nitrogen content

.6 – Ratio of plant-to-leaf nitrogen

– Leaf transmittance in the PAR waveband

– Leaf transmittance in the NIR waveband

– Ratio growth to maintenance respiration
�C Lower inhibition temperature for photosynthesis
�C Upper inhibition temperature for photosynthesis

– Nitrogen allocation exponential coefficient

– Fraction of sky irradiance which is PAR

mol m�2 s�1 Intercept of the Ball-Berry stomatal model

– Slope of the Ball–Berry stomatal model

05 m m�1 Change in roughness length with canopy height

g m�2 MW�1 Potential light-use efficiency

Pa Leaf internal CO2 concentration

– Carbon-use efficiency (net to primary

productivity ratio)

– Surface albedo in PAR waveband

– Surface albedo in NIR waveband



Table 2
Primary differences between the two land-surface models. PAR, NIR and CUE

denote, respectively, photosynthetically active radiation, near-infrared radiation

and carbon-use efficiency.

Model attribute JULES-SF JULES-PEM

Canopy representation Multilayer Single layer

GPP Biochemical co-limitation

(Eqs. (8)–(11))

Light-use efficiency

(Eq. (1))

Stomatal conductance Ball–Berry relation

(Eq. (14))

Diffusion equation

(Eq. (3))

Surface albedo Two-stream calculation

Sellers et al., 1996a

Prescribed for PAR

and NIR

Plant respiration Maintenance and growth

terms (Eqs. (12) and (13))

Prescribed via CUE

(Eq. (2))

Meteorological forcing Half-hourly Daily average

Table 3
Summary of sites and site-years available in the Marconi FLUXNET archive Falge

et al., 2002. Plant Functional Types (PFTs) defined in the model are broadleaf forest

(BL), needleleaf forest (NL), C3 grassland (C3), C4 grassland (C4) and tundra

shrubland (SH). MX denotes mixed broadleaf/needleleaf forest. Sites used for model

optimisation are denoted by an asterisk. Law et al. (2002) provide a more complete

description of the Marconi sites with references to the original publication of data.

Site Latitude

(�N)

Longitude

(�E)

PFT Year(s)

Manaus, Brazil �1.4 �59.8 BL
�

1996,1999

Gunnarsholt, Iceland 63.8 �20.2 BL
�

1996–1998

Hesse, France 48.7 7.1 BL
�

1996–1999

Harvard, USA 42.0 �72.2 BL
�

1992–1999

Soroe, Denmark 55.4 11.7 BL
�

1996–1999

Vielsalm, Belgium 50.3 6.0 BL
�

1997–1998

Walker Branch, USA 35.9 �84.3 BL
�

1995–1998

Willow Creek, USA 45.8 �90.1 BL
�

1997–1999

Castelporziano, Italy 41.8 12.4 BL
�

1997–1998

Sky Oaks (old), USA 33.4 �116.6 BL 1997–2000

Sky Oaks (young), USA 33.4 �116.6 BL 1997–2000

Aberfeldy, Scotland 56.6 �3.8 NL
�

1997–1998

Blodgett Forest, USA 38.9 �120.6 NL
�

1997–1999

Duke, USA 36.0 �79.1 NL 1998–1999

Flakaliden, Sweden 64.1 19.5 NL
�

1996–1998

Howland, USA 45.2 �68.7 NL 1996–1997

Hyytiala, Finland 61.9 24.3 NL
�

1996–1998

Saskatchewan, Canada 53.9 �104.7 NL 1994

Loobos, Netherlands 52.2 5.8 NL
�

1996–1998

Metolius, USA 44.5 �121.6 NL
�

1996–1997

Manitoba, Canada 55.9 �98.5 NL
�

1994–1998

Norunda, Sweden 60.1 17.5 NL
�

1996–1998

Niwot Ridge, USA 40.0 �105.6 NL
�

1999

Tharandt, Germany 51.0 13.6 NL
�

1996–1999

Weidenbrunnen, Germany 50.2 11.8 NL
�

1996

Wind River, USA 45.8 �121.9 NL
�

1998

Zotino, Siberia 60.8 89.4 NL
�

1999

Braschaat, Belgium 51.3 4.5 MX
�

1996–1998

Park Falls, USA 45.9 �90.2 MX
�

1999

Ponca City, USA 36.8 �97.0 C3
�

1997

Bondville, USA 40.0 �88.3 C3/C4
�

1997–1999

Little Washita, USA 35.0 �97.9 C4
�

1997–1997

Shidler, USA 36.9 �96.6 C4
�

1997

Barrow, USA 70.3 �156.6 SH
�

1998–1999

Happy Valley, USA 69.1 �148.8 SH
�

1994–1995

Upad, USA 70.3 �148.8 SH 1994
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is implemented (Anderson et al., 2000; Houborg et al., in press). In
general, however, the PEM is used for estimation of carbon
assimilation and our corresponding equations (Eqs. (1) and (2)) are
applied widely within this context.

2.2. Observational data

Carbon, water and energy exchange are simulated at
FLUXNET sites in order to determine the sensitivity to input
parameters and to optimise the most influential parameters
within the model. Half-hourly measurements of site meteorol-
ogy, carbon Net Ecosystem Exchange (NEE), latent heat (LE),
sensible heat (H) and net radiation (Rn) are extracted from the
Marconi FLUXNET archive (Baldocchi et al., 2001). Gap-filled data
(Falge et al., 2002) are used for meteorological variables, since
the LSM requires a continuous forcing, but not for observed
fluxes. Observed fluxes originate from 38 sites and cover 98 site-
years. The Marconi archive is biased towards forests of Europe
and N. America but it covers a diverse range of PFTs. Each site-
year is ascribed to one of 5 PFTs defined within the model,
namely: broadleaf trees (BL), needleleaf trees (NL), C3 grassland
(C3), C4 grassland (C4) and shrubs (SH). For the 6 site-years of
mixed forest (MX) we assume 50% broadleaf and 50% needleleaf.
A summary of location and vegetational composition is given in
Table 3.

The analysis is limited to the growing season (typically Day of
the Year 135–255) since, outside this period, the site meteorology
is often incomplete. In all, 30 sites from Table 3 fit this condition,
yielding a total of 71 site-years. Tests with site-years possessing an
unbroken meteorology throughout the year, suggest that our
results do not change significantly if we adopt an analysis period
more extended than the growing season. Soil moisture measure-
ments are sparse within the Marconi archive. Therefore, in order to
initialise soil moisture within the model, we use the spin-up from
global simulations conducted previously with JULES-SF (Alton
et al., in press) and extract the initial soil moisture content for the
Marconi locations at the beginning of the growing season. This
initial soil moisture content, used to initialise all four soil layers
within the model, is included as a tuneable parameter (SMCi)
within the sensitivity analysis.

2.3. Methodology

(1) Sensitivity analysis

In order to determine model sensitivity and optimise the LSM
we calculate chi squared (x2). Thus, for each PFT, we compute:

x2 ¼
Xn

i¼1

ðFsim � FobsÞ2

ðDFobsÞ
2

(5)
where summation takes place over all fluxes (NEE, LE, H and Rn)
from all site-years relevant to the PFT. The simulated (Fsim) and
observed (Fobs) fluxes are half-hourly for JULES-SF and daily (24 h)
for JULES-PEM. The error in the observed flux (DFobs) is poorly
defined and, for half-hourly fluxes we estimate it as follows.
Observed fluxes are grouped into 10-day composites, the
approximate timescale over which fluxes are observed to change
due to physiology and the influence of soil moisture (Goulden et al.,
1996). We also use downwelling shortwave radiation, one of the
main drivers of atmosphere-landsurface exchange (Hollinger et al.,
1994; Knohl and Baldocchi, 2008) to aggregate the data by
adopting a bin width of 50 W m�2. The standard deviation about
the mean of each bin is used as a measure of observational error.
Although this approach is likely to overestimate the true error, as
any variation in the flux unrelated to shortwave radiation is
attributed to measurement uncertainty, the values thus derived
(Table 4) are close to previous estimates (Goulden et al., 1996;
Medlyn et al., 2005). It is difficult to estimate daily DFobs for JULES-
PEM since daily values of shortwave radiation vary considerably
over the 10-day composite. Consequently, we adopt DFobs from the
half-hourly measurements scaled to the same units as daily Fobs.
This overestimates the error in the daily fluxes but we argue that
this is acceptable since we are not comparing models in this part of
the methodology. Indeed, the model comparisons we conduct later
rely on the variance in the observations and do not depend on our
estimates of DFobs at all. The identification of the most influential



Table 4
Errors assumed for the observed half-hourly fluxes of Net Ecosystem Exchange

(NEE), latent heat (LE), sensible heat (H) and net radiative exchange (Rn). Plant

Functional Types (PFTs) are designated as in Table 3.

PFT NEE

(m mol m�2 s�1)

LE

(W m�2)

H

(W m�2)

Rn

(W m�2)

BL 3.2 36 32 39

NL 3.0 27 35 37

C3 2.7 35 26 26

C4 3.4 37 25 22

SH 1.2 16 20 20

MX 2.7 39 33 23

Fig. 1. Distribution of errors estimated for half-hourly Net Ecosystem Exchange

(NEE) using the data bins described in Section 2.3. D NEE represents the distance

from the corresponding bin average (n ¼ 154;000). Results are only shown for

needleleaf site-years which are the most numerous within the Marconi archive. For

other plant functional types, the flux distribution, including that for latent heat,

sensible heat and net radiation, is qualitatively similar.
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parameters, as well as their optimisation, rely only on the relative

change in x2 between simulations and are therefore fairly
insensitive to DFobs. This is confirmed by replacing DFobs by the
mean observed flux in Eq. (5), as suggested by Reichstein et al.
(2003). This substitution does not change our ranking of the most
influential parameters nor the final parameter values determined
from the optimisation. To ensure that observed flux is not grossly
underestimated, we exclude measurements from Eq. (5) where the
frictional velocity is too low (<0.16 m s�1; Goulden et al., 1996;
Reichstein et al., 2003). Where frictional velocity is not recorded,
we exclude fluxes where windspeed <2 m s�1 (Medlyn et al.,
2003). Fluxes excluded on the basis of either low turbulent flow or
gap-filling (i.e. missing in the original dataset) constitute 44% of
measurements.

The sensitivity of the model to its input parameters is
determined in two stages. In the first stage, each of the input
parameters is perturbed in turn by an amount corresponding to the
estimated uncertainty in that parameter. Whilst each parameter is
perturbed all other parameters remain at their default values
(Knorr and Heimann, 2001). Default values (def) and parameter
uncertainties (uncert) are taken from field measurements, and
compilations thereof, given in Table 1. Eq. (5) yields x2 at (def +
uncert) and (def � uncert). We use the average absolute change
with respect to the unperturbed state, Dðx2Þ, as a measure of
model sensitivity to that parameter.

In the second stage, the most influential parameters are
examined more closely. For each PFT, the nine most influential
parameters determined from the first stage are perturbed as
previously but now the remaining fixed parameters are assigned
random values between their lower (def � uncert) and upper (def +
uncert) limits. For 50 random realisations of the default config-
uration, mean Dðx2Þ and its standard deviation define model
sensitivity for each influential parameter. This Monte Carlo
approach reduces the dependence of the final parameter ranking
on the default parameter configuration chosen in the first stage
(Zaehle et al., 2005). The number of random realisations is
necessarily small owing to the large number of measurements
(’ 1 million) compared against each simulation. However, when
examining the limitations of our methodolgy (Section 3.3) we
check the influence of the parameter ranking on the main results.

(2) Model optimisation and evaluation

Optimisation is conducted for each PFT separately by tuning
the most influential parameters identified in the sensitivity
analysis of part (1). In the past, up to 12 parameters have been
fitted by comparing against observed fluxes (Friend et al., 2007).
However, both Wang et al. (2001) and Medlyn et al. (2005) caution
that a maximum of about 3–4 parameters can be reasonably
constrained owing to dependencies between both input para-
meters and observed fluxes. To monitor the fitting process,
this study increases the number of free (tuneable) parameters
from 1 (the most influential found in the sensitivity analysis)
up to a maximum of 7. Optimisation is achieved through the
minimisation of x2 (Eq. (5)) using a Levenberg–Marquardt (LM)
optimisation (Draper and Smith, 1981; Press et al., 1992). Each
time the number of tuneable parameters is increased we check the
covariance matrix produced by the optimisation algorithm. If the
relative difference between the two largest elements of any
eigenvector exceeds 1/3, the new parameter is rejected as this
indicates a significant level of covariance between two para-
meters. Rejected parameters are replaced by the next most
influential parameter until all 9 of the most influential parameters
have been examined or the number of calibration parameters
reaches 7. This procedure for the identifiability of parameters is
similar to Wang et al. (2001) and Medlyn et al. (2005). It ensures
sufficient degrees of freedom to allow the model to reproduce the
observed fluxes whilst reducing redundancy in the tuning
parameter set. Since the number of parameters chosen for tuning
may differ between the two models we check the influence of the
number of parameters on our main results.

The robustness of the LM-optimisation is tested by randomising
the initial values of both fixed and tuneable parameters assuming a
uniform probability density function between the parameter lower
(def � uncert) and upper (def + uncert) limits. The standard
deviation of the optimised value yields the uncertainty in the
retrieval (Reichstein et al., 2003; Friend et al., 2007). We are aware
that a diversity of methods are applied to the problem of model
optimisation, including techniques for identifying the subsets of
parameters which are retrievable (Medlyn et al., 2005). The
approach adopted in the present investigation is well suited to the
large number of parameters contained in the model (30-40) and
the massive quantity of measured fluxes available for comparison.

Model performance at site-level is evaluated by comparing
output from the optimised model with the observed fluxes over a
range of timescales (half-hourly, daily and seasonal for JULES-SF
and daily and seasonal for JULES-PEM). Our statistical analysis
comprises the standard statistics adopted recently by land-surface
modellers (e.g. Yuan et al., 2007; Fisher et al., 2008) as well as the
Modelling Efficiency (MEF) which is similar to the coefficient of
determination (r2) but takes account of model bias (Medlyn et al.,
2003):

MEF ¼ 1�
P
ðFsim � FobsÞ2P
ðFobs � hFobsiÞ2

(6)



Table 5
Optimised values for the most influential parameters according to model and Plant Functional Type (PFT). Models are JULES-SF (SF) and JULES-PEM (PEM). Plant Functional

Types (PFTs) are designated as in Table 3. The standard deviation, in parentheses, derives from 50 random configurations of the initial parameter values (Section 2.3).

Parameter symbols (given below each optimised value) and their units are defined in Table 1. Parameters having greatest influence over the optimisation fit are towards the

left of the table.

Model PFT Parameter (decreasing influence ! )

1 2 3 4 5

SF BL 0.0018(0.0010) 36(16) 0.38(0.27) 47(7) 6.8(1.7)

Fd Neff krub Th m

SF NL 0.0099(0.0046) 3.5(1.9) 0.14(0.04) 0.0053(0.0014) >20(3)

Fd m TNIR dcatch0 z1u

SF C3 0.0077(0.0032) 39(24) 18(5) 0.45(0.02) –

Fd Neff m TNIR –

SF C4 11(15) 0.019(0.005) 42(7) 3.2(0.8) 0.00(0.01)

Neff QE Th LAI Rgrow

SF SH 12(5) 0.34(0.05) 0.0012(0.0004) – –

Neff ag dzm – –

SF MX 12(8) 0.0085(0.0032) 11(14) 0.93(0.83) –

Neff Fd Tl Q10(leaf –

PEM BL 0.31(0.09) 0.40(0.15) �15(4) – –

albnir CUE Tl – –

PEM NL 0.20(0.09) 15(6) 4.1(1.1) – –

albnir ci z1u – –

PEM C3 0.44(0.09) 0.34(0.15) 14(5) 7.4(1.2) –

albnir CUE ci b

PEM C4 0.29(0.09) 0.32(0.17) 2.6(0.7) 4.6(1.2) 13(6)

albnir CUE z1u b ci

PEM SH 0.34(0.09) 4.0(1.4) �15(18) 0.39(0.07) –

albnir z1u Tl SMCV –

PEM MX 0.09(0.09) 0.14(0.09) 3.0(1.2) 1.7e �8(0.1e �8) –

albnir CUE e k –
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where hFobsi is the mean of the observations. The statistical
distribution underlying eddy covariance is poorly known although
DFobs estimated for Eq. (5) suggests an imperfect gaussian
distribution which is nonetheless symmetric (Fig. 1). Therefore,
we also compute the non-parametric Spearman’s rank correlation
coefficient (Norcliffe, 1977).
Fig. 2. Improvement in model fit as the number of free parameters is increased. For eac

calculated using half-hourly fluxes for JULES-SF (panel a) and daily fluxes for JULES-PEM

observational error, especially for JULES-PEM. PFTs are designated as in Table 3. For BL
3. Results

3.1. Sensitivity analysis and model optimisation

Both models are sensitive to parameters governing gross
productivity and autotrophic respiration, especially photosynthetic
h PFT, the fit is given by x2 normalised by the number of measurements (n). x2 is

(panel b). Note that x2=n is only indicative since we likely overestimate the random

, x2=n=13.5 when no tuning parameters are used (zero free parameters).
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capacity (Ne f f ) and leaf dark respiration (Fd) within JULES-SF, and
CUE and e within JULES-PEM (Table 5). The important role of
photosynthetic capacity is already noted for several LSMs (Dang
et al., 1998; Reichstein et al., 2003; Wang et al., 2001). In agreement
with previous authors (Reichstein et al., 2003; Misson et al., 2004;
Knorr and Kattge, 2005), parameters governing stomatal conduc-
tance are also found to be influential, i.e. m within JULES-SF and ci

within JULES-PEM. A third group of influential parameters emerge
which govern shortwave energy balance and surface temperature
(TNIR and ag in JULES-SF and albnir in JULES-PEM). It is particularly
important to constrain properties in the near-infrared waveband
(via TNIR and albnir) which are known to diverge dramatically for
photosynthetic and non-photosynthetic elements within the
vegetation canopy. Leaves are fairly poorly absorbers of near-
infrared radiation whilst trunks and branches are not (Williams,
1991).

In general, the three most influential parameters for each PFT
and model lie within ’1s of the literature values given in Table 1.
Fig. 3. Comparison of observed half-hourly fluxes against values simulated with JULES-

(m mol m�2 s�1), latent heat flux (W m�2), sensible heat flux (W m�2) and net radiat

optimisation of the most influential parameters for each PFT. The dashed line denotes
Notable exceptions are (1) ground albedo (ag) for shrubs which is
rather high, possibly owing to snow cover at the beginning of the
growing season; and (2) the lower inhibition temperature for leaf
photosynthesis (Tl) which operates through an exponential
relationship meaning that the model is relatively insensitive to
the precise lower limit during the growing season once this limits
fall below ’ � 5 � C (furthermore, optimisation is limited to the
growing season and temperatures during the growing season are
generally well above Tl). The uncertainties in the optimised values
are quite large owing to both site variation (discussed below) and
covariance between tuning parameters. The latter is reduced, but
not completely eliminated, by the parameter selection procedure
adopted in Section 2.3. The parameter range for the PEM is also
likely to be overestimated owing to the relatively large errors we
assume for the daily observational fluxes (Section 2.3).

Fig. 2 reveals how x2 evolves as the number of free parameters
adopted in the optimisation increases incrementally from 0 to the
maximum number determined in the sensitivity analysis. The
SF. The quantities NEE, LE, H and Rn denote, respectively, Net Ecosystem Exchange

ive exchange (W m�2). A comparison is made both before (pre) and after (post)

y ¼ x.



Table 6
Regression and error analysis of half-hourly fluxes predicted by JULES-SF after model optimisation. Information is shown per Plant Functional Type (PFT) for Net Ecosystem

Exchange (NEE), latent heat (LE), sensible heat (H) and net radiation (Rn). PFTs are designated as in Table 3. The following indices Janssen and Heuberger, 1995 are given: the

number of fitted data (n); the modelling efficiency (MEF); gradient (a) and intercept (b) of a least-squares linear fit; the coefficient of determination (r2); the mean absolute

error (MAE); mean observed flux (hobsi); and the mean simulated flux (hmodi).

PFT Flux Units n MEF a b r2 MAE hobsi hmodi

BL NEE m mol m�2 s�1 59,184 0.71 0.65 �2.7 0.73 3.7 �5.1 �6.0

BL LE W m�2 61,797 0.63 0.89 31 0.72 38 76 98

BL H W m�2 53,113 0.63 0.98 6.5 0.72 41 47 53

BL Rn W m�2 48,590 0.90 0.93 �16 0.91 42 180 150

NL NEE m mol m�2 s�1 109,250 0.60 0.55 �1.7 0.61 3.4 �2.7 �3.2

NL LE W m�2 113,118 0.53 0.66 22 0.55 33 65 65

NL H W m�2 116,862 0.72 0.91 12 0.75 41 63 70

NL Rn W m�2 136,415 0.93 0.93 �8.2 0.94 39 160 140

C3 NEE mmol m�2 s�1 6,174 0.57 0.53 �2.3 0.58 3.9 �3.6 �4.2

C3 LE W m�2 5,557 0.78 0.93 12 0.80 40 130 130

C3 H W m�2 6,534 0.43 0.89 3.5 0.59 36 34 34

C3 Rn W m�2 8,617 0.96 1.0 �10 0.96 28 160 150

C4 NEE m mol m�2 s�1 13,793 0.41 0.36 �3.0 0.44 6.5 �6.6 �5.4

C4 LE W m�2 12,987 0.56 1.1 15 0.76 48 120 140

C4 H W m�2 13,388 0.68 0.95 13 0.75 32 59 70

C4 Rn W m�2 14,684 0.98 1.1 -18 0.99 27 230 230

SH NEE m mol m�2 s�1 6,838 0.26 0.28 �0.70 0.26 1.2 �0.82 �0.93

SH LE W m�2 6,818 0.47 0.86 �4.1 0.62 23 44 34

SH H W m�2 6,867 0.35 0.77 6.0 0.50 29 46 42

SH Rn W m�2 8,714 0.77 0.98 -35 0.88 49 110 71

MX NEE m mol m�2 s�1 10,633 0.68 0.80 �0.58 0.69 2.8 �1.4 �1.7

MX LE W m�2 11,580 0.52 0.65 40 0.57 43 63 81

MX H W m�2 11,625 0.18 1.1 �4.2 0.62 43 26 26

MX Rn W m�2 9,206 0.95 0.95 �20 0.97 36 160 130
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general convergence in x2 suggests that a limited number of
parameters can be optimised since, adding further parameters,
improves the fit only marginally. The required number of
parameters for convergence varies somewhat between PFTs but
3–4 appears to suffice in most cases. A similar conclusion is drawn
from fluxes recorded at individual sites using a diversity of
optimisation methods (Wang et al., 2001; Medlyn et al., 2003;
Knorr and Kattge, 2005). The present investigation, by examining
fluxes from 30 sites using both a simple and a complex LSM, tends
to generalise the inference that the amount of biophysical
information that can be retrieved from four observables (NEE,
LE, H and Rn) is quite limited. It is possible that further parameters
can be retrieved by examining sites individually. However, it is not
clear to what extent such parameter values, based on a single site,
are valid in a global model. A good model fit formally requires
x2=n’1 (Draper and Smith, 1981; Press et al., 1992). However, our
values of x2=n in Fig. 2 are purely indicative and cannot be used to
compare the performance of the two models.

3.2. Model evaluation

After optimisation, there is a significant improvement in the
half-hourly fluxes predicted by JULES-SF (Fig. 3). Without tuning
(i.e. using literature parameter values) the model performance is
fairly poor for NEE. This is particularly true for broadleaf and
mixed forest where autotrophic respiration is greatly over-
estimated and the tuning of the most influential parameter Fd

(leaf dark respiration) produces a rapid decrease in x2. The
modelling efficiency of the optimised model is greatest for Rn
(0.90–0.98) and least for NEE (0.26–0.71; Table 6). Model
performance is poorer towards minimum and maximum
observed NEE. As discussed below, this is mainly due to the
calibration of the model at PFT-level as opposed to a separate
tuning to individual sites. For JULES-PEM, the improvement in
model performance is less dramatic after optimisation (Fig. 4).
This is particularly true for carbon exchange, where a large
amount of scatter remains after tuning. A complete residual
analysis is beyond the scope of the current investigation but
JULES-PEM appears to be severely limited in its ability to predict
NEE over the full range of daily shortwave irradiance (Fig. 5).
Furthermore, daily variability in the difference between auto-
trophic respiration and gross productivity is poorly captured by
JULES-PEM since this difference is determined by a single
parameter CUE. Optimised values of CUE are typically 0.3–0.4
and this tends to preclude modelled NEE greatly exceeding 0
unless soil respiration is very high (Fig. 4).

After optimisation, JULES-SF performs better than JULES-PEM
on both daily (Table 7) and seasonal (Table 8) timescales. This is
despite tuning a similar number of free parameters in each model.
However, the difference in model performance appears to diminish
with an increase in measurement timescale. Thus, on average, the
modelling efficiency increases from 0.32 (daily) to 0.46 (seasonal)
using the PEM approach, whilst it remains close to 0.6 for JULES-SF
on both timescales. The non-parametric Spearman’s rank correla-
tion coefficient exhibits a similar convergent behaviour. The
coefficient of determination (r2), although it does not take account
of bias, shows an even greater convergence, increasing on average
from 0.53 (daily) to 0.71 (seasonal) for JULES-PEM but only from
0.69 to 0.75 for JULES-SF. Overall, the mean observed fluxes are
predicted within, respectively, ’10% and ’20% for JULES-SF and
JULES-PEM.

3.3. Caveats and limitations

The limitations of the methodology are examined within the
context of the main finding, i.e. that JULES-SF performs better than
JULES-PEM on all temporal scales:
1. W
e test the impact of the number of tuning parameters, which
differs slightly between JULES-PEM and JULES-SF, by simply
tuning the seven most influential parameters for each PFT, i.e.
without rejection of covariant parameters. As previously, JULES-



Fig. 4. As Fig. 3 but comparing average daily observed fluxes with output from JULES-PEM. For the purposes of comparison the same units are retained as Fig. 3.
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SF performs better than JULES-PEM on all timescales and the
difference in model performance diminishes with an increase in
measurement timescale. Thus, r2 increases from 0.76 (daily) to
0.84 (seasonal) for JULES-SF and from 0.63 (daily) to 0.84
(seasonal) for JULES-PEM (p < 0.01). This test also indicates that
our main result is not too sensitive to the exact parameter
ranking derived in the sensitivity analysis (Section 2.3) since a
maximum number of tuneable parameters (7) produces a
similar result to a more restricted number of free parameters (3–
5). The ranking of parameters is only accurate to within 1–2
(Table 9).
2. T
o assess the impact of site variation within the same PFT, the
most influential parameters are tuned separately for each site.
The main result is unchanged by this procedure. Thus, r2

increases from 0.75 (daily) to 0.84 (seasonal) for JULES-SF and
from 0.56 (daily) to 0.79 (seasonal) for JULES-PEM (p < 0.01).
Separate tuning of the model to individual sites improves the
reproduction of observed site-level fluxes (Fig. 6), suggesting
some variation between sites comprising the same PFT.
3. I
t is desirable to use separate sites for the purposes of
calibration and validation. However, the paucity of site-years,
particularly for shrubs and grasses, necessitates the pooling of
data to provide a robust calibration. To test the impact of this
aggregation, half the FLUXNET sites are randomly selected for
parameter optimisation and the remaining sites are used
for the comparison of model performance. As previously,
JULES-SF performs better than JULES-PEM on all timescales
and the difference in model performance diminishes with
increasing timescale. Thus, r2 increases from 0.70 (daily) to
0.74 (seasonal) for JULES-SF and from 0.55 (daily) to 0.74
(seasonal) for JULES-PEM (p < 0.01). The modelling efficiency
increases from 0.22 (daily) to 0.38 (seasonal) using the
PEM approach, whilst it falls slightly from 0.59 to 0.55 using
JULES-SF.
4. H
ollinger and Richardson (2005) recommend a cost function
based on absolute deviation, rather than square deviation, when
calibrating against eddy covariance fluxes since observational
errors exhibit a double exponential rather than gaussian



Fig. 5. Observed minus simulated values of daily averaged Net Ecosystem Exchange

(DNEE). Simulated values are from JULES-PEM after model optimisation. A

comparison is made against daily averages of solar irradiance (SW), air

temperature (Ta) and leaf area index (LAI).

Table 7
Error and regressional analysis of daily fluxes after optimisation of JULES-SF (SF) and JUL

calculated per flux. The Spearman’s rank correlation coefficient Norcliffe, 1977 is deno

evaporation of 43 kJ mol�1.

Model Flux Units n MEF a

SF NEE kg m�2 day�1 6759 0.56 0.51

SF LE mm day�1 6972 0.49 0.82

SF H mm day�1 6784 0.47 1.0

SF Rn mm day�1 6449 0.86 1.0

PEM NEE kg m�2 day�1 6729 0.21 0.44

PEM LE mm day�1 6941 0.21 0.71

PEM H mm day�1 6756 0.08 0.91

PEM Rn mm day�1 6420 0.79 0.94

Table 8
As Table 7 but comparing fluxes integrated over the entire growing season.

Model Flux Units n MEF a

SF NEE kg m�2 season�1 71 0.67 0.63

SF LE mm season�1 71 0.61 0.85

SF H mm season�1 68 0.30 1.2

SF Rn mm season�1 56 0.86 1.0

PEM NEE kg m�2 season�1 71 0.56 0.56

PEM LE mm season�1 71 0.61 0.67

PEM H mm season�1 68 �0.01 1.2

PEM Rn mm season�1 56 0.71 0.91
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distribution. If we make this modification to Eq. (5), the optimal
parameter values are not changed significantly.

4. Discussion

After optimisation, the complex process-based LSM, with its
multilayer representation of light interception and canopy proper-
ties (JULES-SF), performs better than a productivity efficiency
approach (JULES-PEM) at all temporal scales. This conclusion
appears to be more or less independent of the precise manner in
which the LSM is calibrated. However, the difference in model
performance is reduced when comparing over larger (seasonal)
timescales. This convergence between the two modelling
approaches is noted by Medlyn et al. (2003) who compare a
sun-shade model, of comparable complexity to JULES-SF, with a
PEM. Canopy GPP at a single needleleaf site is used for validation in
this case. The error in the PEM falls from ’25% on daily timescales
to ’15% on monthly timescales whilst the error in the sun-shade
model (10–15%) is fairly constant over both timescales.

We might expect the multilayer LSM to perform better than the
PEM approach owing to the complexity of the former. However,
more explicit representations of land-surface processes require
more parameters. Some of these parameters are poorly measured
or unavailable from field measurements. Furthermore, the present
investigation, as well as several previous studies (Wang et al.,
2001; Medlyn et al., 2003; Knorr and Kattge, 2005), suggest that a
fairly limited number of parameters can be optimised on the basis
of a small number of observables. Under such circumstances,
increasing the number of irretrievable parameters within the
model may actually increase the ‘noise’ within the calculation. In
any case, it is instructive to compare the accuracy provided by each
method. Whilst a multilayer, process-based approach is being
adopted increasingly in several global LSMs (e.g. Dai et al., 2004;
Alton et al., 2007b), the PEM-approach is still used extensively on
various spatial scales (Potter et al., 1993; Goetz and Prince, 1996;
Barrett, 2002; Medlyn et al., 2003; Yuan et al., 2007), including the
derivation of daily global GPP from MODIS satellite data (Running
et al., 2004; Zhao et al., 2005; Heinsch et al., 2006).
ES-PEM (PEM). Statistical indices (defined in Table 6) combine all site-years and are

ted by rs . Energy fluxes are given in mm of water per day assuming a latent heat

b r2 MAE hobsi hmodi rs

�0.0024 0.57 0.0025 �0.0045 �0.0047 0.76

0.85 0.60 1.1 2.9 3.2 0.78

0.26 0.67 1.1 2.1 2.4 0.85

�0.78 0.90 1.1 6.5 5.8 0.96

�0.0018 0.30 0.0034 �0.0045 �0.0038 0.54

0.48 0.43 1.3 2.9 2.5 0.68

0.69 0.50 1.4 2.2 2.7 0.73

�0.92 0.90 1.5 6.6 5.2 0.95

b r2 MAE hobsi hmodi rs

�0.18 0.67 0.15 �0.43 �0.45 0.87

76 0.69 77 280 320 0.89

�12 0.70 73 210 240 0.84

�75 0.92 90 750 670 0.97

�0.12 0.59 0.18 �0.43 �0.36 0.72

59 0.65 68 280 250 0.85

�2.9 0.66 91 210 260 0.77

�83 0.92 150 750 600 0.97



Table 9
The most influential parameters per Plant Functional Type (PFT) per model, determined as identifiable in the sensitivity analysis. The ranking is determined by the mean value

of Dðx2Þ/n (in parentheses) from over 50 random realisations of the default parameter configuration (Section 2.3). PFTs are designated as in Table 3.

Model Rank BL NL C3 C4 SH MX

SF 1 Fd (26�5.1) Fd (0.51 �0.10) Fd (1.2 �0.28) Neff (2.1 �0.18) Neff (0.55 �0.08) Neff (9.8 �1.3)

SF 2 Neff (25 �3.8) m (0.34 �0.03) Neff (1.1 �0.28) QE (1.3 �0.21) ag (0.32 �0.01) Fd (7.3 �1.2)

SF 3 krub (12 �3.0) TNIR (0.31 �0.02) m (1.0 �0.13) Th (1.3 �0.14) dzm (0.27 �0.01) Tl (1.8 �0.32)

SF 4 Th (8.9 �1.9) dcatch0 (0.28 �0.02) TNIR (0.70 �0.04) LAImax (1.0 �0.09) Q10(leaf) (1.4 �0.22)

SF 5 m (5.3 �0.9) z1u (0.24 �0.01) Rgrow (0.91 �0.12)

PEM 1 albnir (1.1 �0.0) albnir (1.4 �0.0) albnir (2.4 �0.0) albnir (5.0 �0.0) albnir (1.6 �0.0) albnir (1.3 �0.0)

PEM 2 CUE (0.30 �0.01) ci (0.11 �0.0) CUE (0.27 �0.01) CUE (0.52 �0.03) z1u (0.098 �0.003) CUE (0.44 �0.04)

PEM 3 Tl (0.081 �0.003) z1u (0.067 �0.003) ci (0.23 �0.01) z1u (0.34 �0.02) Tl (0.068 �0.003) e (0.33 �0.03)

PEM 4 b (0.19 �0.01) b (0.34 �0.02) SMCV (0.034 �0.002) k (0.069 �0.006)

PEM 5 ci (0.15 �0.01)
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Friend et al. (1997) question the merit of tuning LSMs since
the number of degrees of freedom within such models is large. On
the basis of our results we feel, however, that there is an inherent
assumption in this assertion that land-surface processes are
sufficiently well represented to allow the LSM to reproduce the
observations at all timesteps. For the daily PEM, used in the
current investigation, this does not appear to be the case (Fig. 4).
It also assumes that model tuning is temporally scale-invariant.
The change in model performance by JULES-PEM at longer
timescales suggests that this might not be true, as discussed
below. Friend et al. (1997) advocate the use of field measure-
ments from the literature when calibrating an LSM. Whilst this
Fig. 6. Modelled versus observed Net Ecosystem Exchange (NEE) for 71 site-years

(30 sites), integrated over the growing season. JULES-SF (SF) and JULES-PEM (PEM)

are either calibrated per Plant Functional Type (denoted PFT) or per individual

location (denoted site). Solid and dashed lines represent, respectively, the linear

best fit (y ¼ axþ b) and y ¼ x. For all best fits p < 0.01.
approach is desirable, literature values for several key para-
meters are highly uncertain (Table 1). Thus, even complex
models, such as JULES-SF, have difficulty reproducing observed
fluxes without some prior tuning (Fig. 3). This limitation is also
recognised by Zaehle et al. (2005) when examining the
performance of the Lund-Potsdam-Jena (LPJ) model. The rela-
tively weak performance of JULES-PEM on daily timescales, even
after parameter tuning (Fig. 4), suggests that complex models,
such as JULES-SF, may benefit more from site-level calibrations
compared to simpler models. Indeed, Abramowitz et al. (2007)
argue that model bias is the dominant error in land-surface
modelling and the improved representation of biophysical
processes should be the first priority rather than parameter
optimisation. When supplied with the same input, LSMs produce
values of global NPP which deviate by �20% from the mean
(Cramer et al., 2001). Thus, the complexity with which land-
surface processes should be represented in global LSMs is clearly
important (Knorr and Heimann, 2001).

Despite its somewhat weaker performance, the PEM possesses a
number of advantages over a more process-based, complex
approach. We are required to specify 38 input parameters for
JULES-SF but only 28 for JULES-PEM. In the absence of canopy
structure, and by virtue of a longer timestep, computational times
are an order of magnitude smaller with the PEM. This is an
important consideration when conducting global simulations over
decadal/century timescales or when near real-time global fluxes
are required as in the MODIS algorithm. The strong correlation
observed between instantaneous midday and daily average LUE
(GPP/APAR) at FLUXNET sites (Sims et al., 2005) also appears to
justify the use of linear relationships for canopy photosynthesis.
However, observed NEE appears to possess a more complicated
relationship with respect to incident sunlight. The large residuals
with respect to shortwave radiation (Fig. 5) might be explained by
the small magnitude of NEE relative to GPP. Since NEE reflects a
fine balance between gross productivity and respiration, small
inaccuracies in predicted GPP may have a dramatic effect on
modelled NEE.

The manner in which PEMs are calibrated appears to play a key
role in their usefulness. For example, weekly averaged LUE
possesses a regressional slope against instantaneous midday
LUE which is significantly different from unity (Sims et al.,
2005). This suggests that a PEM approach is useful so long as the
corresponding potential LUE (parameter e) is adjusted according to
the timescale of the observation. There is some evidence to suggest
that the PEM-approach is best applied on timescales of 2 weeks or
more (Medlyn et al., 2003). Indeed, our own results are consistent
with that conclusion. However, even on daily timescales, the PEM
reproduces site-level GPP within 20–30% (Medlyn et al., 2003;
Heinsch et al., 2006; Yuan et al., 2007). Indeed, global GPP is
derived on this timescale with MODIS (Running et al., 2004). The
MODIS algorithm is notable in that, prior to satellite launch, a more
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complex, process-based LSM (BIOME-BGC) was used to calibrate
the PEM algorithm for each PFT (Zhao et al., 2005).

5. Conclusions

We compare the performance of a productivity efficiency model
(JULES-PEM) with a more complex, multilayer model that has
recently been enhanced to take account of sunfleck penetration
and diffuse sunlight (JULES-SF). JULES-PEM contains no canopy
structure and is based on daily LUE. JULES-SF is driven by half-
hourly climate at site-level and takes account of changes in leaf
nitrogen, microclimate and light interception with depth through
the canopy. Optimisation of both models is conducted against
observed fluxes (NEE, LE, H and Rn) from 30 FLUXNET sites
spanning a wide range of PFTs (71 site-years in all). Our main
conclusions are as follows:
1. T
he process-based, multilayer model performs better than a
productivity efficiency approach. However, the difference in
model performance appears to diminish with an increase in
measurement timescale. Thus, on average, the modelling
efficiency increases from 0.32 (daily) to 0.46 (seasonal) using
the PEM approach, whilst it remains close to 0.6 for JULES-SF on
both timescales. Both the coefficient of determination (r2) and
the non-parametric Spearman’s rank correlation coefficient
demonstrate a similar convergence in model performance.
Overall, the mean observed fluxes are predicted within,
respectively, ’10% and ’20% using JULES-SF and JULES-PEM.
2. F
or any given PFT, the maximum number of biophysical
parameters that can be tuned against four observables (NEE,
LE, H and Rn) is quite limited (3–4). This is true for both models
despite their considerable difference in complexity.
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Appendix A. Description of JULES-SF

The Joint UK Land Environmental Simulator (JULES) is forced by
the following meteorological variables: downwelling shortwave
radiation, downwelling longwave radiation, precipitation, air
temperature, windspeed, air humidity and pressure. The energy
calculation central to the model is based on a Penman–Monteith
approach (Monteith, 1965), ensuring that the downwelling
shortwave and longwave fluxes are balanced by the outgoing
fluxes of sensible heat, latent heat, reflected shortwave radiation,
radiant thermal energy and conduction into the ground. Surface
albedo and the penetration of light into the canopy are estimated
according to the two-stream formulation (Sellers et al., 1996a).
Stomatal conductance, leaf boundary-layer resistance, transpira-
tion and photosynthesis are calculated in each canopy layer, before
summing to produce total values for the entire canopy (Alton et al.,
2007a; Mercado et al., 2007). In general, five layers provide
sufficient numerical precision and we adopt this number for the
current study.

Alton et al. (2007a) enhance the standard JULES version to take
account of sunfleck penetration, explicit leaf orientation and
diffuse sunlight. This modification (JULES-SF) produces a more
realistic canopy response under both direct sunlight and cloud
(Alton et al., 2005, 2007a). A sunfleck reaches a given canopy layer
if a randomly generated number, between 0 and 1, is less than or
equal to P, where:

P ¼ exp
�LAIc � kext

cos ðusÞ

� �
(7)

and LAIc is the cumulative LAI lying above the leaf layer, us is the
solar zenith angle and kext is the light extinction coefficient
(Norman, 1981; Jones, 1992). Assuming a spherical Leaf Angle
Distribution (Campbell and Norman, 1998), kext = 0.5. Diffuse light
in the canopy follows from the two-stream formulation, the
equations for which are given by (Sellers et al., 1996a). At any given
timestep, the fraction of diffuse sunlight incident at the top of the
canopy is derived using the ratio of observed surface irradiance and
top-of-atmosphere irradiance, as given by (Roderick et al., 2001).

Leaf photosynthesis for the C3 and C4 pathways are derived using
the co-limitation model of (Collatz et al., 1991, 1992) which is
conceptually similar to the biochemical model of Farquhar et al.
(1980). The leaf photosynthetic rate Al (m mol m�2 s�1) is the
smoothed minimum of three limits: the photosynthetic rate due to
incident light JPAR; photosynthetic capacity due to the concentration
and chemical activity of ribulose-1,5-bisphosphate carboxylase/
oxygenase (i.e. Rubisco) Jr; and the photosynthetic rate based on the
ability of the leaf to export the products of photosynthesis Je. Four of
the five Plant Functional Types defined in JULES concern the C3

pathway and we elaborate the corresponding equations below.
Note, however, that these leaf photosynthetic limits (Eqs. (8), (9) and
(11)) change somewhat for the C4 pathway as detailed in Collatz
et al. (1992) and Sellers et al. (1996b).

The light-limited rate is given thus:

JPAR ¼ QE� IL �
ci � c0

ci þ 2� c0
(8)

where QE is the quantum efficiency and IL (m mol m�2 s�1) is the
leaf PAR irradiance. ci (mol mol�1) and c0 (mol mol�1) are,
respectively, the CO2 concentration internal to the leaf and the
photorespiratory compensatory point.

The Rubisco-limited rate of leaf photosynthesis is given by:

Jr ¼
Vm � ðci � c0Þ

ci þ Kcð1þ Oa=KoÞ
(9)

where Kc (mol mol�1) and Ko (mol mol�1) are the Michaelis
constants determining the competing rates of carboxylation and
oxgenation and Oa is the oxygen concentration (mol mol�1). Vm

(m mol m�2 s�1) describes the chemical activity of Rubisco at leaf
temperature TL (�C):

Vm ¼
Vcmax � Q0:1ðTL�25Þ

10

ð1þ e0:3ðTL�ThÞÞ � ð1þ e0:3ðTl�TLÞÞ (10)

where Q10 is a dimensionless coefficient for leaf respiration. Tl and
Th are the inhibition temperatures (�C) for photosynthesis. Thus,
the ratio Vm/ Vcmax (= FT) can be considered as the stress on
photosynthesis owing to temperature. Vcmax is the leaf photo-
synthetic capacity at the top of the canopy. Both Vcmax and QE
decline exponentially according to the nitrogen allocation
coefficient krub and cumulative LAI (Hirose and Werger, 1987).

http://www.daac.ornl.gov
http://www.daac.ornl.gov
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Finally, the export-limited rate of leaf photosynthesis is
determined by:

Je ¼
Vm

2
(11)

Leaf respiration RL is set to 0.015�Vm (Collatz et al., 1991). Total
plant respiration (RP) consists of respiration for maintenance (RPM)
and for growth (RPG). The former scales as the plant-to-leaf
nitrogen ratio (PL):

RPM ¼ PL� RL (12)

Growth respiration is a prescribed fraction (Rgrow) of the
difference between gross productivity and maintenance respira-
tion (Ryan, 1991b):

RPG ¼ Rgrow � ðGPP � RPMÞ (13)

Leaf stomatal conductance (gl; mol m�2 s�1) within each leaf
layer is calculated according to the Ball–Berry relation:

gl ¼ m� AlH

ci
þ gmin (14)

where Al is the leaf photosynthetic rate (mol m�2 s�1), H is the
relative humidity of the canopy airspace, m the stomatal slope
factor, and gmin (mol m�2 s�1) is the minimum stomatal con-
ductance (Ball et al., 1987; Collatz et al., 1991, 1992; Sellers et al.,
1996b). The stomatal parameters (m and gmin) assume different
values for the C3 and C4 pathways (Collatz et al., 1991, 1992).

Rubisco-limited photosynthetic capacity, leaf respiration
and gmin are all linearly dependent on the soil moisture factor
(FSMC). FSMC depends exponentially on soil water potential, cs

(MPa):

FSMC ¼ 1

1þ expð2ðcc �csÞÞ
(15)

where cc is the critical soil water potential (Sellers et al., 1996b).
Eq. (15) is consistent with the steep rise in rhizospheric hydraulic
resistance observed at low soil moisture content (Newman, 1969)
and differs from the JULES standard release which utilises a linear
ramp function for FSMC.

For further explanation concerning the role of the original JULES
parameters we refer to Cox et al. (1999) and Cox (2001).
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