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tounderstanding the globalhydrological and carbon cycles, andneeddata fromEarth
Observation to function effectively at regional to global scales. Here, we develop and apply an end-to-end analysis
that relates the requirements of ecologicalmodels to the capabilities of satellite-sensors, startingwith radiometric
noise at the instrument, which collects the information, running through to the error on the estimatedNPP output
from the ecological model. In the process, the input requirements of current ecological models are reviewed. Our
aim is to establish a better informed framework for thedesign anddevelopmentof future satellite-sensormissions,
whichmeet theneeds of ecologicalmodellers. Threemathematicalmodels (PROSPECT, FLIGHTand6S) are coupled
and inverted using a technique based on LUT. The LUT are used to estimate biophysical variables of vegetation
canopies from remotely-sensed data observed at the TOA in a number of viewing directions and in several
wavebands within the visible and near-infrared spectrum. The five variables considered here are LAI, leaf
chlorophyll content (Cab), fAPAR, cover fraction and AOT. Different sensor configurations are investigated, in terms
of directional and spectral sampling. The retrieval uncertainty is linked with the instrument radiometric accuracy
byanalysing the impactof different levels of radiometric noise. Theparameters retrievedvia the inversion are used
to drive two LSPmodels, namely Biome-BGC and JULES. The effects of different sensor configurations and levels of
radiometric noise on theNPP estimated are analysed. The system is used to evaluate the sensor characteristics best
suited to drive models of boreal forest productivity. The results show that multiangular information improves
dramatically the accuracywith which forest canopy properties are estimated. Due to problems of equifinality, the
results showapersistence of error even in thepresenceof zeronoise fromthe sensor, althoughdecreasing the level
of radiometric noise from 0.02 to 0.001 reduces error in the estimated NPP by 10% to 25%.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Diagnosis and prediction of climatic, environmental and ecological
changes in the Earth system is an enormously challenging task (IPCC,
2001, 2007). Better understanding of the processes involved, including
those relating to Earth's radiation budget, atmospheric aerosol transport,
vegetation and climate interactions, and carbon cycle, is required to
address issues ranging from climatic change to environmental degrada-
tion. Ecological studies have traditionally focused on in situ observations
of specific species at individual sites. These observationsmust be applied
across a range of scales to address the needs of regional and global
studies and to provide the broader insight needed of the entire Earth
system. Ecological and climatic models allow us to extrapolate the
physical processes, such as photosynthesis, respiration and evapotran-
spiration, which are measured at the leaf and canopy scale, to larger
regions and longer temporal scales.Models are, therefore, a fundamental
iversity ofWales, Swansea, UK.
co).
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tool and their requirements an important input to the design of future
satellite-sensor missions.

1.1. Requirements for biophysical parameters

Land-surface process (LSP) models describe the physiological and
biophysical processes of soil and vegetation, including ecosystem Net
Primary Productivity (NPP). Models of this type have assumed greater
importance in recent years, and are now commonly incorporated to
global climate models (Cox et al., 1999; Cramer et al., 2001). Land-
surface process (LSP) models are also analysed in their own right to
understand better the global carbon cycle (Kimball et al., 1997a,b;
Potter et al., 2003). LSP models require information on a number of
land-surface properties (e.g., land cover, leaf area index (LAI), rough-
ness length and albedo), which are used to characterize the state of the
land-surface and atmosphere system, in addition to meteorological
data (e.g., daily values of maximum and minimum air temperature,
total solar radiation, mean humidity and total precipitation). Satellite
remote sensing can provide some of these inputs, and reference values
to check themodel outputs, at the required temporal and spatial scales
(Chen et al., 2003; Lambin & Linderman 2006; Turner et al., 2006).
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Table 1
Requirements for land-surface modelling

Source Spatial resolution Temporal resolution Accuracy

Aerosol — total column GCOS,GTOS 1 km, 5 km 24 h –

WMO 50 km, 100 km 0.25 h, 1 h 10%, 10%
IGBP 7 d 10%

Albedo Sellers et al. (1995) 250 km 30 d, 1 d, diurnal cycle ±0.02
Cloud imagery GCOS, GTOS 1 km 3 h –

Downwelling long-wave radiation at the Earth surface GCOS, GTOS 25 km 3 h ±5 W/m2

Downwelling short-wave radiation at the Earth surface GCOS, GTOS 25 km 24 h ±5 W/m2

Downwelling solar radiation at TOA GCOS – 3 h ±1 W/m2

Fire area/temperature GCOS,GTOS 0.1 km 10 d 5%/50 K
IGBP 3 km 10 d 5%/200 K
UNEP 0.5 km 1 d 5%/50 K

fAPAR GCOS 0.1 km 10 d 5%
IGBP 0.03 km, 50 km 10 d 5%

Land cover WMO 10 m, 100 m 0.02 y, 1 y 50 classes, 10 classes
GCOS, GTOS 100 m 1 y 50 classes
IGBP 30 m, 100 m, 1 km 1 y 22, 22, 2 classes
UNEP 1 m 1 y 20 classes

Land-surface imagery GCOS, GTOS 1 m 4 y –

WMO 10 m 1 d –

Land-surface topography GCOS, GTOS 10 m 10 y 30 (vert)
WMO 100 m 10 y 1 m (vert)
IGBP 10 m, 1 km 100 y 0.3 m, 1 m (vert)

LAI GCOS, GTOS 0.1 km 10 d 20%
WMO 0.01 km, 10 km, 50 km 5 d, 7 d, 7 d 5%

Land cover GCOS 0.1 km 1 y 50 classes
WMO 0.01 km, 0.1 km 0.02 y, 1 y 50, 10 classes
IGBP 0.03 km, 0.1 km, 1 km 1 y 22, 22 and 2 classes
UNEP 1 m 1 y 20 classes

Outgoing long-wave Earth surface GCOS, GTOS 25 km 3 h ±5 W/m2

Outgoing long-wave radiation at TOA GCOS, GTOS 50 km, 200 km 20 d, 3 h ±5 W/m2

WMO 0.1 km, 10 km, 50 km 1 h, 0.5 h, 1 h ±5 W/m2

IGBP 200 km 6 h ±10 W/m2

Ozone profile — total column GCOS, GTOS 1 km 24 h –

WMOS 10 km, 20 km, 25 km, 50 km 0.5 h, 0.25 h, 6 h, 1 h 5 DU (Dobson units)
PAR Sellers et al. (1995) 250 km 30 d, 1 d, diurnal ±10 W/m2

WMO 5 km 1 h 5%
Snow cover GCOS, GTOS 1 km, 100 km 24 h 5%, 10%

WMO 0.1 km, 1 km, 5 km, 15 km 24 h, 120 h, 1 h 12 h 5%, 2%, 10%, 10%
WCRP 1 km, 15 km 24 h 10%

Short-wave Earth surface bidirectional reflectance Sellers et al. (1995) 250 km 30 d ±10 W/m2

WMO 25 km 24 h ±5 W/m2

IGBP 100 km 7 d 1%
Vegetation type WMO 10 m, 50 m, 50 km 7 d, 30 d, 7 d 50, 30, 18 classes

IGBP 10 m, 100 m, 1 km 10 d, 1 y, 90 d 2, 18, 18 classes
UNEP 1 m 1 y 18 classes

Only optimum values are shown.
Sources: ISLSCP Workshop (Sellers et al., 1995); Global Climate Observing System (GCOS); World Meteorological Organization (WMO); Global Terrestrial Observing System (GTOS);
International Geosphere–Biosphere Programme (IGBP); World Climate Research Programme (WCRP); United Nations Environmental Program (UNEP). CEOS/WMO database,
Observational requirements (WMO, WCRP, GCOS, GOOS, GTOS, IGBP, ICSU, UNEP).
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Increasing availability of remotely-sensed data (Diner et al., 2005;
Friedl et al., 2002) and growing interest in quantifying the terrestrial
carbon flux (Canadell et al., 2003; IPCC, 2001) have driven forward
research on the integration of LSP models and satellite remote sensing
(Kimball et al., 1997a; Plummer 2000; Sellers et al., 1997a; Turner
et al., 2004). The present tendency is toward “model–data synthesis”
(Raupach et al., 2005), a combination of models and observations,
which involves both parameter estimation and data assimilation
techniques. In this approach, the uncertainties involved are as
important as the parameter values. It is critical to define the
requirements of LSP models from satellite remote sensing with a
view to defining the characteristics of future satellite-sensor missions.
Uncertainties associated with the parameters retrieved by remote
sensing are hard to quantify as the ground truth measurements,
where available, must be scaled up to larger areas to be comparedwith
the satellite-sensor data (Heinsch et al., 2006; Morisette et al., 2002).
Future satellite missions are now being designed taking into account
the requirements of the users, often expressed as end-product
specifications (Townshend and Justice 2002). These requirements
are slowly being refined with input from the broad science commu-
nity (Sellers et al., 1995, Townshend and Justice 2002, Table 1).

1.2. Retrieval of biophysical parameters from satellite observations

Many biophysical data sets, notably those derived from long-term
NOAA/AVHRR observations, are derived empirically from spectral
reflectancemeasurements, using so-called vegetation indices such as
the normalized difference vegetation index (NDVI), which employs
information from the visible and near-infrared spectral regions (Los
et al., 2005). Ideally, however, the physics underpinning the
relationships between various environmental properties and satel-
lite-sensor measurements of spectral reflectance should be repre-
sented explicitly, expressed analytically in mathematical terms
(Verstraete et al., 1996). The resulting “physically-based” models
can then be inverted against multispectral and multiangular
measurements of surface reflectance to retrieve estimates of the
models' driving parameters (i.e., the biophysical properties of the
reflecting surface).
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Several methods have been developed to optimize the inversion of
physically-basedmodels of surface reflectancewith the aim of making
them computationally efficient (Kimes et al., 2000). Approaches that
employ Artificial Neural-Networks (ANNs) (Weiss et al., 2002) and
look-up tables (LUTs) (North 2002b; Weiss & Baret 1999) are among
the most widely used methods to solve the model inversion problem.
For example, these approaches are used to derive a number of the
global data products, including the LAI data sets produced from the
MODIS and MISR sensors on board the Terra and Aqua satellites
(Knyazikhin et al., 1998b). These LAI data sets are generated using a
LUT approach, except under extreme conditions when the processing
chain relies on a backupmethod based on a vegetation index. A similar
approach is used to estimate LAI values from POLDER satellite-sensor
data (Bicheron & Leroy 1999).

1.3. Integrated assessment of requirements

Here, we develop an end-to-end study, ranging from the collection
of spectral reflectance data by the satellite-sensor to the estimation of
various biophysical properties using LSP models. This approach
enables us to analyse a number of satellite-sensor configurations
and their likely impacts on the output from the LSP models. In
particular, the relative value of multiangular andmultispectral sensing
capabilities, and the radiometric accuracy of the satellite-sensor, are
analysed. The study focuses on the estimation of the following five
surface biophysical properties: Fractional cover (FC), LAI, effective
fraction of absorbed photosynthetically active radiation (fAPAR), leaf
chlorophyll content and aerosol optical thickness (AOT), all of which
can be estimated by means of satellite remote sensing (Grey et al.,
2006; North, 2002b; Zarco-Tejada et al., 2004). AOT is included in this
study to account for the effects of the atmosphere on the signal
received by the satellite-sensor. The test site is a boreal forest, which
represents an important biome in terms of the global carbon budget
(Sellers et al., 1997b). Moreover, LSP models are typically sensitive to a
range of surface properties for this biome type, enabling a robust
evaluation of their uncertainty. This biome type is also structurally
complex, providing a challenging test of the proposed method.

2. Method

This study examines the impact of various satellite-sensor proper-
ties on the estimation of NPP using each of two LSP models. A well-
characterized scene is required, which is simulated by coupling three
Fig. 1. Diagram of the methodology. TOA reflectance values are simulated by coupling a lea
model. These TOA reflectance values are used to populate a LUT and to create the samples fro
“noisy samples” by means of the LUT. LAI retrieved are used to drive the ecological models
numerical models, namely: (i) a model of leaf spectral reflectance,
PROSPECT (Jacquemoud & Baret 1990); a model of vegetation canopy
reflectance, FLIGHT (North 1996; Pinty et al., 2006); and an atmo-
spheric radiative-transfer model, Second Simulation of the Satellite
Signal in the Solar Spectrum (6S) (Vermote et al., 1997). The scene
simulations produced using these models are used to populate a LUT,
which also serves to provide the spectral and angular reflectance
samples employed in the biophysical property retrieval. The raw
reflectance samples are also modulated by different levels of Gaussian
noise, which is intended to represent radiometric noise in the sensor.
The inversion of the coupled models using the LUT provides estimates
of the surface biophysical properties for each spectral and angular
sensor configuration. The value estimates in this way are subsequently
used to drive the LSPs models and, hence, to estimate NPP (Fig. 1).

In order to make this study as representative a possible two LSP
models were chosen as illustrative of medium and high complexity LSPs,
namely BIOME-BGC 4.1.1 (White et al., 2000) and the Joint UK Land
Environmental Simulator (JULES) (Alton et al., 2007; Essery et al., 2001).
The test of themethod in two differentmodelswill ensure that results are
not artifacts produced by the internal parameterisations. BIOME-BGC is a
multi-biome generalization of FOREST-BGC, amodel originally developed
to simulate the development of a forest stand through its life cycle. In
BIOME-BGC, most ecosystem activity occurs at a daily time step (e.g., soil
water balance, photosynthesis, allocation, litter fall, and C andNdynamics
in the litter and soil), driven by daily values for precipitation, solar
radiation, airhumidity, andmaximumandminimumair temperature. The
surface is represented by single homogeneous vegetation canopy with a
soil substrate. JULES is based on the UK Met Office Surface Exchange
Scheme (MOSES). It uses a tiled land-surface schemewith 9 surface types
(broad-leaf trees, needle-leaf trees, C3 grass, C4 grass, shrubs, urban,
inland water, bare soil and ice). Each tile has different surface properties,
including LAI, and the surface energy and water balances are aggregated
across the tiles present in each gridbox. In JULES, the time step is defined
by themeteorological data input to themodel, and is typically 30min. The
inputs to both LSPmodels are climate, vegetation (including LAI), and site
conditions data obtained from field campaigns.

2.1. Radiative-transfer simulation

The radiative-transfer simulation is performed in three steps,
starting at the leaf level, progressing through to the canopy level, and
ending at the top of the atmosphere (TOA) level (Fig. 1). The models
involved in each of these stages are outlined briefly below.
f reflectance model, a canopy reflectance model and an atmospheric radiative-transfer
mwhich wewant to retrieve the parameters. Biophysical parameters are retrieved from
analysing the effects of the different levels of noise on the NPP estimated.



Table 2
Viewing and spectral capabilities simulated

Parameter Values Comments

View zenith
angles

±70.5°, ±60°, ±45.6°, ±26.1°, 0° MISR viewing
zenith angles

Channels 440, 460, 490, 550, 620, 670, 700, 800,
840, 860, 870, 900, 1240 and 1600 nm
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PROSPECT, amodel of light interactionwith leaves is used to estimate
leaf reflectance and transmittance between 400 nm and 2500 nm. This
model requires values of the following three parameters: a structure
parameter (N), leaf chlorophyll content (Cab) and leafwater content (W).

A range of canopy reflectance models exist, from simple turbid-
medium models to complex three-dimensional scene models. Scene
simulation models produce realistic 3D scenes and photon interactions.
Ray-tracing methods allow the sampling of photon trajectories and their
intersections within the scene. The Monte Carlo method offers a robust
and simple solution to this sampling scheme (Disney et al., 2000). In
forwardmode, rays are traced from the light sourceand followed through
each of their interactions with the canopy until they reach the sensor
position. This tends to be inefficient because a large number of photons
are scattered in directions other than that of the sensor. In reverse mode,
rays are traced from the sensor to the illumination hemisphere, which is
more efficient in computational terms: this is the approach adopted here.
The ray-tracingmodel used here, FLIGHT, requires data input on leaf, soil
and bark optical properties and on canopy structure parameters. In
reverse mode, FLIGHT simulates the spectral reflectance detected for a
specific sun-sensor geometry (Alton et al., 2005; Barton & North, 2001).

The transmission of solar radiation through the atmosphere is
affected by absorption and scattering caused by atmospheric molecules
and aerosols. These effects must be considered when estimating the
spectral and angular distribution of the downwelling solar radiation and
in simulating the signal detected by a satellite-sensor. The 6S model
computes gaseous absorption, Rayleigh scattering and optical scattering
parameters for atmospheric aerosols. Thismodelmustbeparameterized
with specific data on atmospheric properties for the site of interest. In
this study a clear atmosphere was considered based on the results
measured during the field campaign (Walthall & Loechel, 1999).
Subarctic summer atmospheric model and biomass aerosol model
were used for the simulation. Using ground reflectance values as input,
the model can provide an estimate of the TOA reflectance observed by a
particular satellite-sensor.

2.2. Sensor models

Attention in this study is focused on a limited number of spectral
wavebands. It is commonly reported that hyperspectral instruments
typically contain considerable amounts of redundant spectral infor-
mation, and that a subset of these bands can be used to obtain at least
90% of the total information content (Thenkabail et al., 2004).
Therefore, we focus on a total of 14 spectral wavebands across the
visible, near-infrared and short-wave infrared wavelengths.

The benefits of multiangular remote sensing are also analysed by
simulating the observed spectral reflectance values under different
viewing geometries (Barnsley et al., 1997; Diner et al., 1999). Two
advantages are expected from this:first, it offers the potential to retrieve
information on atmospheric constituents due to the effect of the
different atmospheric path lengths on the TOA reflectance (Grey et al.,
2006; North, 2002a,b; North et al., 1999); second, it should improve the
retrieval of land-surface properties by accessing the structural informa-
tion inherent in the Bidirectional Reflectance Distribution Function
(BRDF) (Barnsley et al., 1997; Chen et al., 2003; Diner et al., 2005). In
total, four instrument configurations are analysed, namely: (a) 1 view
and 2 channels (1v/2b); (b) 1 view and 14 channels (1v/14b); (c) 9 views
and2 channels (9v/14b); and (d)9 views and14 channels (9v/14c). In the
case of the 2 band evaluations, the selected channels lie in the red
(630 nm) and near-infrared (870 nm) parts of the spectrum. In the case
of the single viewing angle evaluation, each of the simulated angles is
used to represent a wide-field-of-view cross-track instrument.

2.3. LUT inversion

As explained previously, themethod chosen to invert themodels is
the LUT technique (Kimes et al., 2000). This approach is widely used
across many disciplines and several studies have demonstrated the
potential of using LUTs to solve the inversion problem in remote
sensing, including in connection with the retrieval of vegetation
canopy properties (Combal et al., 2002; Gascon et al., 2004; North
2002b; Weiss & Baret 1999). In remote sensing, the inverse problem is
by nature ill-posed mainly for two reasons: first, the solution of the
inverse problem is not necessarily unique, such that a set of solutions
could lead to similar match between the measured and the simulated
reflectance values; second, uncertainties in themeasurements and the
model may induce large variation in the solution of the inverse
problem. To overcome this problem, we can constrain the model by
making assumptions about some of the parameters (Combal et al.,
2002). The constraints imposed here relate to the type of vegetation
canopy, limited to coniferous forest, and the allowable range of values
(i.e., maximum andminimum) for its biophysical properties limited to
the range of values recorded in the field.

The LUT is implemented in three steps: (i) the parameter space of
the canopy is sampled for a given sun-target-sensor geometry; (ii) for
each combination of canopy parameters, TOA reflectance values are
computed, which are used to populate the LUT (a set of test data is also
generated that is used as the “observed” data in the retrieval); and (iii)
the LUT is used to retrieve a set of estimated parameter values for the
canopy by finding the best fit (minimum root mean square error
(RMSE)) between the observed and simulated spectral profile.

2.3.1. LUT sampling scheme
The density with which the data values in the LUTare sampled along

each of the parameter axes affects the accuracy with which the
biophysical properties are retrieved. Increasing the size of the LUT
results inmore accurate retrievals, but it also consumesgreater computer
resources (i.e., longer computation time). In general, therefore, the
primary objective is to construct a LUT that is sufficiently sparse to allow
quick access, but sufficiently dense toprovide accurate retrievals. Thekey
is to obtain a compromise between these two competing requirements.

A view zenith angle configuration corresponding to that of the
MISR instrument is analysed here (Table 2). This is intended to explore
the advantages of the sensor having the capability to acquire data at
several different view angles. The analysis is performed for data
acquired in the solar principal plane only, which is normally the
direction of the maximum angular variability in the detected spectral
reflectance. In reality, the relative azimuth angle of most satellite-
sensor measurements will deviate from this plane, and depends on
the relative positions of the satellite and the sun. Although these are
not very realistic scenarios, they allow us to examine the effect of
multiangular sensing in the most extreme case of backward and
forward scattering. The range of spectral wavebands used here
correspond to those employed by a range of current satellite-sensors
(Table 2; AVHRR, MODIS, MISR, MERIS, VEGETATION and CHRIS),
which have proved to be useful in the retrieval of surface biophysical
properties (Abuelgasim et al., 2006; Barnsley et al., 2000; Knyazikhin
et al., 1998b).

The range of values over which the biophysical properties are
sampled in the LUT is derived from the values typically observed in
field data. The sample points are positioned to maximize the
variability in the parameter space captured by the LUT. For some
biophysical properties, such as LAI, a regular sampling strategy may
result in under-sampling at the lower end of the expected LAI range,



Table 3
Transformations applied to sample the input parameters

Variable transformation

LAI exp−LAI/2

Cab exp−Cab/100

FC FC
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where the detected reflectance normally varies significantly. To
guarantee uniform sampling, therefore, the biophysical properties
are re-sampled on a transformed space, which is created taking into
account the expected distribution of each property. Thus, the
distribution function of each property is analysed to define the
optimal sampling scheme. In this context, we note that fractional
cover exhibits a broadly linear relationship with reflectance, while
transformations similar to those used in other studies (Combal et al.,
2002; Weiss & Baret, 1999) are applied to LAI and Cab (Table 3).

The optimal number of samples, which defines the size and density
of the LUT, was evaluated in a pilot study, using 3, 6 or 12 samples for
each of the biophysical properties examined here (FC, Cab and LAI).
For AOT, only two values are used: a maximum value (0.15) and a
minimum value (0.05).

The results of the pilot study, not presented here, indicate that 6
samples is optimal for each of the biophysical properties except for LAI,
for which 12 samples must be used at sites that exhibit a large range of
LAI values.While LAI, Cab and FC are included in the LUT from the outset
based on the specified input values, fAPAR is estimated separately using
FLIGHT and is included in the LUT at a later stage. fAPAR is calculated as
the sum of the absorbed radiation at each wavelength as follows:

fAPAR ¼ ∑
n

i¼1
Fa;iWi ð1Þ

where Fa,i is the fraction of radiant energy absorbed by the canopy in
waveband i, calculated using FLIGHT, andWi are theweights given to each
waveband according to the solar irradiance in thatwaveband determined
from 6S (Privette et al., 1996). Only bands in the photosynthetically active
radiation range are used (i.e., 400 nm to 700 nm).

For each combination of input parameter values, the TOA
reflectance is calculated and is stored with the corresponding input
parameter values in the LUT. These values create the LUT that is used in
the inversion procedure to retrieve estimates of the same parameters.

2.3.2. Sensor noise
The effect of the radiometric accuracy of the sensor on the

measurement of surface-leaving radiances is simulated through the
addition of different levels of noise. In remote sensing, noise is
produced by a number of factors, including thermal effects, sensor
saturation, quantization errors and transmission errors. These types of
noise are typically independent of the data, and are generally additive
Table 4
Sites and stands data

OBS OJP

Dominant species Black spruce (Picea mariana) Jack pine (Pinus
Latitude 53.987°N 53.916°N
Longitude 105.122°W 104.692°W
Age years 115 65
e/c C C
Exy (m) 0.45 1.3
Ez (m) 9 7.2
Min_HT (m) 0.49 6.9
Max_HT (m) 0.51 7.1
DBH (m) 0.071 0.129
Leaf size (m) 0.01 0.01

e/c: shape (ellipsoid or cone); Exy: crown radius; Ez: crown height; Min_HT, Max_HT: mini
in nature so that they can be represented reasonably well by a
normally distributed (i.e., Gaussian) random process with a mean
value of zero and a probability density function given as follows:

f xð Þ ¼ 1
σn

ffiffiffiffiffiffi
2π

p e−x
2=2σ2

n ð2Þ

where σn is the standard deviation of the noise process(es).
In this study, the effect of noise is modelled as the summation of

the true signal and the noise. Gaussian noise, ranging from 0.0 to 0.05,
in steps of 0.005, is added to the reflectance values of the test data. The
resultant noisy reflectance values are then used to retrieve estimates
of the biophysical properties from the LUT.

2.3.3. LUT parameters retrieval
Estimates of the vegetation canopy properties are obtained by

minimising the difference between the reflectance values in the
simulated input data and those in the LUT. This problem is solved here,
as in many other studies, using the standard least-squares approach
(Knyazikhin et al., 1998a; Weiss et al., 2000).

To establish the most likely values of the surface biophysical
properties, the set of errors produced by comparing the observed and
simulated reflectance spectra is filtered to identify one or more
candidate solutions. In circumstances where there is more than one
candidate solution, the optimum solution is typically determined by
calculating the median or the weighted mean of the parameter values
for the candidate solutions (Weiss & Baret, 1999). Here, we apply a
gridded sampling in the creation of the LUT and a random sampling
for the “observed” data. The final result is interpolated between the
retrieved best candidates.

The algorithm used here compares the observed reflectance values
to the simulated reflectance values stored in the LUT; the RMSE is used
to retrieve a set of possible (or candidate) solutions. A maximum of 10
candidate solutions is allowed, consisting of those producing the
minimum RMSE values. The absolute RMSE is calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
ρLUT;i−ρInput;i

� �2
s

ð3Þ

where n is the number of spectral wavebands multiplied by the
number of sensor view angles considered. The absolute RMSE is used
rather than the relative RMSE because the Gaussian noise is additive
and using relative errors would mask the effect of the noise.

The optimum result should lie somewhere in the neighbourhood
of the candidate set of solutions. The final result is therefore taken to
be an interpolation of the best candidate solutions. The method used
to do this is to select only those candidates for which the RMSE is
smaller than a threshold value, calculated as a function of the
minimum RMSE, i.e., if RMSEi≤MinRMSE+(α×MinRMSE), where α
YJP Source

banksiana) Jack pine (Pinus banksiana)
53.877°N
104.647°W
25 Gower et al. (1997)
C
0.85 Leblanc et al. (1999)
4 Leblanc et al. (1999)
0.49 Leblanc et al. (1999)
0.51 Leblanc et al. (1999)
0.032 Gower et al. (1997)
0.01 Estimation

mum and maximum height to first branch; DBH: diameter at breast height.



Fig. 2. Parameter estimations represented against the level of radiometric noise for the three sites (OBS, OJP and YJP) and for each configuration.
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represents the percentage of deviation from the MinRMSE accepted.
The value of α varies with the instrument radiometric noise, Noise,
considered in each case, with a minimum value of 10%:

α ¼ 0:1þNoise: ð4Þ

The final result for each estimated parameter is calculated as a
weighted average of the set of candidate solutions. The weights
applied to each of the retrieved parameters are calculated as follows:

Wi ¼ 1−
RMSEi
∑RMSE

� �
= n−1ð Þ ð5Þ
where n is the number of candidate solutions used in the interpola-
tion, and i varies from 1 to n.

With this technique, we ensure that at least one value will be
retrieved, the onewith theminimumRMSE. Also, this approach allows
us to consider up to 10 possible candidate solutions, among which to
interpolate, discarding those solutions for which the RMSE is too large.

2.3.4. Coupling with LSPs
The effective LAI values used in the creation of the LUT are also

employed as inputs to the LSP models. The current generation of LSPs
models cannot use the other parameters, such as Cab, directly;
however, joint retrieval of Cab and LAI tends to reduce uncertainty in



Table 5
Effect of solar zenith angle on the retrieval of parameters

RMSE 40° 50° 60° 70°

Cab Eabs 3.57 4.22 5.00 6.95
Erel 0.12 0.15 0.18 0.27

FC Eabs 0.02 0.026 0.034 0.051
Erel 0.05 0.07 0.09 0.15

LAI Eabs 0.15 0.18 0.20 0.27
Erel 0.07 0.08 0.09 0.13

fAPAR Eabs 0.015 0.016 0.018 0.025
Erel 0.03 0.04 0.04 0.05

AOPT Eabs 0.02 0.023 0.026 0.028
Erel 0.21 0.24 0.27 0.29

Absolute and relative RMSE of the retrieved parameters are shown for each solar zenith
angle for the case of 9 viewing angles and 14 bands and a noise of 0.01 absolute value.
Errors are calculated as mean values of the three sites.
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the estimated values of LAI (Dawson et al., 1999, 2003). Moreover, in
their current form, both of the LSP models considered here are
insensitive to variability in the ratio of direct to diffuse sunlight
associated with the different values of atmospheric optical depth
examined in this study (Alton et al., 2005).

In JULES, LAI is an input parameter so nomodifications are required
to this model. BIOME-BGC, by contrast, predicts the projected LAI as a
function of the amount of leaf carbon and the canopy-average specific
leaf area. BIOME-BGCwas thereforemodified in this study, such that it
was forced to use the effective LAI specified on input rather than
relying on the value produced by its own internal calculations,
corresponding to driving the model with the observed LAI.

Note that both LSP models studied here are “spun up” by running
them for a repeating pattern of annual weather conditions, corre-
sponding to a period of two years. The time step used was 30 min in
both models and the meteorological data were taken from the field
measurements. The value of annual NPP output for the second year is
then recorded.

2.4. Site description

A boreal forest biome is used as test site in this study because of the
significance of this biome type in terms of regional and global carbon
budgets. Moreover, the structural complexity of this biome type
provides a good test of themethodology adopted here. The LSPmodels
studied in this paper are also sensitive to the range of vegetation
parameters exhibited by boreal forest biomes, enabling a robust test of
their uncertainty.

Boreal forests encircle Earth at latitudes above 48°N and comprise
roughly 21% of the global forest area. The main influence of boreal
forests on the climate system is through its potential to sequester and
release large volumes of carbon. In the long term, expected trends in
atmospheric warming may lead to dramatic changes in the global
carbon cycle, by affecting the ability of boreal forest ecosystems to
sequester carbon through enhanced photosynthesis and release
carbon through increased respiration (Baldocchi et al., 2000; Bonan
et al., 1995). Over shorter time scales, boreal forests play a significant
role in seasonal and annual climates by masking the high albedo of
snow on the ground and through the partitioning of net radiation into
sensible and latent heat.

The Boreal Ecosystem Atmospheric Study (BOREAS) was an interna-
tional project, which ran between 1993 and 1996, focusing on the
northern boreal forests of Canadawith the aim of better understanding
the interactions between such forests and the atmosphere (Gamonet al.,
2004; Sellers et al., 1997b). Here, we concentrate on the Southern Study
Area (SSA), analysing data collected during the 1994 field campaign. The
SSA is situated near Candle Lake, Saskatchewan, and covers an area
about 130 km by 90 km. The vegetation cover is predominantly
coniferous forest, typically classified as mixed boreal forest. The SSA
experiences a mid-continental climate with average annual precipita-
tion ranging from 410 mm to 500 mm. Temperatures range from about
7 °C to 24 °C in the summer and fromabout −21 °C to −4 °C in thewinter.

Three sub-sites are explored here, each with a different dominant
tree species, namely: (i) old black spruce (OBS), (ii) young jack pine
(YJP) and (iii) old jack pine (OJP) (Table 4).

2.5. Test data

Solar zenith angleswere sampled in the range 40° to 70°, at intervals
of 10°, corresponding to the sun angles experienced at high latitudes. An
independent set of 200 TOAs reflectance spectra, representing the
“observed”data,was createdusing themethods outlined in theprevious
sections. These values are subsequently used as the inputs to the
inversion procedure. The reflectance spectra were simulated based on
randomly sampled values of the biophysical properties within the
specified ranges. Each of these TOAs reflectance data sets comprises
values in 14 spectral channels and 9 sensor view angles corresponding
with MISR viewing angles (Table 2). These data sets are used for the
retrieval of surface properties in each of the four angular/spectral
configurations described previously, by selecting the appropriate subset
of view zenith angles and spectral wavebands.

The effective LAI values estimated in the inversion procedure are
used to drive the two LSP models. Effective LAI is used instead of LAI
corrected for clumpingeffects (Chen et al.,1997) in bothmodels. BIOME-
BGC uses projected LAI in its internal calculations, which is assumed to
be equivalent to the effective LAI here. JULES uses radiation interception
to estimate productivity: as there is no consideration of clumping in this
calculation, effective LAI is considered to be themore appropriate value.

The LSP models are parameterised using the data collected in the
BOREAS field campaign (Cuenca et al., 1997; Kimball et al., 1997b).
Both models show a high degree of sensitivity to soil properties,
especially the soil moisture content. A “spin up” period is required to
settle the models in terms of these parameters, so that they produce
stable results.

3. Results for a boreal forest biome

3.1. Biophysical property retrieval

The accuracy withwhich the surface biophysical property values are
retrieved is analysed in terms of the absolute mean error (RMSE)
between the observed (input) and retrieved values. Fig. 2 shows the
results for each of the properties measured against different levels of
sensor. This figure indicates that there is a difference between the
observed and retrieved values even in the presence of zero sensor noise.
This is due partly to the different combinations of input biophysical
property values that producequite similar reflectance spectra, leading to
the identification of several candidate solutions by the inversion
procedure and, hence, to the observed errors; and partly to the sampling
density of the LUT. There is also an intrinsic error introduced by the
Monte Carlo simulation. Since Monte Carlo methods are stochastic,
simulations contain statistical fluctuations inversely proportional to the
square root of the number of photon trajectories considered. In this
study, these fluctuations are in the range of ±0.002 absolute error.

The effect of sensor noise can be summarised as follows: the
retrievals show a smooth, near linear, increase in error with increasing
sensor noise.

In general, it is also clear that the retrieval of surface biophysical
properties is improved in all cases where multiple view angle data are
employed. The minimum instrument configuration, namely a single
sensor view angle and just 2 spectral wavebands, leads to the greatest
errors in all cases, but is especially incapable of detecting accurately the
AOT,which indirectly affects the estimation of the other property values.

Retrievals of Cab and FC made using data recorded at a single
sensor view angle in 14 spectral wavebands are similar in accuracy to
those obtained withmultiple view angle data recorded and the lowest



Fig. 3. Effect of the instrument radiometric noise on the NPP estimated by Biome-BGC at each site and for each instrument configuration.
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Fig. 4. Effect of the instrument radiometric noise on the NPP estimated by JULES at each site and for each instrument configuration.
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levels of sensor noise (0.005), but the error increases rapidly at higher
levels of noise.

Retrievals obtained using data recorded at 9 sensor view angles
provide roughly double the accuracy (i.e., half the error) of the
respective configurations (i.e., 2 and 14 bands) made at a single sensor
view angle. In these cases, sensor noise has a relatively small effect,
especially in terms of the retrieval of LAI, showing the significance of
multiple view angle data for the retrieval of information of vegetation
canopy structure.

In analysing the effect of atmospheric properties on the retrievals,
each solar zenith angle is shown separately in Table 5. Not surprisingly,
the best retrievals are obtained when the solar zenith angle is small
because the effect of the atmosphere is reduceddue to the atmospheric
shorter path-length.

3.2. LSP sensitivity

The annual NPP estimated by each model is recorded. Errors are
analysed in terms of the mean absolute difference between the NPP
values obtained with the actual LAI (i.e., the field measurements) and
the LAI estimated by inversion of the LUTs against the simulated
satellite-sensor data. This process is repeated for each site and for the
four hypothetical instrument configurations. The results are also
presented in terms of the different levels of simulated sensor noise
(Figs. 3 and 4). In summary, the trends are similar to those observed in
the figures for the biophysical properties reported in the previous
section, with the multiple view angle data producing the most
accurate results, even in the presence of just two spectral bands.

The values of NPP estimated by the two LSP models, for an
estimated average effective LAI of 2.3 (OBS), 1.7 (OJP) and 1.5 (YJP)
(Chen et al.,1997) are 209 gCm−2 yr−1 (OBS),181 gCm−2 yr−1 (OJP) and
135 gCm−2 yr−1 (YJP) for Biome-BGC and 203 gCm−2 yr−1 (OBS),180 gC
m−2 yr−1 (OJP) and 178 gC m−2 yr−1 (YJP) for JULES. These values fall in
the range of values reported from field measurements (Gower et al.,
1997) and simulations (Kimball et al., 1997a) for the same sites.

As in the case of the retrieval of surface biophysical properties, the
configuration with 9 sensor view angles and 14 spectral wavebands
performed best, regardless of the level of sensor noise, and no
magnification of the errors was detected. The next best results were
obtained using data recorded at 9 sensor view angles in two spectral
bands. In the 1v/14b configuration and a radiometric noise level of 0.01,
the errors on the estimated NPP range between 19.6 gC m−2 yr−1 (YJP,
Biome-BGC) and 43.5 gC m−2 yr−1 (OBS, Biome-BGC). The 9v/14b
configurationproduces a 31% to 56% improvementon thesefigures,with
errors ranging from 8.6 gCm−2 yr−1 (YJP, Biome-BGC) to 29. gCm−2 yr−1

(OBS, Biome-BGC). Doubling the radiometric accuracy from 0.02 to 0.01
produces improvements of around 10%, 25%, 20% and 15%, respectively,
for each of the following sensor configurations: 1v/2b,1v/14b, 9v/2b and
9v/14b. Increasing the number of spectral wavebands from 2 to 14
produces improvements of between 30% and 50% at noise levels under
0.015 for data recorded at a single view angle. Where the same data are
recorded at 9 different view angles, the improvement obtained by the
higher spectral sampling is smaller: only 10% to 20%.

Ingeneral,wefind that JULES is less sensitive to theeffective LAI inputs,
andhence to errors on these, thanBiome-BGC.As anexample, for a level of
noise of 0.01 and the most comprehensive sensor configuration (9v/14b),
NPP errors derived from JULES are 18.0 gCm−2 yr−1 (OBS), 6.9 gCm−2 yr−1

(OJP) and3.8 gCm−2 yr−1 (YJP),while the corresponding values for Biome-
BGC are 29.7 gC m−2 yr−1, 9.7 gC m−2 yr−1 and 7.8 gC m−2 yr−1.

Overall, the results show a clear advantage of the multiangular
sampling over the other sensor configurations analysed. Note that
these results relate to coniferous forest sites, and it is possible that
they are specific to such sites. Boreal forests have a complex three-
dimensional structure, for which a multiple view angle capability is
likely to be important. Single angle observations (e.g., at nadir) are not
able to capture the structure of the forest canopy, so that measure-
ments such as these may produce less accurate estimates of surface
biophysical properties and NPP.

4. Conclusions

Amethod is presentedhere that links satellite instrument capabilities
with LSPmodels. The results of thismethod suggest that satellite-sensor
data recorded at multiple view angles improves dramatically the
accuracy with which surface biophysical properties can be estimated,
even in the presence of a limited number of spectral wavebands.
Satellite-sensor data obtained atmultiple view angles provide structural
information critical to characterize the type of coniferous forests
analysed here. A more comprehensive spectral sampling (i.e., increasing
the number of spectral channels from2 to 14) also reduces the errorwith
which the surface properties are estimated (by over 50% for data
recorded at a single view angle), although the impact of this is smaller in
the case of multiple view angle data (10% to 20%). The radiometric
accuracy of the sensor, simulated through different levels of additive
noise, does not appear to produce such a large relative effect on the
accuracy of the biophysical property retrievals, with only a 10% to 25%
improvement obtained by halving the radiometric noise from 0.02 to
0.01.

The conclusion thatwe draw from this analysis, therefore, is that the
inclusion of multiple view angle capabilities in future satellite-sensors
targeted at monitoring Earth's surface is likely to improve significantly
the retrieval of information on surface biophysical properties and, in
particular, the intrinsic structural characteristics of vegetation canopies.
Spectral information and radiometric accuracy are less critical if a
multiple view angle capability is available, but the relative cost of each
must also be considered when designing instruments.
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