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For two decades, remotely sensed data from imaging spectrometers have been used to estimate non-pigment
biochemical constituents of vegetation, including water, nitrogen, cellulose, and lignin. This interest has been
motivated by the important role that these substances play in physiological processes such as photosynthesis,
their relationships with ecosystem processes such as litter decomposition and nutrient cycling, and their use
in identifying key plant species and functional groups. This paper reviews three areas of research to improve
the application of imaging spectrometers to quantify non-pigment biochemical constituents of plants. First,
we examine recent empirical and modeling studies that have advanced our understanding of leaf and canopy
reflectance spectra in relation to plant biochemistry. Next, we present recent examples of how spectroscopic
remote sensing methods are applied to characterize vegetation canopies, communities and ecosystems.
Third, we highlight the latest developments in using imaging spectrometer data to quantify net primary
production (NPP) over large geographic areas. Finally, we discuss the major challenges in quantifying non-
pigment biochemical constituents of plant canopies from remotely sensed spectra.

Published by Elsevier Inc.
1. Introduction

The first studies reporting on the application of airborne imaging
spectrometer data to quantify non-pigment biochemical components
of vegetation canopies were published by Wessman et al. (1988) and
Peterson et al. (1988). Since then, remotely sensed data from imaging
spectrometers have continued to be improved and applied to quantify
vegetation constituents such as water, nitrogen, protein, cellulose, and
lignin (Card et al., 1988; Wessman et al., 1989; Matson et al., 1994;
Zagolski et al., 1996; Martin & Aber, 1997; Roberts et al., 1997; Ustin
et al., 1998; Serrano et al., 2002; Smith et al., 2003). In recent work,
maps of canopy chemistry have revealed patterns in key ecosystem
processes, such as net primary production, at fine-scale over large
areas (Smith et al., 2002; Ollinger & Smith, 2005), as well as the spatial
distribution of plant functional types and species (Asner & Vitousek,
2005). Concurrent with advances in imaging spectroscopy applica-
tions, the airborne instruments have improved substantially (e.g.,
Green et al., 1998) and have become more readily available. Some of
the most widely used sensors include the Airborne Visible/InfraRed
Inc.
Imaging Spectrometer (AVIRIS; Green et al., 1998), the HyMap
Imaging Spectrometer (HyMap; Cocks et al., 1998), and the Compact
Airborne Spectrographic Imager (CASI; ITRES Research Limited,
Alberta, Canada). Imaging spectrometers have also been deployed
aboard satellite platforms (e.g., Earth Observing-1 Hyperion; Ungar et
al., 2003). Improved measurements from imaging spectrometers, and
increased availability of data, have greatly expanded the opportunities
to use remote sensing to investigate a variety of ecosystem processes
(Ustin et al., 2004).

Estimation of canopy chemical properties from imaging spectro-
meter data grew from laboratory research on animal feed and forage
quality (e.g. Norris et al., 1976). These studies were conducted under
controlled conditions using statistical relationships, mainly stepwise
multiple linear regression (SMLR), between laboratory spectra and
biochemical assays of nitrogen and protein (e.g., Marten et al., 1989).
Procedural limitations in the estimation of nitrogen and protein
included statistical overfitting, having too many independent vari-
ables to predict a single dependent variable (Martens & Naes, 2001),
and the difficulty in extending predictive equations to other data sets
(Grossman et al., 1996). In recognition of these problems, there has
been an increase in the number of studies applying statistical methods
that rely on mathematical treatments of the full spectrum, e.g. Partial
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Fig. 1. Reflectance spectra of stacked lodgepole pine needles measured in the laboratory
in fresh (thick line) and dry (thin line) states. The absorptance spectrum of extracted
leaf pigments and the water absorption coefficient (on a log scale) are shown as
references. The wavelength positions of strong absorption features are given. The
reflectance levels at 0.8 µm are 0.55 and 0.67 for the spectra of dry needles and fresh
needles, respectively.
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Least-Squares (PLS) regression, instead of a few selected and highly-
correlated channels chosen by SMLR (e.g., Williams & Norris, 2001;
Smith et al., 2002). Another focus has been on the detailed
examination of leaf and canopy spectra in wavelength regions
where biochemical constituents of interest display strong absorption
features. Photon transport models have also been increasingly used to
predict spectroscopic reflectance signatures of vegetation and to
estimate canopy chemistry via model inversion using actual or
simulated airborne imaging spectrometer data (e.g., Jacquemoud
et al., 1995, Ceccato et al., 2002).

In this paper we focus our review of recently published literature
to those that take a “spectroscopic” approach from the laboratory to
Table 1
Average percentage by mass leaf biochemical constituents in deciduous and coniferous leaf

Vegetation type n Biochemical concentration (%), mean (std. dev.), minimum to

Water (% fresh leaf weight) Nitrogen (% dry leaf weight)

Deciduous 366 59.9 (4.9) 2.20 (0.53)
41.9 to 79.3 1.02 to 3.51

Coniferous 268 55.6 (4.04) 1.18 (0.31)
35.4 to 66.3 0.62 to 2.09

Cultivated grass 69 – 0.91 (0.19)
0.54 to 1.29

Wild grass 8 – 0.57 (0.18)
0.26 to 0.85
the remote sensing level of measurement. In these studies, changes in
reflectance spectra are examined at wavelengths within the range of
absorption features caused by the chemical bonds in the biochemical
of interest. These studies apply algorithms that are sensitive to, and
dependent upon, changes in reflectance over a series of contiguous
channels, and thus reflectance as a function of wavelength, either
across a subset of the spectral range or across the full spectral range
measured by the sensor. At the remote sensing level, we term such
approaches “spectroscopic remote sensing.”

We restrict our discussion to non-pigment biochemical constitu-
ents of plants. We recognize that leaf pigment composition, including
chlorophyll and accessory pigments, is tremendously important in
vegetation remote sensing, and is reviewed by Ustin et al. (2009-this
issue). The absorptance spectrum of extracted leaf pigments in Fig. 1
shows that pigments absorb strongly across the visible region from
0.35 to 0.70 µm. Thus, our focus in this paper will be on wavelengths
greater than 0.70 µm,where important non-pigment leaf constituents,
specifically water, nitrogen, cellulose and lignin, have measurable
absorption and scattering features. Our goal is to summarize recent
articles that have advanced our understanding of how vegetation
reflectance spectra represent multiple biochemical properties at leaf
and canopy scales. Furthermore, we present recent studies showing
how maps of leaf constituents facilitate an examination of ecosystem
processes over large areas. We have partitioned the review into three
topics: 1) empirical and modeling studies on the effects of plant
biochemical constituents on reflectance spectra, 2) remote sensing
applications of imaging spectrometers to characterize canopy chem-
istry, and 3) the use of imaging spectrometers to study primary
production and nutrient cycling.

2. Leaf spectra and biochemical constituents

Table 1 shows a summary of the average concentrations of these
constituents, as well as the range in their concentrations, for
deciduous, coniferous, and graminoid leaves compiled by the
Accelerated Canopy Chemistry Program (ACCP, 1994). ACCP was a
program developed during the original NASAHigh Resolution Imaging
Spectrometer (HIRIS; Goetz &Davis,1991) to advance canopy chemical
studies for that mission and beyond. Although we recognize that the
ACCP dataset does not represent the full range of leaf biochemical
concentrations found in ecosystems (e.g., Wright et al., 2004), it has
associated leaf reflectance spectra that can be examined to better
understand spectral variations caused by changes in biochemical
constituents. It is useful to note that other leaf spectral–chemical data
sets are available to the community as well (Hosgood et al., 1994).

Water is often the most abundant chemical in leaves. Looking at
the spectra of fresh versus dried vegetation, we can clearly see the
effects of water on reflectance spectra. Fig. 1 shows the reflectance
spectrum of fresh pine needles (thick line) in comparison to their
spectrum after drying (thin line). The peaks in the absorption
coefficient of water at 0.97, 1.20, 1.45, and 1.93 µm are also expressed
as local decreases in the reflectance spectrum of the fresh leaf
centered near 0.98, 1.19, 1.44, and 1.92 µm. These dips in the
samples from the Accelerated Canopy Chemistry Program data set (ACCP, 1994).

maximum

Cellulose (% dry leaf weight) Cellulose (% fresh leaf weight) Cellulose:lignin

21.47 (4.36) 38.50 (7.05) 1.86 (0.53)
12.42 to 33.41 24.20 to 67.57 0.96 to 3.87
23.56 (3.77) 36.83 (4.26) 1.56 (0.15)
13.75 to 31.00 23.69 to49.89 1.22 to 2.26
14.70 (1.06) 56.19 (3.05) 3.84 (0.40)
11.62 to 16.65 50.83 to 62.69 3.16 to 5.40
17.38 (1.57) 65.49 (5.45) 3.79 (0.41)
15.10 to 20.73 58.76 to 74.73 3.16 to 4.28



Fig. 2. Modeled leaf reflectance as a function of increasing water content based on dry
white pine needles (the 0% water spectrum). The band center wavelength positions of
strong absorption features are given. Spectra are offset by 0.3 for clarity. Figure is
adapted from Kokaly and Clark (1999).

Fig. 3. Reflectance spectra for a single oak leaf on a black background (thick line) and for
a stack of four oak leaves (thin line). Large differences in spectral shape are seen for
near-infrared plateau (the shaded area from 0.78 to 1.3 µm), for the depths and shapes
of the 0.98 and 1.19 µm leaf swater absorption features, and for the slope of the
reflectance curve in the leading edge region (the dark shaded area from 0.78 to 0.91 µm)
of the NIR plateau. Reflectance levels at 0.82, 0.86, 1.24, and 1.6 µm are labeled.
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reflectance spectrum indicate areas of relatively stronger absorption
and are referred to as absorption features. Thewavelength positions of
the band centers of absorption features are defined as the minimum
value in the continuum-removed reflectance spectrum (Clark &
Roush, 1984). The spectrum of the dried leaf shows three absorption
features, centered near 1.7, 2.1, and 2.3 µm, that were not easily
discernible in the fresh leaf spectrum. These three features are caused
by several leaf biochemical constituents, the most abundant and
widely studied of which are nitrogen (in proteins), cellulose and lignin
(Curran, 1989; Elvidge, 1990;Wessman,1990; Kokaly, 2001). As leaves
and plants vary in the concentrations of these constituents, their
reflectance spectra vary by changing strengths of the related
absorption features. In the next sections of this paper, we will
examine recent advances in our knowledge of how these non-pigment
leaf constituents alter leaf and canopy reflectance.

2.1. Water

Water is one of the most important factors regulating plant growth
and development in ecosystems (Kramer & Boyer, 1995). The effects of
water limitation are most evident in species found in arid and semi-
arid regions, where adaptations in plant form and physiology function
to conserve water, e.g., the Crassulacean Acid Metabolism (CAM)
photosynthetic pathway (Bhagwat, 2005). Additionally, water limita-
tion is now widely recognized as a major control even over humid
tropical forest dynamics (Asner et al., 2004a, Nepstad et al., 2004). At
the leaf level, water is required for the maintenance of leaf structure
and shape, thermal regulation, and for photosynthesis. The loss of
water from leaves is regulated by cells that control gas exchange
between the leaf and the atmosphere (Zeiger, 1983).

In theACCPdataset, leafwater content averages 60%and56%by fresh
weight for deciduous and coniferous leaves, respectively (Table 1). Fig. 2
shows the modeled effect of increasing water content on the dry leaf
absorption features (Kokaly & Clark,1999). Shown for comparison is the
modeledabsorptionof a 0.2mmthicknessofwater. As thewater content
increases to 60%, the wavelength positions of the dry leaf absorption
features shift as the water absorption increases, and the modeled leaf
spectrum approaches the spectrum containing dry matter and max-
imum water concentration (Fig. 2). Early research modeled leaf
reflectance as largely arising from the influence of leaf water (Gates
et al., 1965). Gao and Goetz (1990) expanded our ability tomeasure and
model a combination of absorptions of atmospheric water vapor, liquid
water, and dry vegetation in reflectance spectra measured by airborne
spectrometers. Green et al. (1991) used similar spectroscopic
approaches to establish leaf and canopy Equivalent Water Thickness
(EWT) that integrate reflectance from0.867 through 1.049 µm,whereas
Jacquemoud and Baret (1990) developed one of the first physically-
based leaf optical models explicitly sensitive to water content. Roberts
et al. (1997) further demonstrated the ability to estimate leaf water
thickness by analyzing reflectance from 0.867 through 1.068 µm and by
modeling atmospheric water vapor and liquid water in imaging
spectrometer data. With these methods, canopy water content has
been repeatedly quantified (reviewed by Ustin et al., 2004).

Spectroscopic water features have been quantified and used to
map vegetation water content and canopy water stress in a variety of
ecosystems. For example, Ustin et al. (1998) and Serrano et al. (2000)
used the near-infrared (NIR) water features to detect and map canopy
water content in chaparral shrubland vegetation. Similarly, Roberts
et al. (2004) used the NIR water features tomap canopy water content
in a temperate forest, and found that canopy water content was a
better metric of canopy leaf area index (LAI) than the traditional
normalized difference vegetation index (NDVI). Asner et al. (2004a)
used the 1.19 µm water feature to estimate canopy water content in a
humid tropical forest in the Brazilian Amazon. The authors related
decreases in the dry-season spectroscopic water feature to a decrease
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in field-measured canopy water content (the convolution of LAI and
leaf water concentration). In contrast, NDVI was found to be
insensitive to these subtle dry-season effects on canopy properties.

Many empirical studies have evaluated water content algorithms
based on analyses of leaf spectra, where leaves were measured in an
integrating sphere or as a stack of foliage (Kokaly & Clark,1999; Sims &
Gamon, 2003; Stimson et al., 2005; Yu et al., 2000). It is important to
recognize that leaf spectra measured using either of these methods
are not direct representations of whole-canopy spectra (Myneni et al.,
1989). In Fig. 3, the spectral measurement made with an integrating
sphere displays relatively weak 0.98 and 1.19 µm absorption features
on the NIR plateau compared to the stacked leaf spectrum. In addition,
the leading edge of the near-infrared plateau (0.78 to 0.91 µm)
changes from flat and level in reflectance for the single leaf spectrum
to a line with positive slope in the stacked leaf spectrum. In contrast to
the single leaf spectra, the stack of leaves has a NIR reflectance in the
70% range, a value that is rare in canopy spectra, where NIR reflectance
typically falls in the range of 25–50%. This exaggerated reflectance
occurs because stacked leaves do not allow sufficient inter-leaf
attenuation of NIR light, caused by scattering out of the optical path
Fig. 4. A) Scaled, continuum-removed reflectance of the 2.1 µm absorption feature of
dry Douglas-fir needles with high nitrogen concentration (solid line) and low nitrogen
concentration (dashed line). B) Ratio of continuum-removed reflectance for the high N
and low N needles. C) Scaled, continuum-removed reflectance of the 2.1 µm absorption
feature of pure cellulose and pure protein. Figure adapted from Kokaly (2001).

Fig. 5. (A) Scaled, continuum-removed reflectance of the 2.1 and 2.3 µm absorption
features of pure cellulose (solid line) and pure “alkali” lignin (dashed line). (B) Scaled,
continuum-removed reflectance of the 2.1 and 2.3 µm absorption features of samples
with high cellulose:lignin ratio (solid line) and low cellulose:lignin ratio (dashed line).
(C) Scaled, continuum-removed reflectance of the 2.1 and 2.3 µm absorption features of
AVIRIS pixels with dry grass (solid line) and dry conifer (dashed line) materials. Figure
adapted from Kokaly et al. (2007).
of the sensor as well as reabsorption of scattered light by the
undersides of foliage (NIR reflectance of canopies is dominated by
scattering processes not absorption; Baret et al., 1994). In reality,
canopy spectra of live vegetation have spectral properties that differ
from the stacked leaf spectrum and the single leaf measurement in
Fig. 3. Scattering of radiation in the canopy, as influenced by plant and
canopy architecture, enhances the leaf-level water absorption features
and raises the reflectance level of the NIR relative to other wavelength
regions (Gao, 1996; Asner, 1998).

Problems associatedwith scalingmeasurements from leaf to canopy
levels remains a major challenge in the remote sensing community.
Equally important is the recognition that there often exist major co-
variances between vegetation structure and chemistry, whichmake the
deconvolution of these vegetation properties very challenging with
imaging spectroscopy. To address this issue, leaf hemispherical
reflectancemeasurements taken in conjunctionwith leaf transmittance
measurements are often combined and scaled up to canopy reflectance
using a number of canopy radiative transfer models. Using this
approach, Jacquemoud et al. (2000), and many others, have shown
how water is expressed throughout the NIR and shortwave-infrared
(SWIR) spectral range (~800 nm to 2500 nm), and how radiative
transfer models can be used to estimate leaf equivalent water thickness
via model inversion. Ceccato et al. (2001) also used a radiative transfer
model to develop NIR and SWIR indexes sensitive to leaf and canopy



S82 R.F. Kokaly et al. / Remote Sensing of Environment 113 (2009) S78–S91
water content. Many other examples are available in the literature
showing that both forward and inverse model simulations can be used
to simulate and to estimate leaf and canopy water content (see
Jacquemoud et al. this issue for an extensive modeling review).

2.2. Nitrogen

Nitrogen (N) is a relatively small component of leaf dry weight,
covering a range of as low as 0.26% in some grasses to 3.5% in broadleaf
deciduous samples from the ACCP dataset (Table 1). Despite its small
Fig. 6.Map of forest cover types in the Mount Washburn area of Yellowstone National Park, d
orange lines, respectively. A) Map projection is UTM zone 12 north with NAD83 datum. Figu
Fig. 6A.
contribution to leaf mass, field studies have found N to be strongly
linked to ecosystem functions such as photosynthesis and net primary
production (Field & Mooney 1986, Schimel et al., 1997, Smith et al.,
2002) as well as biogeochemical properties such as soil C:N ratios and
nitrate production (Ollinger et al., 2002). Foliar N is also widely used
as a parameter in ecosystem models (e.g., Parton et al., 1995; Ollinger
& Smith, 2005). Nitrogen has been quantified at leaf and canopy scales
using reflectance measurements (e.g. Wessman et al., 1988, Curran
et al., 1997, Smith et al., 2002), which may seem surprising because it
is such a small component of the leaf. Nitrogen occurs primarily in
erived from AVIRIS data collected in 1996. Park roads and trails are indicated in red and
re adapted from Kokaly et al. (2003). B) Perspective view towards north as indicated on



Fig. 7. Leaf N concentrations and canopy water in a 1360-hectare area of Hawaii
Volcanoes National Park, using AVIRIS and photon transport modeling (9 m pixel size).
Figure adapted from Asner and Vitousek (2005).

S83R.F. Kokaly et al. / Remote Sensing of Environment 113 (2009) S78–S91
proteins and chlorophylls in the leaf cells. Proteins are the major
nitrogen-containing biochemical constituent of plants. A single
protein, ribulose-1,5-biphosphate carboxylase-oxygenase (rubisco)
accounts for 30–50% of the N in green leaves (Elvidge, 1990), where
it is found in high concentration in the stroma of chloroplasts (Sainis &
Melzer, 2005; Douce & Heldt, 2000); because of its abundance in
plants, rubisco is considered the most plentiful protein on the planet.
Rubisco is the principal CO2-fixing enzyme in C3 plants and the
ultimate CO2-fixing enzyme in C4 and CAM plants. Nitrogen is also
6.5% (by weight) of chlorophylls, which are the primary light
harvesting molecules in the photosynthesis process that converts
carbon dioxide and water into carbohydrate.

Many researchers have associated spectroscopic estimation of
nitrogen to that of chlorophyll pigments, based on the fact that the
two variables are moderately correlated within and across ecosystems
(r2 usually ranging from 0.4–0.6; Wright et al., 2004). Mutanga et al.
(2003) studied the effects of increasing N on the chlorophyll
absorption feature centered near 0.68 µm. Results of their experiment
showed that increased fertilization with N resulted in increased
chlorophyll absorption that deepened and widened the chlorophyll
absorption feature until eventually reaching a point of saturation.
Nonetheless, this experiment illustrated a frequent observation that
changes in non-pigment constituents such as nitrogen are also
correlated to channels in the visible wavelength region where the
reflectance levels are dominated by pigments (LaCapra et al., 1996;
Martin & Aber, 1997; Serrano et al., 2002).

A direct connection between N content and pigments that influence
reflectance at visiblewavelengths results from the fact that four N atoms
in the central tetra-pyrrole head of the chlorophyll molecule act to
stabilize the central magnesium ion. However, this link can directly
explain only a small portion of the total contribution of N to leaf and
canopy reflectance because only about 19% of leaf N in C3 plants is
allocated to light harvesting complexes, and only 1.7% of leaf N is directly
held in chlorophyll (Evans, 1983). In contrast, roughly 70% of leaf N is
tied up in molecules that support carbon fixation (Chapin et al., 1987).
These N-containing compounds include biosynthetic and CO2-fixing
molecules such as rubisco. Although nitrogen-limited ecosystems, such
as many temperate forests, show about a 50% covariance between leaf
chlorophyll and total N (Sterner & Elser, 2002), variation in this
relationship is expected to result fromvariation inenvironmental factors
(most notably, light) that affect optimal N allocation between light
harvesting compounds and carboxylating enzymes. Further, ecosystems
such as the humid tropics, where N limitations are less important, show
apronounceddecouplingof leaf chlorophyll and totalN (Asner&Martin,
2008), likely due to other competing evolutionary factors such as N
allocation to defense compounds.

Recent studies have provided additional insight into why nitrogen,
despite being a small component by leaf weight, is successfully
estimated from reflectance measurements of leaves and canopies.
Kokaly (2001) showed that as N increases, changes in leaf reflectance
of dry leaves occur in the NIR absorption feature centered at 2.1 µm
(Fig. 4A). The changes were shown to be caused by two absorption
features at 2.055 and 2.172 µm that are situated on the shoulders of
the 2.1 µm absorption (Fig. 4B), corresponding inwavelength position
and shape with the absorption features of proteins (Fig. 4C). These
protein absorptions arise from vibrations of N-containing amide
bonds that form the backbone of the protein structure and are
repeated along the length of each molecule. Furthermore, as Fig. 4C
shows, these absorptions are offset from the more centrally located
absorptions of lignin and cellulose at 2.102 and 2.144 µm, respectively,
accentuating the influence of this biochemical constituent so that it
has an observable impact on reflectance spectra (Kokaly 2001).

Modeling the spectral contributions of leaf N has been challenging.
The original version of PROSPECT (Jacquemoud & Baret, 1990)
attempted to incorporate N into the absorption and scattering
processes represented in the model. This was later abandoned due
to inconsistencies in the retrieval of N via model inversion. This is not
surprising given the enormous range of leaf compounds containing N
and the varied functional properties of those compounds (Chapin
et al., 1987). The LIBERTY model also attempted to incorporate leaf N
concentration as a parameter for needleleaf simulations (Dawson
et al., 1998), showing that it could be done but that there were strong
covariances between N and other leaf properties.

2.3. Lignin/cellulose

Cellulose is a polymer of glucose molecules and is the main
constituent of plant cell walls. Cellulose received its name in 1839
(Brogniart et al., 1839), following the work of French chemist Anselme
Payen who described the resistant fibrous solid remaining after
treating plant tissues with acids, ammonia, and solvents (Payen,
1838). Cellulose concentration averages from 37% in conifer to 65% in
grasses in the ACCP dataset (Table 1). It is an end-product of the
carbohydrate produced by plant metabolic pathways of photosynth-
esis, and is considered to be among the most abundant forms of living
terrestrial biomass (Crawford, 1981). Lignin, one of the plant
polyphenolic compounds, is a complex, hydrophobic molecule of
aromatic nature, primarily comprised of oxyphenylpropae units
assembled in a large macromolecule polymer with molecular mass
in excess of 10,000 unified atomic mass units (u). Cellulose is used by
plant leaves for the wall of parenchyma cells, whereas lignin is used in
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the secondary cell walls of xylem and schlerenchyma (vascular fibers).
Differences in the ratio of lignin to cellulose are largely due to
differences in the amounts of tissue types within a leaf, rather than a
single tissue with varying amounts of lignin. Lignin is responsible,
along with cellulose, for the rigidity of plant cell walls, and averages
from a low of 15% in cultivated grass species to a high of 24% in conifer
by dry weight, in the ACCP data set (Table 1).

Field studies have shown that lignin is resistant to decomposition
and that lignin concentrations in plant litter exert a strong influence on
soil nutrient cycling (Aber & Melillo, 1982). Quantification of leaf
cellulose and lignin in the plant canopy, before leaves fall to the ground
as litter, offers a potential link to understanding rates of nutrient
cycling in soils. Motivated by its demonstrated effect on rates of N
mineralization, lignin (along with N) was quantified in the earliest
studies of canopy biochemistry (Wessman et al., 1988; Peterson et al.,
1988; Wessman et al., 1989). In general these studies of lignin, while
successful, have shown lower correlation coefficients and higher errors
of estimationwhen compared to the results for nitrogen concentration.
In part, this has been explained by the error in quantifying lignin in the
laboratory (e.g. LaCapra et al., 1996), as its chemical structure is
variable in the relative content of precursor alcohols, coniferyl, sinapyl,
and r-coumatyl, from which lignin is polymerized (Crawford, 1981).
Furthermore, cellulose and lignin are intertwined in a complex
manner, along with other polysaccharides, in plant cell walls
(Crawford, 1981), and their spectra have broad and overlapping
absorption features (Fig. 5A). Most researchers have therefore lumped
these two materials into a more general quantity of non-photosyn-
thetic vegetation (NPV; Roberts et al., 1993; Wessman et al., 1997),
cellulose-lignin (Daughtry et al., 2004) or ligno-cellulose (Elvidge,
1988), and dry matter (Jacquemoud et al., 1995; Faret et al., 2008).

Only a few studies have attempted explicit quantification of cellulose
as a separate quantity at the canopy level (Gastellu-Etchegorry et al.,
1995; Zagolski et al., 1996, Curran et al., 1997), achieving moderate
success comparable to N quantification. As a primary component of
plant litter, the ligno-cellulose feature may be important in quantifying
Fig. 8. Reflectance spectra of (A) dry vegetation and (B) soils, and tied-SWIR spectra of dr
imagery. Figure adapted from Asner and Heidebrecht (2002).
plant litter (e.g. crop residue) contributions to carbon pools (e.g. Nagler
et al., 2003). Still, cellulose is an abundant biochemical constituent of
plant foliage, and its absorption features are strongandoverlappingwith
lignin and protein; continued research into its quantification as a
separate constituent may assist in developing better algorithms for
quantifying the biochemical constituents of plants that are more
strongly linked to ecosystem processes and for characterizing the
qualities of dry plant matter and crop residue.

Recent research has continued to examine the influence of dry
plant matter on remotely-sensed vegetation spectra. In a study of
dryland ecosystems, Serrano et al. (2002) estimated leaf lignin
concentrations in areas with a considerable fraction of dry, senescent
or woody vegetation cover and found that lignin is correlated with
spectral reflectance at 1.754 µm (r2=0.44–0.58). In analyses that
included sites with a high fraction of dry plant matter, the correlation
between reflectance and lignin concentration decreased. Kokaly et al.
(2007) examined dry vegetation spectra and found consistent
differences between the spectra of dry grass and dry conifer samples
(Fig. 5) caused by biochemical composition. Table 1 shows that conifer
needles have amuch lower average cellulose to lignin ratio (1.56) than
grasses (3.89) in the ACCP data set. The overlapping spectral features
of these two constituents contribute to the general shapes of the 2.1
and 2.3 µm absorption features in dry plants. The band center (defined
as the wavelength of the minimum value in continuum removed
reflectance) of the 2.1 µm absorption feature shifted from a longer
wavelength in spectra of dry conifers to a shorter wavelength in
spectra of dry grasses, a shift consistent with the absorption of
cellulose at a shorter wavelength compared to lignin (Fig. 5). The
shape of the 2.3 µm absorption feature was also found to be distinct
between spectra of dry grass and dry conifer samples. The triplet
absorption feature of dry conifer (with weaker shoulder absorptions
at 2.27 and 2.35 µm around the central 2.31 µm absorption) shifts to a
doublet shape in the spectra of dry grasses, which is consistent with
the doublet absorption feature of cellulose (Fig. 5). In the dry pine
spectrum (dominated by lignin), the left shoulder of the 2.3 µm
y vegetation (C) and soils (D), used for automated spectral mixture analysis of AVIRIS
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feature is much lower than the right shoulder, consistent with lignin
having its absorption centered at this left shoulder position (Fig. 5A).
The changes in shape between dry grass and dry conifer features are
preserved in canopy level measurements made with AVIRIS (Fig. 5C).
Fig. 5 shows how the shifts in spectral shape from high cellulose/low
lignin grass to higher lignin/lower cellulose pine needles match the
shifts in the absorption features of pure cellulose and lignin.

In contrast to the problems of scaling the reflectance features
associated with water from leaf to canopy levels in the NIR (see
previous section), scaling of lignin features in the 2.3 µm range is more
direct since reflectance is low and thus scattering effects are weak
(Asner, 1998). In fact, chemical absorptions in the visible (pigments)
and SWIR (lignin, cellulose, protein-N) ranges are more directly
scalable to the canopy level simply because scattering caused by
canopy structural variation is low in these wavelength regions as
compared to the NIR where water dominates. Modeling studies that
support these findings have continued to evolve in parallel to the
empirical research by incorporating the specific absorption spectra of
lignin and cellulose (combined) in simulations of leaf and whole-
canopy reflectance (Dawson et al., 1998; Ceccato et al., 2001).

3. Ecosystem composition from imaging spectroscopy

Along with improved characterization of non-pigment biochem-
ical constituents, airborne and space-based imaging spectrometers
Fig. 9. Fractional cover map of photosynthetic vegetation (PV, in red), non-photosynthetic v
lines) in central Argentina, derived from AVIRIS SWIR spectral signatures. Figure adapted fr
have been applied in ways that broaden our understanding of the
basic composition of ecosystems. Here we limit the review to
examples where detection of plant species or functional groups have
been based on broad differences in biochemistry and the influence of
various biochemical constituents on reflectance. Later, we will high-
light studies that have dissected the broad spectroscopic signals into
more detailed chemical determinations. In each example, analyses of
imaging spectrometer data were dependent upon the shape of the
reflectance spectra as a function of wavelength; in other words, they
took a “spectroscopic” remote sensing approach.

Vegetation composition and species dominance have been
intensively studied using the biochemical absorption and scattering
features measurable with imaging spectroscopy. For example, Kokaly
et al. (2003) applied AVIRIS data to map forest cover types in
Yellowstone National Park using the USGS Tetracorder algorithm
(Clark et al., 2003) in an analysis of the 0.68 µm chlorophyll
absorption feature with the 0.98 and 1.20 µm leaf water absorption
features. They showed that the spectral features of four forest cover
types, lodgepole pine, whitebark pine, Douglas-fir, and a mixed
Engelmann Spruce-Subalpine Fir class, differed significantly in the
shape and depth of these three absorption features. By analyzing these
absorption features in each spectrum, Kokaly et al. (2003)mapped the
distribution of whitebark pine in Yellowstone (Fig. 6). Townsend et al.
(2003) and Plourde et al. (2007) used Hyperion and AVIRIS, along
with spectral analysis of nitrogen concentrations, to map canopy
egetation (NPV, in green), and soil (in blue) of the Nacunan Biosphere Reserve (yellow
om Asner and Heidebrecht (2002).
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species in an eastern deciduous forest. Fuentes et al. (2001) used
AVIRIS data to derive indices of leaf pigments and water content,
which were in turn used to map boreal forest vegetation in Canada.
The use of canopy chemistry in mapping species composition stems
from earlier studies that showed ecological patterns emerging from
canopy chemical mapping to be highly correlated with taxonomic
composition (e.g. Wessman et al., 1988). In one study, Martin et al.
(1998) found that most of the common tree species in a north
temperate forest could be identified by their unique combinations of N
and lignin concentrations.

In rainforest canopies of Hawaii, Asner and Vitousek (2005) used
airborne imaging spectroscopy and a new photon transport modeling
approach to quantify canopy water content and upper-canopy leaf N
concentration. Their water and N maps indicated how biological
invasion altered the chemistry of forest canopies across a Hawaiian
montane rain forest landscape (Fig. 7). They found that the N-fixing
treeMorella faya doubled canopy N concentrations and water content
as it replaced nativeMetrosideros forest. Furthermore, they found that
the understory herb Hedychium gardnerianum reduced N concentra-
tions in the native forest overstory and substantially increased
Fig. 10. AVIRIS-derived map of surface materials for the central portion of the post-fire land
conifer and dry straw mulch categories based on differences in the shapes of the 2.1 and 2.3
burn severity are overlaid on the image. Figure adapted from Kokaly et al. (2007).
abovegroundwater content. In this case, spectroscopic remote sensing
provided fundamentally new information on ecosystemprocesses that
had not been previously detected ormeasured in the field; subsequent
field studies confirmed the remotely sensed measurements.

Another broad use of non-pigment biochemical analysis with
imaging spectroscopy has focused on surface cover of live and dead
tissues. The goals here have been to provide highly automated rapid
analysis of changing ecosystem conditions without the detailed
chemical and taxonomic properties of the vegetation becoming overly
expressed. In a sense, this is a conservative use of biochemical
mapping techniques, but one which can form a foundation for more
detailed analyses with imaging spectrometer data (e.g., Wessman
et al., 1997, Roberts et al., 1998). For example, Asner and Heidebrecht
(2002) showed that by analyzing reflectance spectra in the 2.03–
2.50 µm region, after normalization to the reflectance at 2.03 µm, the
amount of dry vegetation cover could be quantified with high
precision and accuracy throughout arid and semi-arid regions. Fig. 8
shows the spectra of the soil, green vegetation, and dry vegetation
endmembers used in the study. The dry vegetation endmember shows
the strong 2.1 and 2.3 µm absorption features caused by dry leaf and
scape at the Cerro Grande Fire, New Mexico. Dry vegetation was discriminated into dry
µm dry vegetation absorption features. Polygons of high (H), medium (M), and low (L)
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dry woody material, independent of species composition or many
other confounding factors. In a subsequent dryland study of Argentina,
Asner et al. (2003) used the same method to map an aridlands region
subjected to long-term grazing. The resulting maps of sub-pixel
fractional photosynthetic and NPV cover revealed spatial patterns
related to aboveground and belowground carbon storage and nutrient
cycling in this semi-arid ecosystem (Fig. 9).

Fire is a widespread disturbance to forest ecosystems and the
global carbon cycle, impacting net primary production (Randerson
et al., 2006), releasing stored carbon to the atmosphere as CO2

(Andreae and Merlet, 2001), and increasing release of carbon through
post-fire decomposition of scorched vegetation (Auclair and Carter,
1993). Roberts et al. (1998) used spectral mixture analysis to separate
fire fuels and dominant species in chaparral ecosystems of California.
This study illustrated how the spectroscopic signatures of non-
pigment biochemical composition, seen in remotely sensed spectra
as shifts in spectral shape from high cellulose/low lignin grass to
lower cellulose/higher lignin woody plant foliage, can be used to
better understand the distribution of fire-prone species across a
landscape. Similarly, Kokaly et al. (2007) were able to differentiate
scorched conifer trees from other non-photosynthetic vegetation and
map their distribution on the post-fire landscape at the Cerro Grande
fire, which occurred in the summer of 2000 near Los Alamos, New
Mexico (Fig. 10). Direct analysis of the 2.1 and 2.3 µm absorption
features in AVIRIS data was used to define the width of scorched
conifer zones along the edges of severely burned areas.

4. Spectroscopic studies of ecosystem processes

Early applications of airborne imaging spectrometry to quantify
specific chemical constituents in foliage by Peterson et al. (1988) and
Wessman et al. (1988) were conducted with the broader objective of
Fig. 11. Net primary production (NPP) map derived from AVIRIS data collected over the Bar
examining spatial patterns of N cycling across forested landscapes.
Subsequent studies have continued to develop and improve these
methods (Matson et al., 1994; Gastellu-Etchegorry et al., 1995;
Zagolski et al., 1996; LaCapra et al., 1996; Martin and Aber 1997;
Serrano et al., 2002; Ollinger et al., 2002). Recently, Smith et al. (2002)
extended the application of imaging spectrometers to quantify canopy
N content for net primary production (NPP) studies over a large area
of U.S. deciduous and coniferous forest. Using a PLS regression
approach with AVIRIS data, they developed robust N predictions,
validated by field measurements with r2=0.71 and standard error of
the estimate (SEE) of 0.19% N.

Ollinger and Smith (2005) used imaging spectrometer-derived
estimates of canopy N to conduct ecosystem model simulations for
Bartlett Experimental Forest, NH. Combining remotely sensed N
estimates with climate variables and a deciduous-evergreen unmixing
model, the PnET-II ecosystem model (Aber et al., 1997) was run to
produce NPP maps over an area containing an unusually dense set of
field-based growth estimates (Fig. 11). Modeled aboveground NPP
was partitioned into foliar NPP (r2=0.77; SEE=12.6%) andwood NPP
(r2=0.74; SEE=11.9%). Predictions generated by running the model
with either AVIRIS- or Hyperion-derived N estimates yielded far
greater accuracy than those generated under the more common
method of using mean field-based values for dominant vegetation
types.

In a related study that focused on spatial patterns of N cycling in
the White Mountain National Forest, Ollinger et al. (2002) examined
species-level leaf N concentrations with respect to soil N availability
and found that both vary as a function of stand age and disturbance
history. For deciduous forests, leaf N concentrations were typically
higher in old and relatively undisturbed stands than in younger stands
of similar composition and in earlier stages of recovery from
disturbance (clear-cutting or fire). This was attributed to disturbance
tlett National Forest, New Hampshire. Figure adapted from Ollinger and Smith (2005).
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effects on N mineralization in the soil and resulted in a positive
relationship between N mineralization and foliar N concentrations.
Interestingly, this trend was not observed in evergreens, which
maintained consistently lower foliar N concentrations. Combining
field results with AVIRIS-derived estimates of foliar N and lignin:N
ratios yielded detailed spatial estimates of soil C:N ratios and the
fraction of the landscape subjected to N loss through nitrification.

5. Discussion

The biochemical properties of vegetation canopies are directly
expressed in the reflectance signatures that can be derived from
measurements made by imaging spectrometers. A variety of ele-
mental and molecular interactions with shortwave radiation cause
scattering and absorption features in the 0.4 to 2.5 µm range
associated with water, carbon, nitrogen, pigment and other chemicals.
Our knowledge of the fundamental expressions and controls over
spectral signatures continues to increase, allowing for more quanti-
tative application of imaging spectroscopy to ecosystem questions on
land and in aquatic environments. To date, canopy chemical studies
based on a spectroscopic remote sensing approach have yielded
reflectance signatures consistent with the absorption features of
individual biochemical constituents such as: (a) water reducing
reflectance at longer wavelengths, (b) nitrogen increases causing
greater chlorophyll absorption near 0.68 µm and protein-related
absorption at 2.05 and 2.17 µm, (c) cellulose-to-lignin ratio changing
the 2.1 and 2.3 µm features. These have been observed at both the leaf
and canopy levels.

Our review of the literature revealed technical problems in the use
of field and airborne spectrometers for conducting spectroscopic
research. Many published studies show field spectra that are noisy at
wavelengths greater than 1.7 µm; this noise limits the full exploitation
of the 2.1–2.4 µm absorption features of dry plants and the
comparison of observations in these studies to others with higher
signal-to-noise ratio (SNR). For spectrometers with high noise levels
in this region, measurement procedures should includemore replicate
measurements and/or greater averaging times in order to increase
SNR. In addition, recent studies have used channels withinwavelength
regions of strong atmospheric absorption to correlate to biochemistry.
This should be avoided because local variations in atmospheric
conditions and uncertainty in atmospheric correction greatly impact
reflectance levels in thewavelength regions of water vapor and carbon
dioxide absorption, not the chemicals of interest. Atmospheric
correction in general needs to be improved, as most radiative transfer
models show strong atmospheric residuals in the derived surface
reflectance spectra (Green et al., 1998). These residuals can be reduced
by ground calibration using field spectrometer measurements to
derive empirical correction factors (Clark et al., 2002), but widespread
application of imaging spectrometer data to ecosystems requires, in
particular, better correction for radiative absorption by water
vapor (as the water vapor residuals corrupt the leaf water features)
and for atmospheric scattering (as errors in scattering correction can
affect shorter wavelengths, less than 0.6 µm, where absorption
features of accessory pigments are centered).

Despite advances in our understanding and application of spectro-
scopic remote sensing to ecosystem questions, a wide range of
technical uncertainties and issues still need to be addressed. First, the
community should consider the complexities of related chemicals
(e.g., tannin vs. lignin, and cellulose/starch/hemi-cellulose) that have
very similar spectral absorption features. A similar issue exists for the
12–16 pigments that are actively expressed in the visible portion of
the spectrum. That is, we need to understand the expression of
specific elements (C and N) in the molecules that have signatures in
the SWIR spectrum. In addition, an increased understanding of leaf
and canopy reflectance that accounts for the overlapping absorption
features of these elemental and molecular constituents may allow a
better approach to quantifying non-pigment biochemical constitu-
ents. Coupled leaf and canopy radiative transfer models have already
helped untangle overlapping spectral features, and thus to derive
suites of biochemicals from spectral signatures (Jacquemoud et al.,
this volume; Jacquemoud et al., 1995; Ceccato et al., 2002). These
models are evolving to include more biochemical constituents (Faret
et al., 2008), but those efforts are also hampered by lacking field and
laboratory data on multiple element and molecular stoichiometries.

Beyond the basic chemical-spectroscopic linkages, we do not yet
have a clear understanding of the biological and ecological controls over
biochemical composition and their potential covariation with other
plant traits that can influence reflectance.Muchprogress has beenmade
in areas such as the development of linkages between leaf nitrogen and
physiology of plant canopies (e.g., Field and Mooney 1986, Reich et al.,
1997). Similarly, we know a great deal about the co-variance between
leaf nitrogen and phosphorus (McGroddy et al., 2004, Townsend et al.,
2007), and the N–P link has been applied to hyperspectral reflectance
data inmontane tropical forests (Porder et al., 2005). In that case, P was
estimated byway of its stoichiometric link to N, whichwas the remotely
sensed element. Nonetheless, linkages among elements and molecules
are rare in remote sensing, and a wide range of biochemicals such as
lignin, cellulose, hemi-cellulose, starch, sugars, nutrients, and pigments
have not been systematically explored across environmental gradients
or taxonomic lines.

In this paper, we emphasized the role that spectroscopic remote
sensing plays in studies of ecosystem form and function. Spectroscopic
remote sensing relies on high-performancemeasurements of scattering
and absorption features caused by chemical bonds in materials— in our
case, leaf biochemical constituents. Although many applications have
involved a reduction of the data, to decrease the dimensionality of the
information provided by spectrometers, a growing number have also
shown the utility of obtaining full spectral properties and being able to
identify distinct reflectance features in a variety of spectral regions.

Existing and planned spectrometers face the issue of sensorfidelity,
which refers to the quality and usability of a spectroscopic signature.
Sensor fidelity relies on the signal-to-noise performance, uniformity,
and stability of an imaging system. Whereas many imaging spectro-
meters have been built, a small fraction provides high fidelity data
required for true spectroscopic remote sensing studies. Spectroscopic
remote sensing can act as a bridge betweenplot level sampling and 10–
30 meter-scale remote sensing over 100–10,000 km2 areas, and could
also serve as a bridge to continental and global-scale instruments,
where large pixel size precludes direct comparison with plot
measurements of important ecosystem properties (Turner et al.,
2004). AVIRIS and HyMap are among the very few airborne sensors
to provide the requisite data; no spaceborne spectrometers (including
EO-1Hyperion, Ungar et al., 2003) have done so.With that inmind, the
Flora imaging spectrometer mission was conceived (Asner et al.,
2004b), and successfully passed through the U.S. National Academy of
Sciences Decadal Survey (NAS, 2007) review. Today, this effort has
evolved into the new HyspIRI satellite project, which remains at an
early science-planning stage at NASA (http://hyspiri.jpl.nasa.gov/).
Early science algorithm and sensor design developments have also
taken place, and are continuing today. HyspIRI and similar programs,
such as the European Union's EnMap mission (Stuffler et al., 2006),
hold great promise for advancing the science of spectroscopic remote
sensing to the global arena, with high-fidelity spectrometers mapping
ecosystems into the future.

6. Conclusions

In the past 20 years, a large and growing body of literature has
demonstrated the successful use of imaging spectroscopy to quantify
water, nitrogen, cellulose, and lignin concentrations in plants. These
quantifications have been made across measurement scales, from leaf
reflectance measurements made in the laboratory, to whole plant

http://hyspiri.jpl.nasa.gov/


S89R.F. Kokaly et al. / Remote Sensing of Environment 113 (2009) S78–S91
reflectance measurements made in the field, and to vegetation canopy
and community reflectance spectra measured by airborne and space-
borne imaging spectrometers. Absorption features caused by biochem-
ical composition control the shapes of leaf reflectance spectra. Even
though the reflectance spectra of the non-pigment biochemical
constituents of plants are overlapping, their independent effects on
leaf and canopy spectra can beobserved. At the remote sensing level, the
effect of biochemical composition is largely preserved; the resulting
variations in spectral shape (overall trend in reflectance and the depth
and shapes of absorption features) have thus been used to discriminate
between species of vegetation, to quantify the amount of dry vegetation
matter, and to discriminate between types of dry vegetationmatterwith
airborne and space-based imaging spectrometers. The results of these
characterizations reveal the spatial patterns of ecosystem functioning
and allow the quantification of ecosystem processes, namely the
nitrogen status of plants and soils and fixation of carbon into
carbohydrate as modeled by NPP. Beyond characterization and
quantification, fine-scale variations in ecosystem properties can be
examined by the spectroscopic approach to remote sensing of non-
pigment biochemical composition. Spectroscopic remote sensing has
also been used to better understand the impact of plant composition on
other components of the ecosystem, such as wildlife.

Despite the successes we have outlined, substantial challenges still
remain for more widespread application of imaging spectrometers to
the quantification of non-pigment plant constituents, particularly across
broader spatial scales than can be addressed with current imaging
spectrometers. The studies mentioned above have described challenges
presented by overlapping absorption features of plant biochemical
constituents, the potential for covariation with other plant traits, the
complexity of spectral signatures in pixels of mixed vegetation and soil,
and issues of scaling from leaf to landscape levels. However, new
opportunities are also arising; for example, new imaging spectrometers
will be launched on future remote sensing satellites. More challenges
and opportunities will materialize as people increasingly demand to
know the consequences of land use, disturbance, and climate change on
the world's ecosystems and communities.
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