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In this study, we assessed the accuracy of the MODIS (Moderate Resolution Imaging Spectroradiometer) GPP
(gross primary productivity) Collections 4.5, 4.8 and 5 along with Leaf Area Index (LAI), fraction of absorbed
Photosynthetically Active Radiation (fPAR), light use efficiency (LUE) and meteorological variables that are
used to estimate GPP for a northern Australian savanna site. Results of this study indicated that the MODIS
products captured the seasonal variation in GPP, LAI and fPAR well. Using the index of agreement (IOA), it was
found that Collections 4.5 and 4.8 (IOA 0.89 respectively) agreed reasonably well with flux tower
measurements between 2001 and 2006. It was also found that MODIS Collection 4.5 predicted the dry season
GPP well (Relative Predictive Error (RPE) 4.17%, IOA 0.72 and Root Mean Square Error (RMSE) of 1.05 g C m−2

day−1), whilst Collection 4.8 performed better in capturing wet season dynamics (RPE 1.11%, IOA 0.80 and
RMSE of 0.91 g Cm−2 day−1). Although thewet seasonmagnitude of GPPwas predictedwell by Collection 4.8,
an examination of the inputs to the GPP algorithm revealed that MODIS fPAR was too high, but this was
compensated by PAR and LUE that was too low. Although LAI and fPAR estimated by Collection 5 were more
accurate, GPP for this Collection resulted in a much lower value (RPE 25%) due to errors in other factors.
Recalculation of MODIS GPP using site specific input parameters indicated that MODIS fPAR was the main
reason for the differences between MODIS and tower derived GPP followed by LUE and meteorological inputs.
GPP calculated using all site specific values agreed very well with tower data on an annual basis (IOA 0.94, RPE
6.06% and RMSE 0.83 g C m−2 day−1) but the early initiation of the growing season calculated by the MODIS
algorithmwas improved when the vapor pressure deficit (VPD) functionwas replaced with a soil water deficit
function. The results of this study however, reinforce previous findings inwater limited regions, like Australia,
and incorporation of soil moisture in a LUE model is needed to accurately estimate the productivity.
© 2009 Elsevier Inc. All rights reserved.
1. Introduction
Savannas cover one sixth of the world's land surface, and are
important in terms of carbon sequestration and storage (Grace et al.,
2006). Globally, they sequester as much as 0.5 Petagram (Pg) Carbon
per year (Scurlock and Hall, 1998), and account for 30% of the primary
production of all terrestrial vegetation (Grace et al., 2006). In Australia,
savannas cover a quarter of the land surface, which contributes 12% to
the total global savanna woodlands and accounts for 33% of the
terrestrial carbon stores in Australia (Williams et al., 2004). Fire is an
important factor in most of northern Australia, shaping the landscape
and consequently affecting the vegetation productivity (Beringer et al.,
1995, 2003, 2007). During 2001–2005, a total of 1.6million km2 of land
burned in northern Australia (Department of Land Information,
Satellite Remote Sensing Services, Western Australia). Fire has been
shown to reduce productivity of thesemesic north Australian savannas
ll rights reserved.
by approximately 50% (Williams et al., 2004) with post-fire canopy
reconstruction costs being of the order of 1 t C ha−1 year−1 for
moderate intensity fires of 3000 kW m−1 (Beringer et al., 2007). The
dynamic nature of carbon stocks in this extensive ecosystemdue to the
highly seasonal climate, frequent fire and disturbance from storms and
cyclones implies a significant exchange of CO2 and other greenhouse
gases between the savanna and the atmosphere (Henry et al., 2005).
Remote sensing has the potential to capture the highly heterogeneous
savanna landscape and seasonal dynamics over vast areas.

Gross Primary Productivity (GPP) is one of the fundamental
parameters of the carbon cycle as it is related to the transfer of carbon
from the atmosphere to terrestrial ecosystems. In the context of
northern Australia, quantifying and mapping the spatial and seasonal
variations in GPP is necessary not only to understand the role of
savannas in sequestering atmospheric CO2, but also to reduce the
uncertainty in Australia's national carbon inventory, greenhouse gas
abatement and projections of future emissions (Hutley et al., 2005).

The quantification of GPP has received a great deal of attention in
recent years with the availability of flux towers that use the eddy
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covariance technique (Baldocchi, 2008). Although flux towers provide
high temporal resolution of carbon, water and energy fluxes, they are
limited spatially by the number of flux stations (~400 flux stations
operating around the world as part of FLUXNET http://www.fluxnet.
ornl.gov/fluxnet/index.cfm). Alternatively, the Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite sensors routinely
measures radiances across the entire globe at moderate spatial (250
to 1000 m) and temporal resolutions (twice daily). Radiances from
these channels are used to produce a range of products, including: GPP
and net photosynthesis (MOD17); fraction of absorbed Photosynthe-
tically Active Radiation (fPAR) and Leaf Area Index or LAI (MOD15);
land cover and land cover dynamics (MOD12Q) as well as vegetation
indices (MOD13).

Since MODIS products are generated based on inference from
surface reflectance, their accuracies need to be validated against
ground measurements before the products can be of value. There is a
need for validation against ground measurements to determine the
accuracy of these products. A number of validation activities are being
carried out at a range of sites and different ecosystems to assess the
accuracy of MODIS land products. MODIS LAI (one-sided green leaf
area per unit ground area, Chen and Black, 1992) is perhaps the most
extensively validatedproduct (Cohen et al., 2006;Hill et al., 2006; Yang
et al., 2006a,b; Rizzi et al., 2006; Pandya et al., 2006 etc.). Although the
GPP product has been validated for a range of ecosystems such as
natural forests in northernAmerica (Turner et al., 2006a,b; Nightingale
et al., 2007; Coops et al., 2007), humid tropical ecosystems (Gebre-
michael and Barros, 2006) and crops (Zhang et al., 2008; Reeves et al.,
2005), product accuracy requires further attention within tropical
savanna ecosystems. Only a few studies have reported MODIS product
validation for savannas: Leuning et al. (2005) andHeinsch et al. (2006)
for GPP; Fensholt et al. (2006) for net primary productivity; Privette
et al. (2002), Fensholt et al. (2004), and Huemmrich et al. (2005) for
LAI; and Privetter et al. (2003), Fensholt et al. (2004), and Huemmrich
et al. (2005) for fPAR.

Savannas are tropical ecosystems with a mixture of continuous
herbaceous cover and a discontinuous cover of trees or shrubs (Frost
et al., 1986). The productivity of tropical savannas, woodlands, and
grasslands are controlled by water rather than temperature with
several months of prolonged dry season that cause plants to dry out
and become susceptible to fire (Huntley and Walker, 1982). Tropical
savannas in Australia occur at the drier end of the savanna spectrum
with woody plants characterized by evergreen Eucalyptus tress
compared to drought deciduous savannas in Africa and humid
savannas in central and South America. Although MODIS can capture
the seasonality of site GPP quite well across different climate regimes
(wet and dry savanna, alpine forests, temperate deciduous and
evergreen forests (Justice et al., 2002; Running et al., 2004; Leuning
et al., 2005; Heinsch et al., 2006), it generally fails to accurately
estimate the magnitude of productivity under water deficit conditions
such as in savannas (Leuning et al., 2005; Heinsch et al., 2006; Zhang
et al., 2007). Some studies have found that the use of a vapor pressure
deficit (VPD) function can lead to an overestimation of GPP as VPD
does not explicitly incorporate soil water deficit in canopy gas ex-
change (Fensholt et al., 2006; Leuning et al., 2005; Yuan et al., 2007;
Coops et al., 2007). Validation and improvement of MODIS derived
GPP from tropical savannas will aid application in arid and semi-arid
areas.

In this study, we validated MODIS GPP Collections 4.5, 4.8 and 5
with GPP estimated from flux tower measurements. Our aim was to
examine if improvements in upstream products (climate and fPAR)
used in MOD17 GPP algorithm enhance the performance of the
product in determining the seasonal variation and absolute magni-
tude of GPP for a woody savanna site in northern Australia. We also
assessed the error associated with using the standard MODIS input
values for the parameters used to estimate GPP, namely fPAR, light use
efficiency (LUE), Photosynthetically Active Radiation (PAR) and
thresholds for the down-regulating factors of minimum air tempera-
ture (TMIN) and VPD. We further investigated the performance of the
MODIS algorithm by substituting VPD with a soil water deficit func-
tion to compare dry season GPP. Evaluation and validation of the
performance of these products is a necessary process for product
refinement if we are to correctly quantify carbon exchange over large
spatial areas.

2. Data and methodology

2.1. Site description

We selected the Howard Springs flux tower site, located in a
tropical savanna in the Northern Territory of Australia for this study.
This site is located approximately 35 km to the south east of Darwin
(Fig. 1a) at 12° 29.712′S and 131° 09.003′E. Howard Springs is classi-
fied as an open woodland savanna forest, 14–16 m tall with 50–60%
canopy cover (classified as grassy woodland by the University of
Maryland land cover classification scheme, http://www-modis.bu.
edu/landcover/userguidelc/index.html). The over storey is co-domi-
nated by evergreen tree species, Eucalyptus miniata and Eucalyptus
tetrodontawith other species in fewer numbers such as Erythrophloem
chlorostachys and Terminalia ferdinandiana (Hutley et al., 2000). The
under storey is covered by C4 grasses Sarga spp. during the wet season
(Fig. 1b). Woody stems have a density of 500–700/ha, with mature
individuals rooting to ~5 m depth (Kelley et al., 2002). The deep
rooting system enables the trees to access sub-soil moisture reserves
from 2 to 5 m over the dry season, thus enabling reasonably constant
transpiration (Hutley et al., 2000) and carbon sequestration rates
throughout the dry season except during fire occurrences (Beringer
et al., 2007). Fire occurs frequently in this vegetation biome and at the
flux tower site, a range of experimental fires of low to moderate
intensity occurred during the study period as documented in Beringer
et al. (2007). The over storey LAI fluctuates between 0.9 in the wet
season (December–April) and 0.6 in the dry season (May–November),
while the under storey LAI is far more dynamic, being dominated by
annual C4 grass growth varying from a green LAI of 1.5 in the wet
season that drops to 0.2 in the dry season (O'Grady et al., 2000).
Evaluating the performance of MODIS GPP and LAI at this site is useful
given the large seasonal range driven by an annually senescing grassy
under storey, a deciduousmid-storey and an evergreen dominant over
storey, along with periods of very low LAI in the proceeding month
following fire events in the dry season.

2.2. Flux tower data

Carbon, water and energy fluxes have been measured at Howard
Springs continuously since August 2001 using eddy covariance flux
instrumentation and an open-path CO2/H2O analyzer (Beringer et al.,
2003, 2007). GPP was calculated as the difference between net
ecosystem exchange and ecosystem respiration following Beringer
et al. (2007). Incoming solar radiation was measured above the
canopy using Kipp and Zonen (m7b, Delft, The Netherlands) and PAR
was determined as 47% of incoming solar radiation using a site specific
relationship (data not shown). Thirty-minute rainfall, air temperature,
relative humidity and soil moisture at 10 cm depth were also mea-
sured at the tower site. Missing meteorological data were derived
from the Australian Bureau of Meteorology (BoM) and the Atmo-
spheric Radiation Measurement (ARM) site at Darwin airport.

2.3. MODIS data

MODIS GPP is calculated based on a LUE model (Eq. (1)) proposed
by Monteith (1972). This algorithm estimates GPP by including TMIN

(daily minimum temperature) and VPD (daytime average vapor
pressure deficit) scalars that can reduce the productivity for
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Fig. 1. (a) Location of the study area: Howard Springs (12.425°S and 130.891°E) and boundary of savanna in northern Australia. Savanna boundaries were provided by Tropical
Savanna, CRC. (b) Typical vegetation at Howard Springs during wet (left) and dry (right) seasons. Over storey is dominated by Eucalyptus open savanna woodland trees with 50–60%
canopy cover and under storey is dominated by annual grasses.
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unfavorable climate conditions (Heinsch et al., 2003). For each 1 km
MODIS pixel, GPP is calculated as a function of LUE that is modeled
using a biogeochemical model (Running et al., 2000) and APAR is
provided as 8 day composite values based on maximum fPAR during
the 8 day period to eliminate cloud contamination (Eq. (1)).

GPP kg C m−2 day−1
� �

= APAR MJð Þ × LUE kg C MJ−1
� �

× TMIN scalar × VPD scalar

ð1Þ

APAR is the total absorbed PAR by a canopy and it is estimated by
multiplying fPARwith PAR (APAR=fPAR×PAR). fPAR is the fraction of
absorbed PAR and it can be calculated directly in the field as the
balance of the incoming and outgoing PAR of the canopy (Huemmrich
et al., 2005). In the MODIS GPP algorithm fPAR is used to directly
calculate the GPP of a pixel (Heinsch et al., 2003), therefore errors
in the estimation of fPAR will lead to an inaccurate estimate of
GPP. MODIS estimates LAI and fPAR values for green leaves using
atmospherically corrected daily bidirectional reflectance and land
cover classification. MODIS uses a constraint view maximum value
composite technique where a given scene represents the maximum
LAI for a consecutive 8 day period based on the maximum clear sky
fPAR value (Knyazikhin et al., 1999).

Daily maximum potential GPP is then reduced by daily TMIN and
VPD. TMIN and VPD scalars are multipliers that reduce the conversion
efficiency when cold temperature and/or high VPD inhibit
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photosynthesis (Heinsch et al., 2003). The multipliers range from 0 to
1, where 0 represents total inhibition and a value of 1, indicates no
inhibition. The scalars are calculated as follows:

TMIN scalar = TMIN − TMINminð Þ= TMINmax − TMINminð Þ ð2Þ

where, TMINmin = daily minimum temperature at which LUE = 0;
TMINmax = daily minimum temperature at which LUE is maximum

VPD scalar = VPDmax − daytime average VPDð Þ= VPDmax − VPDminð Þ
ð3Þ

where, VPDmin = daily minimum VPD at which LUE is maximum
VPDmax = daily maximum VPD at which LUE = 0.

MODIS GPP products have undergone continued improvement
since the initial launch of Terra in November 1999 and Aqua in May
2002 and the various product versions are called Collections. GPP
Collections 4.5 and 4.8 used fPAR Collection 4 (Heinsch, personal
communication) which utilized a turbid medium radiative transfer
(RT)model to estimate LAI and fPAR and land cover product Collection
3 (Shabanov et al., 2007). GPP Collection 4.5 differs from Collection
4.8 in terms of the use of meteorological data and maximum LUE
values gained from a global lookup table according to vegetation type
(Table 1). Collection 4.5 covered a period from February 2000 to
December 2003 and used meteorological data from NASA's Data
Assimilation Office (DAO) using Goddard Earth Observing System
(GEOS) satellite version 4.02 which provided gridded surface down-
ward shortwave radiation, surface air pressure, 10 m air temperature
and specific humidity.

In early 2004, however, DAO, now known as Global Modeling and
Assimilation Office (GMAO) changed its meteorological data version
to GEOS 4.03. This version used a new land surface model, modified
skin temperature analysis and near ground moisture modification,
and an improved quality control algorithm to flag outliers/bad quality
values (Bloom et al., 2005) and therefore provided more consistent
meteorological variables. In order to compensate for the inherent
biases in different meteorological reanalysis, the MODIS GPP team
readjusted the input variables used to estimate GPP, specifically
maximum LUE, and VPD scalars (Table 1) (Zhao et al., 2006). GPP
estimated with these new meteorological data and adjusted Biome
Parameter Look up Tables (LUT) is called Collection 4.8 and it covered
a period from February 2000 to December 2006.

Meteorological variables such as PAR, TMIN and VPD are provided
by NASA's DAO or GMAO as a 3-hour global product at 1°×1.25°
spatial resolutions. In earlier versions of theMODIS GPP algorithm (i.e.
Collection 4), each 1 km pixel falling into the same 1°×1.25° DAO grid
cell will inherit the same meteorological data (Zhao et al., 2005). This
created a noticeable DAO footprint, which may be acceptable on a
regional or global scale estimation of GPP (Zhao et al., 2005). However,
at local scale and for the terrain with topographical variation or
located at relatively abruptly climatic gradient zones, it may cause
large inaccuracies (Zhao et al., 2005). Therefore, in Collections 4.5 and
4.8, a non linear scheme was used to interpolate the four meteor-
ological cells surrounding a given 1 km MODIS pixel to a 1 km grid.
Table 1
Values for maximum light use efficiency, TMINmin, TMINmax, VPDmin, and VPDmax as
calculated using data collected in the field and default values used in MODIS GPP
algorithm for savanna (Maosheng Zhao, personal communication).

Input parameters values Collection
4.5

Collection
4.8 and 5

Site specific values
for Howard Springs

Maximum light use efficiency (g C MJ−1) 0.80 1.03 1.26
TMINmin (°C) −8 −8 −8
TMINmax (°C) 11.39 11.39 11.39
VPDmin (Pa) 930 650 900
VPDmax (Pa) 3100 3500 3500
This DAO spatial interpolation technique was found to improve the
accuracy of meteorological data for each 1 km pixel when compared to
observational data around the world (Zhao et al., 2005). However, the
degree of the accuracy is also largely dependent on the accuracy of
DAO data and local environmental conditions, elevation and weather
patterns (Zhao et al., 2005). fPAR values (Collection 4) were
temporarily interpolated to replace pixels that were missing and/or
had poor quality labels (Zhao et al., 2005).

The latest GPP product is Collection 5 and it covers the period
from February 2000 to present with some gaps in the data as they are
being reprocessed currently. This Collection has been available for
users to be downloaded freely from the EOS (Earth Observing System)
Data Gateway (http://edcimswww.cr.usgs.gov/pub/imswelcome/)
since end of 2006. GPP Collection 5 uses an improved LAI and fPAR
(Collection 5) product simulated by a new stochastic RT model which
allows a better representation of canopy structure and spatial hetero-
geneity and using a new land cover product (Collection 4). Other input
parameters such as meteorological data and LUE values used in
Collection 5 are similar to Collection 4.8 (Table 1, Zhao, personal
communication). Collection 5, LAI/fPAR products released by NASA at
the time of analysis were not gap-filled to provide values for missing
data due to sensormalfunction or cloud cover. The LAI/fPAR Collection
4 used to estimate GPP in Collections 4.5 and 4.8 are gap-filled from
the Numerical Terradynamic Simulation Group (NTSG) (Zhao et al.,
2005).

MODIS products are also routinely sub-setted for a 7×7 km cut out
around registered FLUXNET and core validation sites and provided in
ASCII format. Subset data for the Howard Springs flux site were
downloaded from the Oak Ridge National Laboratory website (http://
daac.ornl.gov/MODIS/modis.html). MODIS GPP 8 day composites for
Collections 4.5 and 4.8 that were available from 2001 to 2003
(Collection 4.5) and from 2001 to 2006 (Collections 4.8 and 5) were
used in this study. GPP Collections 4.5 and 4.8 were gap-filled
whereas, Collection 5 was not gap-filled at the time of the writing. In
addition, annual GPP and monthly average LAI and fPAR (averaged
from 8 day composites) data were also used in this study. Gap-filled
LAI and fPAR Collection 4 were provided by NTSG (Heinsch, personal
communication). Meanwhile, meteorological data (PAR, daily mini-
mum temperature, daytime VPD and LUE) used to estimate GPP in
Collections 4.5 and 4.8 were also validated against flux tower mea-
sured variables. These data (daily) were also obtained from NTSG
(Zhao, personal communication) and averaged to 8 day bins. To be
comparable with MODIS GPP, tower GPP were aggregated to 8 day
bins. In addition, we also used annual GPP and monthly average LAI
and fPAR data.

The MODIS land cover classification product, Collection 3 (MOD
12Q1) mostly correctly classified Howard Springs as woody savanna,
where the majority of the total pixels (49) surrounding the flux tower
were classified as woody savanna (38), savanna (9) and 2 pixels were
incorrectly classed as evergreen broadleaf forest and grassland.
According to our experience at the site, these 2 pixels should be
grouped as savanna and swamp respectively. We excluded these two
pixels fromour further analysis. ForGPP, LAI and fPARCollection 5, only
pixels that were derived using the main RT algorithmwere selected in
this study because main RT algorithm is employed mostly under clear
sky and fewer atmospheric effects (Myneni et al., 2002). If more than
75% of the 47 pixels surrounding the flux tower were derived by MRT
algorithm, that particular 8 day compositewas included in the analysis.

2.4. Statistical analysis

Several statistical techniques were employed to adequately compare
the performance of MODIS GPP with tower derived GPP because no
single model evaluation statistic is sufficient to evaluate model
performance (Willmott, 1984). We used student t-test to see if the
variation between tower and MODIS GPP was significant or not, Root
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mean square error (RMSE) to measure the actual average differences
betweenMODIS and tower data,Willmott's indexof agreement (IOA)
(Willmott, 1984) to measure the degree to which the observed data
were approached by the predicted data, and Relative Predictive Error
Fig. 2. Comparison between daily average tower and MODIS (Collections 4.5, 4.8 and 5) GPP
given as an 8 day average. Note the strong seasonal variation in GPP according to seasonal ra
GPP which may be related to reduction in solar radiation due to cloud cover (Beringer et al
(RPE) to quantify the percentage mean difference between MODIS
and tower data. RPE provides the direction of change (underesti-
mation or overestimation) in predicted values compared tomeasured
values. Refer to Appendix A for the formulation of these techniques.
from 2001 to 2006. The fire events in each year are shown by the triangles and rainfall is
infall. High rainfall in 8 day composites in the wet season correspond to relatively lower
., 2007).
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2.5. Leaf Area Index and fraction of PAR

LAI and fPAR are fundamental parameters for modeling both
canopy photosynthesis and evapotranspiration (Myneni et al., 1997,
2002). Since LAI was not measured regularly at Howard Springs
during the measurement period 2001–2006, we used previous over
storey and under storey LAI measured in the field over a 12 month
period in 2000 (Hutley and Williams, unpublished data) and over
storey LAI (O'Grady et al., 1999) to provide a surrogate LAI time series
for periods from 2001 to 2006. The inter-annual variation in total LAI
is not large at this site and we used a multiple linear regression model
between observed LAI and MODIS LAI (R2=0.94) with varying
intercept but constant slope for different seasons (wet, dry and
transition between wet and dry) to then predict LAI using MODIS LAI
Collection 4 (2000 to 2006).

With the estimated LAI, we computed monthly fPAR from 2000 to
2006 using a simple Beer's law (Jarvis and Leverenz, 1983) formula-
tion as follows:

fPAR = 1− exp −k4LAIð Þ½ � ð4Þ

A value of 0.5 was used for k (light extinction coefficient). This
value is similar to previous studies for Australian savanna (Leuning
et al., 2005) and other Australian vegetation (Roderick et al., 2001).

2.6. Light use efficiency

LUE refers to the amount of carbon a particular vegetation type can
produce per unit of energy absorbed (Gower et al., 1999). Canopy LUE
was calculated in this study as follows:

LUE = GPP= APAR ð5Þ

Monthly values of GPP were obtained from flux tower and APAR
was calculated by multiplying PAR with fPAR.

3. Results

Collections 4 and 5 of MODIS GPP along with their input values
were assessed to determine the robustness of the MODIS GPP
algorithm to estimate GPP for a woody savanna site during different
seasons and environmental conditions (fire and non fire).

3.1. Comparison between tower and MODIS GPP

We compared mean tower and MODIS derived GPP at daily, sea-
sonal and yearly intervals. We validated MODIS GPP accuracy with
respect to seasonal trajectories, maximum and minimum values,
initiation and cessation of the growing season plus annual and inter-
annual variations after Turner et al. (2006b).

3.1.1. Daily and seasonal dynamics
Daily averages of tower GPP showed a strong seasonal pattern that

corresponded to the amount of rainfall in the wet and dry seasons
(Fig. 2). Tower GPP had a maximumvalue in the wet season (January)
of 7–8 g C m−2 day−1 in all years, with a steady decline in GPP
observed from May onward as the dry season progressed. Annual
minimum GPP was measured in the late dry season (August or early
September), which is often associated with fire events. For years in
which fire occurrences were recorded, there was a loss of productivity
associated with canopy scorch (loss of functional leaf area) and
canopy re-building. The higher intensity fires (e.g. August 2001)
resulted in ~80% canopy leaf scorch, after which the canopy
regenerated from epicormic shoots. The flux tower estimated
minimum annual GPP of between 0.3 and 1.6 g C m−2 day−1 for
years 2001–2005 depending on the variability in fire intensity
(Beringer et al., 2007).

AlthoughMODIS predicted the seasonal patternswell (Fig. 2), there
was an offset in GPP estimated by MODIS compared to GPP derived
from flux tower at the beginning of the wet and dry seasons. MODIS
Collections 4.5, 4.8 and 5 (to a larger degree) indicated an abrupt
increase in GPP from September every year and reached a maximum
GPP in December in the wet seasons of 2001/2002 and 2002/2003
(Fig. 2). This sharp increase was not reflected in the tower derived
GPP (Fig. 2). For the subsequent wet seasons, MODIS Collection 4.8
predicted the highest GPP in January (7 to 7.5 g C m−2 day−1), similar
to tower data. Collection 5 indicated a maximum value of 5.8 g C m−2

day−1 in December 2001, which is lower than tower data. For other
years, the wet season GPP was underestimated by Collection 5
compared to tower GPP.

Generally MODIS Collection 4.5 underestimated tower GPP in all
years by 3 to 25% (negative RPE values) in the wet season (Table 2a).
Collection 4.8 tended to slightly overestimate GPP (9%–11%) in 2001,
2001/2002, and 2003/2004 wet seasons, although this was reversed
(underestimation of b10%) in other years. Similarly, Collection 5
largely underestimated GPP in the wet season between 35 and 44%.
The IOA values were higher for Collection 4.8 and the RMSE was much
lower compared to Collections 4.5 and 5 (Table 2a) indicating im-
provement in the latest available GPP of Collection 4.8. The dry season
senescence also appeared earlier in MODIS (Collections 4.5, 4.8 and 5)
compared to the tower GPP as indicated in Fig. 2. MODIS recorded its
lowest productivity by the mid late dry season (0.4 to 0.9 in Collection
4.5, 2 to 2.5 in Collection 4.8 and b2 g C m−2 day−1 in Collection 5).

Fire is a major environmental disturbance that affects the carbon
sequestration or GPP in the dry season in northern Australia (Beringer
et al., 2007). Fire can destroy the senescent portion of the under storey
grasses and reduce productivity of over storey Eucalyptus trees by
scorching the leaves and thereby reducing photosynthesis and
transpiration (Beringer et al., 2007). Carbon budget analysis would
be much easier and efficient if satellites could routinely monitor and
provide reliable estimates of carbon loss due to fire in this harsh
environment. Thus, we evaluated MODIS GPP during fire-affected
periods (~40 days from day of fire) separately to see if MODIS could
detect the effect of fire on productivity. In 2001 for instance, a fire
started at Howard Springs on Julian day 218 (6th August). As a
consequence, the average GPP estimated from the flux tower was only
0.9 g C m−2 day−1 from days 217 to 257, but MODIS predicted higher
GPP with 1.7 g C m−2 day−1 in Collection 4.5, 2.5 g C m−2 day−1 in
Collection 4.8 and 1.4 g Cm−2 day−1 in Collection 5 during this period
(Table 2b). The relative mean GPP between MODIS and tower during
fire period was more variable (Table 2b) than when fire periods were
excluded from dry season analysis (Table 2c) especially for Collection
4.8. This suggests that currently none of the available Collection 4
MODIS GPP products could be used to estimate carbon loss in this
ecosystem due to fire, but Collection 5 could estimate the reduction in
GPP quite closely.

3.1.2. Inter annual variation
Quantifying the inter-annual variation in GPP is important to

assess ecosystems response to climatic variation (Turner et al., 2006b)
and disturbance via fire. Annual GPP estimated from the flux tower
indicated small variation from 2001 to 2003 (b50 g C m−2 years−1),
with a small increase in 2004 and 2005 (~100 g C m−2 year−1, Fig. 3).
MODIS Collections 4.5 and 4.8 indicated a decrease in 2002 and 2003
compared to 2001 (12–24% in Collection 4.5 and 9–21% in Collection
4.8) (Fig. 3). For periods from 2001 to 2005, the highest tower GPP
was in 2004 but MODIS Collection 4.8 showed its highest value in
2001 (only 25 g C or 1.4% higher than 2004 MODIS GPP). MODIS
Collection 4.8 actually matched the highest tower GPP, but addition-
ally had the highest GPP in 2001. The lowest GPP within the 5 year
period occurred in 2003 for both Collections of MODIS GPP in



Fig. 3. Comparison of annual total GPP between tower and MODIS Collections 4.5 and
4.8 from 2001 to 2005. Error bars show ±Standard Deviation of 47 pixels surrounding
the flux tower.

Table 2
Differences between MODIS and tower GPP in the (a) wet season, (b), dry season fire period, (c) dry season fire excluded period for 2001–2006.

Collection 4.5 Collection 4.8 Collection 5

(a)
Wet season (Dec–Apr) Jan–

Apr01
Dec01–
Apr02

Dec02–
Apr03

Jan–
Apr01

Dec01–
Apr02

Dec02–
Apr03

Dec03–
Apr04

Dec04–
Apr05

Dec05–
Apr06

Jan–
Apr01

Dec01–
Apr02

Dec02–
Apr03

Dec03–
Apr04

Dec04–
Apr05

Dec05–
Apr06

Mean tower GPP 5.78
(0.30)

5.75
(0.26)

6.08
(0.18)

5.78
(0.30)

5.75
(0.26)

6.08
(0.18)

5.23
(0.23)

5.95
(0.20)

6.01
(0.23)

5.85
(0.31)

5.72
(0.27)

6.13
(0.18)

5.25
(0.26)

6.02
(0.19)

6.15
(0.23)

Mean MODIS GPP 5.61
(0.15)

4.79
(0.29)

4.58
(0.30)

6.27
(0.19)

6.03
(0.29)

5.50
(0.32)

5.73
(0.31)

5.57
(0.36)

5.69
(0.18)

3.78
(0.20)

3.61
(0.32)

3.63
(0.27)

3.50
(0.29)

3.49
(0.27)

3.46
(0.26)

RMSE 0.79 1.50 1.69 0.88 1.06 1.01 0.88 1.05 0.82 2.43 2.61 2.63 2.04 2.61 2.88
RPE (%) −2.92 −16.71 −24.63 8.55 4.85 −9.55 9.50 −6.46 −5.35 −34.57 −36.94 −40.76 −33.42 −41.02 −43.73
IOA 0.75 0.56 0.53 0.76 0.75 0.78 0.85 0.79 0.74 0.002 0.16 0.25 0.39 0.25 0.18
No. of 8 day
composites

15 19 19 15 19 19 19 19 19 13 18 18 17 18 17

(b)
Dry season (May–Nov)
fire period (40 days
from fire)

2001 2002 2003 2001 2002 2003 2004 2005 2006 2001 2002 2003 2004 2005 2006

Mean tower GPP 0.92
(0.14)

1.18
(0.31)

1.09
(0.22)

0.92
(0.14)

1.18
(0.31)

1.09
(0.22)

1.65
(0.13)

2.78
(0.10)

3.46
(0.20)

0.92
(0.14)

1.18
(0.31)

1.09
(0.22)

1.65
(0.13)

2.78
(0.10)

3.46
(0.20)

Mean MODIS GPP 1.70
(0.13)

1.86
(0.24)

1.70
(0.15)

2.51
(0.22)

2.70
(0.23)

2.30
(0.10)

3.33
(0.23)

2.78
(0.17)

3.48
(0.08)

1.38
(0.09)

1.52
(0.15)

1.19
(0.12)

1.79
(0.15)

1.65
(0.10)

2.25
(0.07)

RMSE 0.78 0.87 0.65 1.61 1.62 1.26 1.82 0.97 0.30 0.48 0.52 0.22 0.54 0.28 1.23
RPE (%) 85.60 57.54 85.60 173.86 128.73 110.25 102.18 81.54 29.16 50.80 28.95 30.54 8.41 3.42 −65.34
IOA 0.29 0.46 0.59 0.14 0.18 0.11 0 0.15 0.73 0.41 0.71 0.92 0 0.49 0.09
No. of 8 day
composites

5 5 5 5 5 5 6 5 5 5 5 5 6 5 5

(c)
Dry season (May–Nov)
fire excluded periods
(40 days)

2001 2002 2003 2001 2002 2003 2004 2005 2006 2001 2002 2003 2004 2005 2006

Mean tower GPP 2.94
(0.20)

2.66
(0.21)

2.80
(0.15)

2.94
(0.20)

2.66
(0.21)

2.80
(0.15)

3.34
(0.13)

2.78
(0.21)

3.00
(0.86)

2.96
(0.20)

2.66
(0.21)

2.17
(0.17)

3.35
0.14

2.78
(0.21)

3.00
(0.86)

Mean MODIS GPP 3.20
(0.32)

2.57
(0.32)

2.34
(0.24)

4.07
(0.35)

3.27
(0.31)

3.15
(0.20)

3.98
(0.24)

3.19
(0.22)

4.01
(0.23)

2.53
(0.24)

2.15
(0.23)

1.89
(0.15)

2.29
0.13

1.96
0.18

1.94
(0.29)

RMSE 1.23 1.19 1.24 1.76 1.30 1.14 1.04 1.07 1.14 1.00 0.94 1.10 1.20 1.20 1.11
RPE (%) 8.7 −3.15 −16.60 38.30 23.13 12.42 18.83 14.61 33.78 −14.33 −18.97 −30.37 −31.80 −29.64 −35.27
IOA 0.67 0.70 0.31 0.50 0.65 0.20 0.31 0.63 0.58 0.70 0.75 0.36 0.32 0.55 0.77
No. of 8 day
composites

22 22 22 22 22 22 22 22 11 21 22 19 21 22 11

Wet season is defined here from December to April and dry season covers periods from May to November. Values in brackets are standard error of the mean.
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agreement with lowest tower GPP. This indicates the capability of
MODIS to detect the interannual GPP changes reasonably well.

3.2. Comparisons of LAI and fPAR

We also validated all the input parameters used to estimateMODIS
GPP in order to tease out the contribution of each of the factors in
estimating GPP. Comparison between monthly average MODIS LAI
Collection 4 and LAI estimated using field data indicated that MODIS
generally over-predicted both dry and wet seasons LAI, although it
captured the seasonality reasonably well (Fig. 4). The average
MODIS LAI from 2000 to 2006 in the wet season was 3.74±0.20
(mean±Standard Error) whereas, in the dry season it was 1.30±0.10,
41% and 32% higher than field based LAI in the wet and dry seasons
respectively. The difference between Collection 5 and field based LAI
was minimal with only 11–12% in the wet and dry seasons
respectively, (Fig. 4a) indicating improvement in the LAI product.

The average MODIS fPAR Collection 4 ranged from a minimum of
0.64±0.03 (September) to a maximum of 0.91±0.01 (April). These
values are far too high compared to the calculated minimum value of
0.36±0.00 in September andmaximumvalue of 0.67±0.01 inMarch.
These ranges of observed values for Howard Springs are comparable to
other studies such as Berry and Roderick (2002) who estimated fPAR
for the same location using Normalized Difference Vegetation Index
from Advanced Very High Resolution Radiometer and obtained
maximum fPAR of 0.61 in March and minimum value of 0.33 in
September (average from 1981 to 1991). Similarly, Huemmrich et al.
(2005) measured fPAR ranging from 0.47 to 0.62 in Mongu for African
savanna. In comparison, MODIS Collection 5 captured the average
maximum (0.57±0.012) in March and minimum (0.37±0.013) fPAR



Fig. 6.Monthly average values of light use efficiency from January 2001 to August 2006.
Themid point in each of the boxes is themeans, the boxes are±SE and thewhiskers are
the 95% confidence intervals.

Fig. 4. Comparison between calculated and MODIS Collections 4 and 5 (a) Leaf Area
Index and (b) fraction of photosynthetically absorbed radiation from January 2000 to
August 2006. Collection 5 LAI and fPAR includes data from 2000 to August 2002. Error
bars show ±Standard Error of monthly average values.
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values (for 2000–2006) reasonably well. Both Collections of MODIS
LAI/fPAR product indicate a sharp increase in LAI and fPAR from
September, whereas field based LAI and fPAR showed a slower
Fig. 5. The effect of fire on MODIS LAI and fPAR Collections 4 and 5. Solid triangles show t
2004217, 2005153 and 2006145. The intensity of fire was 3000 to 3600 kW m−2 from 2001
increase that indicates the recovery of the over storey canopy from a
long dry season and/or fire and flushing of the under storey grasses
and deciduous and semi-deciduous trees with the onset of the wet
season.

We further examined the effect of fire on MODIS LAI and fPAR at
Howard Springs. We selected 40 days before, during and after the day
of fire to see phenological changes in LAI as a function of fire. Results
(Fig. 5) show that both Collections 4 and 5 of MODIS LAI and fPAR can
detect the reduction in LAI and fPAR during fire, indicating the use of
MODIS LAI/fPAR to detect reduction in green vegetation due to fire.
Although the magnitude of the reduction in LAI and fPAR could not be
verified against field data, MODIS was likely to overestimate LAI
following fire.

3.3. Light use efficiency

The temporal variation in monthly canopy LUE from 2001 to 2006
shows a strong seasonality (Fig. 6). The savanna ecosystem utilizes
radiationmore efficiently in thewet season, notably in January (1.26±
0.03 g C MJ−1 APAR) (average±SE) and least efficiently in September
(0.43±0.08 g C MJ−1). This is primarily related to high biomass and
LAI that is driven by rapid grass growth following the onset of the wet
he dates of fire at Howard Springs on 8 day composites of 2001217, 200223, 2003241,
to 2004 and b1400 kW m−2 in 2005 and 2006 (Beringer et al., 2007).



Fig. 7. Bias (MODIS minus tower) of (a) daily solar radiation (b) daytime vapor pressure
deficit and (c) vapor pressure deficit scalar calculated using Eq. (3) for DAO and GMAO
compared to the observations for Howard Springs from January 2001 to August 2006.
Error bars show ±SE from monthly average values.
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season. LUE reached its minimum in September when fires were most
prevalent and increased from October onwards, when the ecosystem
recovered from canopy scorch due to fire and/or the wet season
began. To develop a site specific maximum LUE, the 6 highest
monthly values (from 2001 to 2006) were averaged to produce a
maximum LUE of 1.26±0.03 g C MJ−1 following Coops et al. (2007).
This value is 18% higher than the standard MODIS algorithm value of
1.03 g C MJ in Collections 4.8 and 5.0 and 37% higher than the value of
0.8 g C MJ in Collection 4.5 for grassy woodland land cover class
(Table 1) (Maosheng Zhao, personal communication).

We further analyzed the controlling factors of LUE at our study site
in order to effectively parameterize the LUE and GPP models. Most
LUE models use temperature, VPD and/or soil moisture as factors
regulating LUE (Prince and Goward, 1995; Running et al., 2000; Xiao
et al., 2004a). We tested these factors using a simple linear relation-
ship and found that VPD explained 49% of the variation in obser-
ved LUE (yearly) and 36% in the wet season (R2=0.36, pb0.05,
LUE=1.57−0.66⁎VPD) but b1% (R2=0.0008, p=0.89, LUE=0.58+
0.06⁎VPD) in the dry season. This is consistent with a previous
canopy scale study that showed a weak influence of VPD on
transpiration or stomatal conductance in the dry season (Eamus
et al., 2001). Temperature on the other hand, explains only 0.05%
variation in LUE, indicating temperature is not a critical factor in either
the wet or dry seasons. Mean volumetric soil water content (SWC) at
10 cm is more strongly correlated with LUE than VPD (R2=0.59,
pb0.05, LUE=0.26+0.05⁎SWC) especially in the dry season
(R2=0.28, pb0.05, LUE=0.12+0.07⁎SWC). Therefore, soil moisture
could be used as an additional (or replacement) factor to constrain
savanna LUE rather than VPD. The use of soil water to estimate GPP is
described in Section 3.6.

3.4. Meteorological data

A cross comparison between NASA DAO (used to estimate GPP in
Collection 4.5) and GMAO (Collection 4.8) meteorological data vs. the
tower data in this study revealed notably lower PAR (underestimated
by approximately 0.8MJ m−2 day−1 (RPE−9%) in DAO and 1MJm−2

day−1 (RPE −11%) in GMAO in the wet season. Similarly, in the dry
season both DAO and GMAO underestimated PAR~0.4 (RPE−5%) and
0.6 MJ m−2 day−1 (RPE−6%) respectively (Fig. 7a). High cloud cover
in the wet season caused substantial day to day variation and
relatively large discrepancies between tower and DAO/GMAO PAR.
Similarly, VPD (Fig. 7b) also showed large discrepancies in the wet
season where both versions of meteorological data underestimated
values (up to 400 Pascal in DAO and around 350 Pa in GMAO) relative
to tower VPD. In the dry season (May–October), both versions had a
positive bias (50–450 Pa). Daily minimum temperature (data not
shown) was overestimated (up to 1.8 °C) in the dry season but slightly
underestimated in the wet season (~0.4 °C) in DAO and negligible
overestimation of 0.1 °C in GMAO.

3.5. TMIN and VPD scalars

Discrepancies in meteorological data can introduce errors when
calculating VPD and TMIN scalars that are used to constrain the
maximum LUE and subsequently estimate GPP. We calculated TMINmin,

TMINmax, VPDmin and VPDmax (Eqs. (3) and (4)) values for Howard
Springs by relating daily light use efficiency (GPP/PAR) with daily
daytime average VPD and daily TMIN. Analysis between TMIN and LUE
at daily time steps indicated that temperature does not constrain LUE
at any minimum temperature level observed at the site. Therefore the
TMINmin and TMINmax values of −8 °C and 11.39 °C (Table 1) provided
by MODIS seem reasonable and we used these values to calculate the
TMIN scalar using daily TMINmeasured at the tower site (Eq. (3)). These
values provided TMIN scalar values of 1 at all times, thereby proving no
temperature limitation on LUE in this tropical savanna ecosystem. For
VPD, the VPDmin and VPDmax values derived from flux tower were
900 and 3500 Pa respectively (Table 1). The VPDmin is close to the
value used in Collection 4.5 but higher than Collection 4.8, whilst
VPDmax as derived from flux tower was similar to the value used in
Collection 4.8 but, higher than the value in Collection 4.5 (Table 1).
The VPD scalar calculated with Eq. (3) using these values were
compared with VPD scalars that were calculated using default values
for VPDmin and VPDmax in MODIS Collections 4.5 and 4.8 (Table 1).
Results (Fig. 7c) indicated a good agreement (RPE of 0%) in the wet
season for Collection 4.8 and (−4%) for Collection 4.5. In the dry
season both Collections underestimated the VPD scalar with an RPE of
−17% in Collection 4.8 and −11% in Collection 4.5.

3.6. Algorithm improvement

Since we found discrepancies in meteorological variables, down-
regulating functions, LUE and fPAR values used to calculate GPP in
MODIS we recalculated GPP using site specific meteorology, LUE and
fPAR values. In order to find out which of these input parameters



Fig. 8. Difference between tower derived GPP and GPP estimated using site specific
input variables and light use efficiency from MODIS Collection 4.8 (Test 1),
meteorological from GMAO (Test 2) and fPAR from MODIS Collection 4 (Test 3). Error
bars show ±SE from seasonal average values.
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caused the major differences between MODIS and tower derived GPP,
we conducted three tests as follows:

(i) TEST 1 (LUE) –we used all input variables measured in the field
except for LUE where we used MODIS Collections 4.5 and 4.8;
Fig. 9. Comparison between (a) annual (b) wet season and (c) dry season averages of GPP de
modified LUE algorithm similar to MODIS with site specific values with vapor pressure defic
boxes is the means, the boxes are ±SE and the whiskers are the 95% confidence intervals. Pa
methods. Arrows in panel d indicate the capability of the improved algorithm with Evap
performance to capture the dynamic from wet to dry season (left).
(ii) TEST 2 (MET) – all input variables measured in the field except
for meteorology from DAO and GMAO (PAR, VPD scalar and
TMIN scalar);

(iii) TEST 3 (fPAR) – all input variables measured in the field except
for fPAR from MODIS Collection 4.

Results (Fig. 8) show that GPP estimated using TEST 1 and TEST 2
for Collection 4.8 compared well with tower derived GPP on an annual
basis with high IOA ranging between 0.92 and 0.93, low RPE (−10 to
−13%) and RMSE (0.93 to 0.98 g C m−2 day−1). A t-test for
independent samples indicates that the two sets of observations were
not significantly different from tower estimated GPP (t129, 68=−1.83,
p=0.07 for Test 1 and t133, 68=−1.25, p=0.21 for Test 2). Similarly,
Collection 4.5 (TEST 2) agreed well with the observations with
very low RPE (−4%) and RMSE (0.94 g C m−2 day−1) and high IOA
(0.92). Results showed a non significant difference from tower GPP
(t68, 36=0.35, p=0.73) (data not shown). TEST 1 using MODIS
Collection 4.5 LUE did not show a very good agreement and it under-
estimated tower GPP by 31% with high RMSE of 1.55 g C m−2 day−1

and amoderate IOA of 0.75 A t-test analysis also indicated a significant
difference from tower GPP (t99, 36=−4.72, pb0.05) (data not
shown). TEST 3 which used MODIS fPAR indicated very high error
(RPE 62% and RMSE 2.75 g C m−2 day−1) and low agreement (IOA
rived from flux tower, GPP fromMODIS Collections 4.5 and 4.8, and GPP estimated by a
it and modified algorithm with Evaporative Fraction (EF). The mid point in each of the
nel d compares the seasonal patterns in monthly average ±SE GPP as predicted by the 5
orative Fraction in capturing the dynamic from dry to wet season (right) but poor
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0.54) and a significant difference (t133, 68=8.26, pb0.05) relative to
tower derived GPP. This analysis revealed that MODIS fPAR was the
major source of discrepancy followed by LUE and meteorological
parameters in estimating GPP using satellite data at Howard Springs.
But this was countered by a negative bias in LUE and meteorology
which meant that average MODIS GPP was close to observed GPP.

We further estimated GPP for the Howard Springs savanna site
using a simple LUE approach (MODIS GPP algorithm) with all input
values (PAR, fPAR, LUE, and VPD scalar) that were derived at the tower
site. GPP estimated with this method agreed very well (annual) with
tower derived GPP (Fig. 9a) with IOA 0.94 and was not significantly
different (t133, 68=−0.83, p=0.41). This method also produced
lower RMSE (0.83 g C m−2 day−1) and RPE (6%) values compared to
MODIS Collections (Fig. 9a).

Further seasonal analysis indicated that in the wet season, this
method performswell compared to Collection 4.5 and this is shown by
the improved IOA, RPE and RMSE (Fig. 9b). However, when compared
to Collection 4.8, this method does not indicate any noteworthy
improvement in terms of the agreement, or errors. The dry season
agreement between tower derived GPP and GPP estimated with this
method produced much lower RMSE and RPE (RPE 7.39% and RMSE
0.84 g C m−2 day−1) compared to Collection 4.8. Also it only
moderately agreed (IOA 0.57) with tower data (Fig. 9c). This confirms
that VPDmay not be a very goodmeasure of soil water and therefore it
cannot accurately reflect the loss of productivity in the dry season for
this environment.

Alternatively, we attempted to further improve the estimation of
GPP especially in the dry season by replacing the VPD scalar with a
moisture index. Here, we used a simple index called the Evaporative
Fraction (EF) following Kurc and Small (2004), Gentinea et al. (2007)
and Yuan et al. (2007) to test how effective is EF in capturing GPP both
in the dry and wet seasons at Howard Springs. EF was calculated as
follows:

EF = LE = LE + Hð Þ ð6Þ

where LE is latent heat and H refers to sensible heat that was
measured by the flux tower at the study site. EF is a useful measure of
energy partitioning into evapotranspiration (latent heat) which is a
function of soil moisture because soil or vegetation water limitation is
indicated by decreasing amounts of energy partitioned into latent
heat (Gentinea et al., 2007).

Incorporation of the Evaporative Fraction (replacing VPD) to
constrain maximum LUE in the dry season in MODIS GPP algorithm
improved the estimation of GPP compared to MODIS or GPP estimated
using site specific VPD (Fig. 9c). This is indicated by the high IOA
(0.91) and relatively lower RPE (−9.31%) and very low RMSE (0.46 g C
m−2 day−1). In addition, this method captured the beginning of the
wet seasonwell (Fig. 9d). Although its performance to capture the end
of the wet season and quantify the magnitude of GPP in the wet
season was not very satisfactory (Fig. 9b and 9d), the annual patterns
of GPP estimated with this method agreed well with tower derived
GPP with IOA 0.96, RMSE 0.81, and RPE −7% (Fig. 9a). Like tower
derived GPP (Fig. 3), the annual total GPP estimated from themodified
GPP algorithm that uses Evaporative Fraction as a moisture index
indicates only minor variation (data not shown) from 2001 to 2003
(~90 g C m−2 years−1), with a small increase from 2004 to 2005
(~40 g C m−2 years−1). Conversely, this pattern is not shown by GPP
estimated by modified GPP algorithm that uses VPD.

4. Discussion

4.1. GPP

In general, seasonal GPP trends were captured by MODIS for all
6 years at the Howard Springs flux site (Fig. 2). This is consistent with
other studies that demonstrate the MODIS algorithm's strength in
depicting seasonal dynamics of plant production (Coops et al., 2007;
Heinsch et al., 2006; Leuning et al., 2005; Turner et al., 2006a,b).
However, at several locations such as Tonzi Ranch oak savanna
(Heinsch et al., 2006), Lethbridge grassland (Zhang et al., 2007) and
Harvard forest (Turner et al., 2006a; Xiao et al., 2004a) MODIS failed
to capture the seasonal dynamics. MODIS GPP did not precisely
capture the seasonal dynamics at Howard Springs, particularly the
transition phases from dry to wet seasons, a period of great
phenological activity and rapid changes in LAI, driven by changes in
soil moisture (Hutley et al., 2000). The overestimation of MODIS GPP
in the late dry season transition period can be related to the
phenological changes in the mid- and over storey canopy species.
Over theweeks andmonths following fire events, or as part of the pre-
monsoonal canopy flushing, new foliage emerges. At the Howard
Springs site, Cernusak et al. (2006) found that this foliage is not
immediately assimilating carbon and had high respiration rates
(construction respiration) relative to mature foliage and flushing
leaves did not fullymature physiologically for somemonths after a fire
event. This foliage is green in color and would contribute to increasing
LAI or fPAR (Fig. 4a and b) estimates as detected by MODIS, but would
not contribute to GPP of the ecosystem during this phase, resulting in
an overestimated MODIS GPP (Fig. 2).

In terms of the magnitude of GPP, although there was good
agreement between the tower GPP and MODIS Collection 4.8 in the
wet season, we suggest that estimates were of the correct magnitude
for thewrong reasons. Specifically, we suggest that this was due to the
counteracting effects of increased fPAR (37%) but decreased LUE (18%)
and PAR (11%) as estimated by MODIS (Fig. 4b, Table 1 and Fig. 7a).
Also the counteracting biases are clearly revealed in Fig. 8. The
reduction of GPP by a factor of two in Collection 5 in the wet season is
attributed to the decreased LAI and fPAR as estimated in Collection 5
(Fig. 4b). Although Collection 5 LAI and fPAR are much closer to the
observed values, (Fig. 4) the LUE and other parameters are the same as
in Collection 4.8 (Maosheng Zhao – personal communication). LUE is
lower than the observed value and therefore GPP is also lower (Table 1
and Fig. 2) compared to observations. If fPAR values from Collection 5
are usedwith site specificmeteorology and LUE values, it would provide
more accurateGPP compared to towerGPP.GPPCollection5providedby
NASA is however, not a real or improved product as Collections 4.5 and
4.8. Since LAI and fPAR Collection 4 was higher, NTSG (Numerical
Terradynamic Simulation Group) had to retune the BPLUT (Biome
Parameter LookupTable) basedon theLAI/fPARandmeteorological data
from NASA to provide reliable GPP estimates (Collections 4.5 and 4.8).
Similarly, an improved Collection 5 GPPwill be released by NTSG by gap
filling the poor quality LAI/fPAR Collection 5 and readjusting the BPLUT
based on the new LAI/fPAR and latest version of GMAOdata. Thiswill be
done when NASA releases its complete LAI/fPAR version 5 and GMAO
data sets (Zhao, personal communication).

4.2. fPAR

High fPAR values as estimated in Collection 4 MODIS data was
mainly due to the overestimated LAI values. Overestimated LAI was
also reported in other ecosystems such as in a temperate mixed forest
(Kang et al., 2003), open forests andwoodlands in Australia (Hill et al.,
2006), woodlands and open savanna (Privette et al., 2002), dry
grasslands (Fensholt et al., 2004), woody savanna (Huemmrich et al.,
2005), Sudano–Sahelian dry grasslands (Fensholt et al., 2004), Tonzi
Ranch savanna (Heinsch et al., 2006), and semi-arid Senegal (Fensholt
et al., 2006), althoughMODIS predicted plausible temporal and spatial
patterns. High LAI values for Collection 4 as seen in this study could be
associated with the RT model used in Collection 4 for LAI/fPAR
estimation which can be a source of error in representing canopy
structure and spatial heterogeneity of woody vegetation (Shabanov
et al., 2007). The main RT algorithm that is used to simulate surface
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reflectance does not account for multi layer context, but rather it
considers all photosynthesizing vegetation as a single layer. At our
savanna site there is a distinct dual layer canopy which complicates
the relationship between LAI and the reflected signal from the canopy
especially if the dominant canopy is open as in Howard Springs (50–
60% over storey cover). This is consistent with Howard Springs where
the retrieval of LAI was more accurate in the dry season where the
grasses have senesced and there is only a single active over storey
trees (Fig. 4a). Despite dry season LAI being correct, the fPAR was
overestimated at our savanna site (Fig. 4b), in agreement with
Huemmrich et al. (2005) who found that the underestimation of
fractional canopy cover for savanna from the MODIS algorithm caused
higher fPAR values in a woody savanna site in Mongu, Africa despite
the LAI values being consistent with observations. In the dry season,
MODIS fPAR Collection 4 was a factor of two higher than field
observations, which was the main reason for the overestimation of
GPP especially during periods of fire in MODIS Collections. Never-
theless, the MODIS LAI/fPAR product (Collection 4) detected the
dynamics in LAI (Fig. 5) when fire destroyed the under storey grasses
and deciduous and semi-deciduous trees and scorched leaves of the
over storey Eucalyptus trees. This indicates that MODIS LAI/fPAR
products are very useful in detecting changes in vegetation due to
disturbances such as fire although it fails to provide accurate
estimation of the magnitude of LAI and fPAR.

Shabanov et al. (2007) recognized that there was an inconsistency
between LAI and fPAR retrieval which propagated into overestimation
of fPAR for sparse vegetation. In Collection 5, however, both LAI and
fPAR were estimated correctly by MODIS because Collection 5 uses a
new stochastic RT model that captures 3D effects of foliage clumping
and species mixtures of natural ecosystems (Shabanov et al., 2007).
The parameters of the new Biome Parameter Lookup Table in
Collection 5 avoid this problem by ensuring consistency between
simulated and measured MODIS surface reflectance which can
minimize LAI overestimation and algorithm failure over medium/
dense vegetation and correct fPAR estimation over sparse vegetation
(Shabanov et al., 2007). Furthermore, uncertainty levels for each
spectral band were introduced in Collection 5 (Shabanov et al., 2007).
As a result, the fPAR overestimation was resolved in Collection 5
for savanna (Fig. 4b) and a reasonable agreement was found in the
dry season GPP between Collection 5 and tower data. If MODIS can
provide correct estimates of the magnitude of fPAR such as in
Collection 5, the loss of GPP due to fire can also be predicted more
accurately.
4.3. Light use efficiency

The site specific maximum LUE as calculated in this study was
considerably higher (18%) than the values used in MODIS GPP
algorithm for woody grassland (Table 1). This may be due to the
readjustments required to counteract the high Collection 4 LAI/fPAR
or different versions of meteorological data (Zhao, personnel com-
munication) and the global nature of the algorithm, since all savannas
(tropical or otherwise) are given the same LUE in the algorithm.
Similarly, Turner et al. (2003) noticed an underestimation of LUE by a
factor of 3 in the Harvard forest site which was compensated by high
fPAR to result in a close agreement between MODIS and field GPP on
an annual basis. Underestimation of LUE also has been found to be
responsible for reduced GPP in other ecosystems such as in a tall grass
Prairie and crop species corn and soybean (Turner et al., 2006b) and
wheat (Reeves et al., 2005). The maximum LUE was comparatively
smaller in Collection 4.5 (0.8 vs. 1.03 for Collection 4.8), compared
with the observed value of 1.26 g C MJ−1 at Howard Springs. In
addition, the VPD scalar in the wet seasonwas also underestimated in
Collection 4.5 (Fig. 7c) compared to Collection 4.8 and therefore GPP
was underestimated in the wet season in Collection 4.5.
4.4. Meteorology

PAR and VPD are the two primarymeteorological factors that down-
regulate maximum LUE, since TMIN is unlikely to constrain GPP in this
savanna ecosystem. An accuracy assessment of DAO meteorological
data at global scale by Zhao et al. (2005) indicated that incoming
shortwave radiation and VPD from DAO are underestimated in many
parts of the globe which can introduce relatively large errors in GPP
estimation. Similarly, Heinsch et al. (2006) demonstrated that DAO
underestimated local VPD and therefore overestimated GPP at humid
and dry sites in North America. In combination with underestimated
LUE by MODIS Collections 4.5 and 4.8, these both offset higher fPAR
values fromCollection4 tomatch towerdata onanannual basis (Fig. 9a).
Whenwe examined the bias in site specific LUE, meteorology and fPAR
to estimate GPP for Howard Springs (Figs. 7 and 8), it suggested that
some improvement could be gained by using site specific meteorology.
Although meteorological variables (PAR, VPD and temperature) pro-
vided by GMAO are supposedly improved values, for this site it does not
show much improvement compared to DAO.

4.5. Soil moisture

Previous studies have indicated that the MODIS algorithm did not
capture the reduced productivity of savanna during dry periods but,
inclusion of a soil water index improved GPP prediction at a tropical
savanna site in Australia (Leuning et al., 2005), a semi-arid vegetation
site in Senegal (Fensholt et al., 2006), and correctly captured the
beginning and length of the growing season inMediterranean savanna
ecosystems (Yuan et al., 2007). Regional analysis also indicated that in
areas where soil water is severely limiting, MODIS underestimates
water stress, overestimates GPP, and fails to capture intra-annual
variability of water stress (Mu et al., 2007).

In this study,whenwe replaced theVPD scalarwith amoisture index
(EF) we found that it reduced GPP in the dry (Fig. 9c) consistent with
towerdata and captured thebeginningof thewet seasonbetter (Fig. 9d).
However, the performance of EF modification was poor (IOA 0.46) in
the wet season compared to the dry season (IOA 0.91) to estimate GPP
(Fig. 9b). This is because in the dry season, latent heat represents much
of the transpiration and therefore EF is tightly coupled with GPP. Thus
adding this index not only improved the estimation of GPP, but it also
correctly captured seasonal dynamics of GPP. Whereas, in the wet
season, latent heat is a combination of transpiration and soil evapora-
tion, thus EF is not tightly coupledwithGPP. Consequently, EF performed
poorly in the estimation of the magnitude and capturing the transition
period fromwet to dry (Fig. 9b and d).

EF is a relatively simple parameter to calculate if data on latent
and sensible heats are available and it can be used to infer soil water
availability (Gentinea et al., 2007; Yuan et al., 2007). In this study, EF
accounted for 71% variation in soil water content (EF=0.27+
0.03⁎soil water content, R2=0.71 – data not shown). We used EF
instead of soil water directly, because scaling up EF over large spatial
areas becomes promising with remote sensing sensors such as MODIS
and AVHRR (Advanced Very High Resolution Radiometer) that
provide land surface temperature, albedo and NDVI that can be used
in conjunction with tower meteorology to estimate EF (Wang et al.,
2006; de Ridder and Mensink, 1998). Surface soil moisture is also
provided by satellites such as Advanced Microwave Scanning Radio-
meter (AMSR-E, http://www.geo.vu.nl/~jeur/lprm/) on the Earth
Observing System Aqua satellite (Njoku et al., 2003) daily at 25 km
(resampled) or Soil Moisture and Ocean Salinity (SMOS) that can be
used in GPP models. SMOS aims to provide surface soil moisture with
a repeat cycle of 3 days and at a spatial resolution of 40 km and with a
precision of 4% by volume in the future (http://www.esa.int/esaLP/
LPsmos.html).

Lastly, it should be noted that although tower GPP is used as a
ground truth for MODIS, the flux towermeasurements themselves can

http://www.geo.vu.nl/~jeur/lprm/
http://www.esa.int/esaLP/LPsmos.html
http://www.esa.int/esaLP/LPsmos.html
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be a source of error as tower GPP is calculated as the difference
between NEE and Re. Estimates of day time ecosystem respiration at
the flux tower site are made using a neural network model of
nocturnal u⁎ corrected NEE, soil moisture and temperature (Beringer
et al., 2007). This method actually ignores the reduction in leaf
respiration in day time compared to night time (Reichstein et al.,
2005) and therefore the eddy covariance method can consistently
overestimate GPP (Coops et al., 2007). This effect may be limited at the
Howard Springs site as the diurnal temperature range in the growing
season (wet season) is relatively small and nocturnal temperatures of
25–27 °C regularly occur. Errors can also arise from filling the gaps for
periods of unavailable tower measurements due to sensor malfunc-
tion or poor quality data. For Howard Springs neural network models
were developed for gap filling carbon flux variable using Statistica
software package (Beringer et al., 2007).

Also, scale mismatch between flux tower footprint size (usually
within a few hundreds of meters to 1 km) and MODIS 7×7 km cut
outs can be a reason for the discrepancy in GPP estimates between
MODIS and flux tower. The average of 7×7 pixel block by MODIS may
produce representation of a “pseudo pixel” that is often too large in
spatial domain with the tower footprint (Xiao et al., 2004b). This
problem could become worse if the landscape is heterogeneous or
comprised of complex topography. Again, this may not be an issue at
the Howard Springs site because 80% of the Howard River catchment
in which Howard Springs is located is dominated by open forest
savanna with adequate homogeneous fetch in all directions (41 km)
and slopes of b1° (Beringer et al., 2007).

5. Conclusion

This study evaluated different collections of MODIS GPP products
and their respective input parameters of LAI, fPAR, LUE, PAR and
down-regulating scalars of VPD and TMIN in a tropical savanna
ecosystem. Despite the input values being generic for the entire
savanna biome (and different from our site), it still provided a
reasonable estimation of GPP (~±12% mean relative predictive error
to tower) on an annual basis, a near perfect agreement in the wet
season in Collection 4.8 (~1%) and in the dry season in Collection 4.5
(~4%). The observed discrepancy between MODIS and tower derived
GPP at this site was mainly due to the large overestimation of fPAR
values in Collection 4 compared to other input parameters such as
meteorology and LUE. Overestimation in fPAR was however, compen-
sated by the relatively low PAR, VPD scalar and LUE in MODIS relative
to site specific values that brought MODIS GPP in closer agreement to
tower derived GPP.

Collection 5 LAI/fPAR (not gap-filled) provides a more accurate
estimation of LAI and fPAR compared to Collection 4 for this site. The
accuracy of Collection 5 LAI/fPAR may be expected to further improve
once this product is gap-filled. This indicates the success of an
improved radiative transfer algorithm for savanna. Nevertheless,
Collection 5 underestimates GPP mainly in the wet season as a
consequence of the underestimation of PAR and LUE. Therefore, the
Biome Parameter Lookup Table used to calculate GPP needs to be
readjusted, especially by, increasing LUE and VPD scalar to achieve
more accurate estimation of GPP in this Collection.

Our study also indicated that the improved GPP Collection 4.8 is
superior to its previous version, in agreement with Zhao and Running
(2006), although Collection 4.5 performed better in the dry season. In
northern Australia, soil moisture rather than VPD was an important
factor limiting savanna productivity in the dry season. This was
suggested by the improved estimation of GPP and correct capture of
the seasonal dynamics when we replaced VPD with a moisture index
in the GPP algorithm. This means that the current MODIS GPP
algorithm has a systematic limitation applicable to arid and semi-arid
areas in capturing the productivity. Hence, the effect of soil moisture
needs to be adequately represented in theMODIS algorithm in order to
capture both the magnitude of GPP and the start and end of the
growing seasons correctly. However, it is very difficult to use soil
moisture or proxy to soil moisture such as Evaporative Fraction over
the entire globe at sufficient spatial and temporal resolutions. This is
because there are not many flux towers available in arid or semi-arid
area that can provide data or verify soil moisture provided by satellite
sensors such as AMSR-E. Nevertheless, there are promising research
projects underway to incorporate soil moisture in MODIS GPP
algorithm (Leuning et al., 2005; Mu et al., 2007; Coops et al., 2007).
Minimum temperature seems not to constrain productivity in this
tropical ecosystem. Given the extensive land area occupied by
savanna in Australia, these results confirm the usefulness of MODIS
GPP in studying the regional carbon dynamics of this ecosystem.
Monitoring and mapping the changes of terrestrial GPP will
contribute to the understanding of the carbon cycle and identifying
its natural andmodified patterns in this extensive tropical ecosystem,
important for understanding global carbon dynamics and impacts on
climate change.
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Appendix A. Statistical analysis

Several statistical techniques were employed to adequately compare
theperformanceofMODISGPPwith towerderivedGPPbecausenosingle
model evaluation statistic is sufficient to evaluate model performance as
each has its unique strengths (Willmott, 1984). The following indices
were used in this study:

(i) Root mean square error (RMSE), provides an estimate of model
error in units of the variable (gCm−2 day−1) and is calculatedas:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
n=1

xi−yið Þ2

n

vuuut

where; xi = tower GPP, yi = MODIS GPP and n = number of
samples.

(ii) Willmott's index of agreement (IOA), (Willmott, 1984) ranges
between 0 and 1, where 0 indicates no agreement between the
predicted and observed data and 1 indicates perfect agreement.
This index is dimensionless and therefore it is easier to
interpret than other measures of relative difference. Willmott
IOA is an improved model evaluation tool over R2 because it
takes into account differences in observed and modeled means
(biases) and variances as well as correlations (Willmott, 1984).

IOA = 1−

Pn
i=1

xi−yið Þ2

Pn
i=1

xi−xð Þ + yi−xð Þ½ �2

where; xi = tower GPP, yi = MODIS GPP, x ̅ = mean of tower
GPP.



1821K.D. Kanniah et al. / Remote Sensing of Environment 113 (2009) 1808–1822
(iii) Relative Predictive Error (RPE), to quantify the percentage
mean difference between MODIS and tower data. This index
provides the direction of changes (underestimation or over-
estimation) in predicted values compared to measured values

RPE =
y − xð Þ

x
× 100

where; x ̅ = mean tower GPP, y ̅ = mean MODIS GPP.
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