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[1] The sensitivity of a suite of satellite observations to land surface heat fluxes and the
estimation of satellite-derived fluxes using a statistical model are investigated. The
satellite data include visible and near-infrared reflectances (Advanced Very High
Resolution Radiometer [AVHRR]), thermal infrared surface skin temperature and its
diurnal cycle (International Satellite Cloud Climatology Project [ISCCP]), active
microwave backscatter (European Remote-sensing Satellite [ERS] scatterometer), and
passive microwave emissivities (Special Sensor Microwave/Imager [SSM/I]). Fluxes at
the global scale are taken from Land Surface Models (LSM): the GSWP-2 multimodel
analysis, the ISBA, and ORCHIDEE participating models, along with the National
Centers for Environmental Prediction/the National Center for Atmospheric Research
(NCEP/NCAR) reanalysis, on a monthly timescale from 1993 to 1995. The simulated
LSM fluxes and the satellite observations are linked through a statistical model. Once
calibrated, the statistical model reproduces the LSM latent and sensible fluxes for all
types of snow-free environments, with global RMS errors <25 W/m?, proving that the
satellite data contain relevant information for flux estimation. The estimated fluxes
have realistic spatial and seasonal patterns, although some local differences between the
original and estimated fluxes are found. These differences are used to reveal potential
problems in the LSMs, for instance, an anomaly in the GSWP-2 radiative forcings.
Comparisons between the original and estimated fluxes and 76 tower fluxes over North
America are carried out, and the differences show similar statistics. However, the largest
differences between the original and estimated fluxes do not occur in these regions.
Demonstrating the superiority of the proposed technique outside of these regions remains

difficult in the absence of validation data sets.
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1. Introduction

[2] Land surface heat fluxes are essential components of
the water and energy cycles and govern the interactions
between the Earth surface and the atmosphere [e.g., Betts et
al., 1996]. Variables such as cloud cover, precipitation,
surface radiation, or air temperature and humidity, which
are related to the atmospheric synoptic patterns and meso-
scale structures, strongly influence the heat fluxes. In turn,
the energy balance at the surface and its partitioning
between sensible and latent heat fluxes also affect the
atmosphere, determining the development of the atmo-
spheric boundary layer [e.g., Viterbo and Beljaars, 1995].
Over land, energy balance and flux partitioning are complex
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mechanisms, with strong variabilities in both space and
time, across climates and ecosystems, related to the physical
properties of the surface, especially its moisture status and
vegetation. In situ measurements of land surface heat fluxes
are operated during field experiments (e.g., the Boreal
Ecosystem-Atmosphere Study (BOREAS) [Sellers et al.,
1997]) and by some flux tower networks (e.g., FLUXNET
[Baldocchi et al., 2001]), but in order to obtain global,
consistent estimates of the surface heat fluxes, a transition to
satellite remote sensing is needed. The challenge is that
fluxes do not have a unique signature that can be remotely
and directly detected, and satellite observations related to
surface temperature, soil moisture, or vegetation have to be
combined to infer the fluxes.

[3] In principle bulk transfer calculations from the aero-
dynamic theory of turbulent transfer [e.g., Tarpley, 1994]
can produce fluxes. Using these formulations and a satellite
surface-derived skin temperature 7y, as a proxy for the
aerodynamic surface temperature 7, the sensible heat flux
can be derived from the difference between the skin
temperature Ty, and a measured air temperature 7, scaled
by a transfer coefficient characterizing the transport of heat
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and depending on site-specific data, such as surface rough-
ness or wind speed. The latent heat flux can then be
estimated from an energy balance model, assuming the
surface radiation and the ground flux are known. Difficul-
ties first arise from the fact that differences between T, and
T, are rather limited and the accuracy of each measurement
(often of the same order of their difference) can have a
detrimental effect on the estimated sensible heat flux. In
addition, the difference between 7, and T, can be signif-
icant [e.g., Kustas and Humes, 1997], as well as the
difference between the soil and the vegetation temperatures
with only one integrated temperature being estimated from
satellite [e.g., Norman et al., 1995; Kustas and Norman,
2000; Nishida et al., 2003]. Still on the basis of the bulk
formulation, more elaborated models try to overcome some
of these difficulties by exploiting the relationship between
soil moisture and thermal inertia, with formulations to
constrain the heat fluxes with the diurnal gradient of T
[e.g., Tarpley, 1994; Meng et al., 2003; Mecikalski et al.,
1999; Anderson et al., 2007, Caparrini et al., 2004]. Other
schemes use relationships between Ty, and other satellite
observations, such as the vegetation index [e.g., Carlson et
al., 1995; Nishida et al., 2003]. In general, these approaches
require large amounts of ancillary data that are globally not
easily accessible (such as surface roughness or surface
meteorological data), making difficult a possible extension
to estimating global heat fluxes.

[4] The only source of realistic land surface heat fluxes
available today, with the adequate time and space sam-
plings, are calculated from complex land surface models
(LSMs). However, inter-comparisons of the LSM outputs
show very large differences, due to model parameterizations
and forcings (e.g., the Project to Intercompare Land-Surface
Parameterization Schemes (PILPS) [Henderson-Sellers et
al., 1995] and the Global Soil Wetness Project (GSWP)
version 1 and 2 [Entin et al., 1999; Dirmeyer et al., 2006]).
Parameterizations are often developed empirically and
tuned to local conditions where the ancillary data needed
to estimate the model parameters are measured [e.g., Wilson
et al., 2002; Wright et al., 1995]. Some parameters, such as
fractional vegetation cover or leaf area index, can be
estimated from satellites, but many other parameters are
derived from approximate relationships with vegetation, soil
type, or climate regime. Complex multicriteria and multi-
objective calibration schemes are developed to evaluate the
parameterizations [e.g., Franks and Beven, 1997; Gupta et
al., 1998], but they can only be tested at field scales with in
situ measured fluxes and local meteorological data [e.g.,
Franks et al., 1999; Gupta et al., 1999]. Efforts to use
remotely sensed data in multiobjective calibration have
started, but mostly limited to incorporating radiometric
skin temperatures [e.g., Crow et al., 2003; Coudert et al.,
2006]. Assimilation schemes are also used. For instance,
the Global Land Data Assimilation System (GLDAS)
[Rodell et al., 2004] assimilates 6 hourly skin temperature
observations.

[5] Despite all this body of work, there is no systematic
satellite data analysis underway to produce a complete,
physically consistent, global, multidecadal land surface heat
flux data product. The Global Energy and Water Cycle
Experiment (GEWEX) Radiation Panel (GRP) recently
launched an activity, called LANDFLUX, to develop the
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needed capabilities to produce such data sets. The challenge
is to transition from the local or regional scales, where most
previous approaches have been tested, to the global scale.
Satellite observations provide the needed global coverage,
but their use is difficult. For instance, traditional methods to
directly assimilate satellite observations require radiative
transfer models: such models do not exist globally for most
flux-sensitive satellite observations such as passive or active
microwaves. Another approach is the assimilation in the
LSM of pre-derived satellite parameters such as soil mois-
ture, but this is also problematic: the accuracy of such
products is still questionable [e.g., Cashion et al., 2005;
Zhang et al., 2008]. Faced with these difficulties, this study
proposes to link global satellite observations with land
surface heat fluxes by means of a statistical model. Con-
trarily to the techniques previously described, the relation-
ship between the satellite data and the land surface heat
fluxes is not prescribed, but derived from the statistical
analysis of a global data set of coincident satellite observa-
tions and land surface heat fluxes. To avoid any conclusions
biased by the selection of a specific model, several LSMs
are tested in this study, including dedicated land surface
schemes and one coupled land-atmosphere model from a
meteorological operational center.

[6] The proposed statistical model mixes in a complex
way the satellite observations and the LSM fluxes. In this
regard, it can be considered as an assimilation technique that
combines observations and model estimates, as suggested in
the study by Aires et al. [2005] and Aires and Prigent
[2006]. As with any assimilation technique, there is a need
to test that the assimilated fields are closer to the true fields
than the original fields. This is specially challenging when
dealing with land surface heat fluxes, as the data needed for
the evaluations is extremely limited. Faced with these
limitations, the objective of the paper is to show the
potential of the statistical modeling to advance in the
estimation of global land surface heat fluxes, rather than
to show the absolute superiority of this technique with
respect to other flux estimation methods. Firstly, the statis-
tical model is used to assess the information content of
the satellite observations (some of them not used before for
the estimation of fluxes), using a similar approach as in the
study by Aires et al. [2005]. Secondly, the statistical model
is used to check the consistency between the time evolution
or the geographical distribution of the LSM fluxes and the
satellite observations, and to potentially diagnose specific
problems in the LSMs. While the LSM and statistical model
fluxes will have similar global biases, discrepancies at
specific regions and periods can be useful for identifying
errors and anomalous behavior. A related methodology has
been adopted at a local scale in the study by Abramowitz
[2005]: a statistical model linking meteorological forcings
and in situ heat fluxes helps assess the ability of the LSMs
to reproduce the time evolution of the fluxes at three field
sites. At the global scale, a statistical model, similar to the
model proposed here but linking satellite observations and
global soil moisture, proved successful in detecting incon-
sistencies in the soil wetness fields calculated by the
National Centers for Environmental Prediction/the National
Center for Atmospheric Research (NCEP/NCAR) reanalysis
[Adires et al., 2005].
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[7] In this study, a range of model-derived global flux
data sets and satellite products are selected. Flux outputs
from the GSWP exercise are chosen, along with fluxes
calculated by the NCEP/NCAR atmospheric reanalysis. A
3-year period (1993—-1995) at a monthly scale is chosen for
the study, as this is the more recent period of the GSPW
exercise. Satellite observations are selected on the basis of
their sensitivity to state variables (e.g., surface skin temper-
ature and moisture) physically related to the fluxes, their
availability over the globe with spatial resolutions compat-
ible with climate analysis, and their temporal coverage of at
least a decade. The selection includes thermal infrared land
skin temperatures compiled by the International Satellite
Cloud Climatology Project (ISCCP), the amplitude of their
diurnal cycle, microwave emissivities from the Special
Sensor Microwave/Imager (SSM/I), microwave radar back-
scattering coefficients from the European Remote-sensing
Satellite (ERS), visible and near-infrared reflectances from
the Advanced Very High Resolution Radiometer (AVHRR),
and a surface radiation product based on the ISCCP data
sets. First, the statistical model and its calibration is pre-
sented in section 2. The satellite observations and global
fluxes are described in section 3. An evaluation of the
sensitivity of the satellite observations to the land fluxes is
presented in section 4. The capability of the statistical model
to reproduce the time and spatial patterns of the fluxes is
investigated in section 5, including a comparison of original
and estimated fluxes with in situ tower flux measurements.
Section 6 concludes this study.

2. Statistical Model

[8] Using a statistical approach to study the relationship
between satellite data and heat fluxes is not new. In the
study by Wang et al. [2007], the correlations between in situ
measurements of latent heat fluxes and the net radiation, air
or radiometric surface skin temperature, and vegetation
indices, are tested at different field sites, and a statistical
model based on a simple linear regression is proposed to
estimate the latent fluxes. The scheme is applied at regional
scale, where a linear mapping between the satellite obser-
vations and the fluxes is considered to be a reasonable
approximation, given that the environment variables (e.g.,
soil moisture, vegetation, temperature) are not significantly
different. At a global scale, more complex relations are
expected between the land surface heat fluxes and the
satellite measurements. As a consequence, a more sophis-
ticated statistical model, a neural network (NN), is adopted
in this study. The capability of representing complex non-
linear mappings between multidimensional spaces makes
the NNs to be broadly used for modeling non-linear
processes [e.g., Aires et al., 2001; Krasnopolski, 2007]. In
fact, a NN scheme has already been tested to estimate latent
heat flux from satellite observations [Bourras et al., 2002]
but over ocean, and a NN algorithm proved useful to correct
for systematic errors between field observations and mod-
eled heat fluxes at local scales [Abramowitz et al., 2006,
2007].

[9] Setting up the statistical model involves different
phases. In our study, in a first phase, the NN is trained to
retrieve the reference LSM outputs, called here the “original
fluxes”, from the satellite observations. This is the calibra-
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tion phase of the statistical model. Note that for each LSM,
a specific statistical model is calibrated with the fluxes from
that LSM. In statistical terms, this phase corresponds to
training the NN to approximate the posterior distribution of
the fluxes conditioned on the satellite data. In a second
phase, the trained NNs are used to produce flux estimates,
called here the “estimated fluxes”, from the corresponding
satellite observations. The estimated fluxes are the mean
states of the previous distribution for each realization of the
satellite observations presented at the NN inputs. In a third
phase, the estimated fluxes are evaluated by comparison
with the original fluxes and other sources of independent
fluxes, when they exist. The three phases are illustrated in
Figure 1.

[10] The practical details of the statistical model follow.
Multilayer perceptrons (MLPs) are the NN architecture
selected here. For each LSM there is a MLP trained to
reproduce the fluxes from that specific model. Each MLP
has as many input nodes as the number of satellite products
used in the estimation. Then there is one hidden layer
consisting of a number of neurons with hyperbolic tangent
activation functions, followed by two output neurons with a
linear activation function, one for the sensible fluxes, the
second one for the latent fluxes. The weights of the MLP are
initialized following the method by Nguyen and Widrow
[1990], and before training inputs and outputs to the MLP
are linearly transformed into the range [—1,1] to make the
initialization of the weights more effective. The weights are
estimated by minimizing a cost function following the
implementation of Foresee and Hagan [1997]. This results
in MLPs with good generalization and the adequate model
complexity.

[11] The training data set is built with data from the
months of February, May, August, and November 1993.
For these months the total number of pixels is randomly
divided into two subsets of equal size: one is attached to the
training data set, the other is saved to estimate the error
fluxes for these months. Tests have been conducted with
different training data sets (more months in a given season),
but the results were very similar, indicating that one month
per season is sufficient to capture the annual variability. No
data from the remaining two years have been included in the
training, in order to show that the statistical model driven by
the satellite observations can capture the flux inter-annual
variability.

3. Data Sources

[12] The satellite observations and the model-derived
fluxes are re-gridded into a common global equal area grid
(0.25° x 0.25° at the equator, with a pixel area of approx-
imately 770 km?) and averaged into monthly means. Shorter
timescales are possible, but for a first evaluation of sensi-
tivities this time resolution is adequate and in line with the
objective of deriving a global multidecadal monthly mean
climatology. For this initial study, only snow-free pixels are
kept (using the National Snow and Ice Data Center
(NSIDC) monthly mean snow data set), as the interpretation
of some of the satellite observations and modeled fluxes
over snow areas can be problematic. Examples of monthly
mean satellite observations for June 1993 are given in
Figure 2.
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Figure 1. Different phases of the proposed methodology.

In a first phase (calibration), a statistical model for each
considered land model is calibrated with the satellite data
and original land surface heat fluxes. In a second phase
(estimation), the statistical models produce the estimated
fluxes from the satellite data. In a third phase (evaluation),
the original fluxes produced by the land models and the
estimated fluxes produced by the statistical models are
compared.
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3.1. Global Land Surface Heat Fluxes

3.1.1. GSWP-2 Multimodel Analysis

[13] The GSWP is an international modeling research
activity with the main goal of producing global data sets
of soil moisture, other state variables, and related hydro-
logical quantities using state-of-the-art LSMs [Dirmeyer et
al., 1999]. In the second phase of the project (GSWP-2)
[Dirmeyer et al., 2006], 15 LSMs driven in offline mode
using global meteorological forcing inputs produced daily
land fluxes and related surface variables for 10 years
(1986—1995) at a resolution of 1° x 1°. The forcing,
vegetation, and soil cover were primarily extracted from
the ISLSCP Initiative 2 [Hall et al., 2006], though elaborate
work was undertaken to hybridize the reanalysis data with
observational data in order to remove systematic errors
[Zhao and Dirmeyer, 2003].

[14] In the study by Guo and Dirmeyer [2006], the
GSWP-2 multimodel analysis resulting from a simple
average across the individual models gave the best overall
results when evaluating the modeled soil moisture outputs.
This model ensemble is described as an analog to the
atmospheric reanalysis, and judged as the best approach to
combine the models, compared with more sophisticated
combinations, in the absence of calibration data [Dirmeyer
et al., 2006]. In the present study, the link between satellite
observations and fluxes will be mainly studied with the
multimodel analysis, although individual runs from the
participating models ISBA [Noilhan and Mahfouf, 1996]
and ORCHIDEE [Krinner et al., 2005] will also be consid-
ered for specific tests. The baseline integration run “B0”
was first selected, as this is the run where most of the
models took part.

3.1.2. NCEP/NCAR Reanalysis

[15] The NCEP/NCAR reanalysis (referred from now on
as NCEP) is a retroactive record of more than 50 years of
global atmospheric analyses produced by a frozen global
data assimilation system [Kalnay et al., 1996]. The land
surface package of the NCEP reanalysis originated from the
combination of the evaporation approach of Mahrt and Ek
[1984], the multilayer soil model of Mahrt and Pan [1984],
and the canopy model of Pan and Mahrt [1987]. A
description of the model previous to its integration into
the NCEP operational model can be found in the study by
Chen et al. [1996]. The users of the NCEP reanalysis are
warned that variables such as heat fluxes, humidity, or
surface temperature should be interpreted with caution, as
there are no assimilated observations to directly affect these
variables. Evaluation of the NCEP heat fluxes at a regional
scale can be found, for instance, in a comparison of the
daily surface fluxes over grassland and boreal forests [Befts
et al., 1998], or in a comparison of the monthly mean fluxes
with observations over the Southern Great Plains regions
[Berbery et al., 1999].

3.2. In Situ Land Surface Heat Fluxes

3.2.1. Marconi Data Set

[t6] The FLUXNET Marconi Conference Gap-Filled
Flux and Meteorology Data set was compiled for the
FLUXNET 2000 Synthesis Workshop held in California
in June 2000 [Falge et al., 2005]. A total of 97 site-years of
data were gathered, mainly between 1996 and 1998, includ-
ing half-hour eddy covariance fluxes and meteorology
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Figure 2. Examples of satellite data monthly means for June 1993: the ERS backscattering at 20° (ERS-
BS20) and 45° (ERS-BS45), the AVHRR visible (AVHRR-REFvis) and infrared (AVHRR-REFnir)
reflectances, the SSM/I emissivities from the vertically (SSMI-vel9) and horizontally (SSMI-hel9)
polarized 19 GHz channels, and the ISCCP skin temperature (ISCCP-Ts), its diurnal cycle (ISCCP-
Tscycle), and the clear-sky net short-wave (ISCCP-RADsw)and long-wave (ISCCP-RADIw) radiation.
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measurements and the gap-filled half-hour corresponding
estimates and aggregations to longer time periods. Informa-
tion about the product compilation and gap-filling tech-
niques can be found at ftp://daac.ornl.gov/data/fluxnet/
gap_filled marconi/comp/Marconi_gapzips_website.pdf.
The aggregated monthly means are used for the study.
3.2.2. Ameriflux Data Set

[17] The AmeriFlux network is one of the regional net-
works integrated into the FLUXNET project. It was estab-
lished in 1996 to understand the role of terrestrial systems in
the global carbon cycle [Law et al, 2002, AmeriFlux
Strategic Plan available from http://public.ornl.gov/ameriflux/
about-strategic_plan.shtml]. Over 100 sites are present in the
network. Continuous measurements of fluxes are made by
using the eddy covariance method. A good description of
the eddy covariance flux measurements and their associated
uncertainties and corrections needed in the context of the
AmeriFlux network can be found in the study by Massman
and Lee [2002]. The AmeriFlux web site has a well-
documented and easily accessible archive, with data cover-
ing mostly the period 2000—-2006, and this presented an
opportunity to compile a new data set from the data of the
individual stations. For this study the quality checked and
standardized L2 data were downloaded.

3.3. Satellite Data

3.3.1. Visible and Near-IR: AVHRR Reflectances

[18] The AVHRR instruments on board the NOAA me-
teorological polar orbiters provide daily observations of the
Earth with a resolution as high as 1 km. The first channel is
in the visible, where chlorophyll causes absorption of
incoming radiation, while the second one is in the near
infrared. The Normalized Difference Vegetation Index
(NDVI), based on the visible and near-infrared radiances,
is extensively used for vegetation studies [e.g., Moulin et
al., 1997; DeFries et al., 1999]. It is also integrated into
some land surface heat flux estimation approaches to help
characterize the relationship between fluxes and vegetation
[e.g., Carlson et al., 1995; Nishida et al., 2003]. The
product is described in detail in the study by Gutman
[1999]. For this study the 10-day composite AVHRR
products generated under the joint NASA and NOAA Earth
Observing System Pathfinder Project [James and Kalluri,
1994], with a resolution of 8§ km, were used. In this study,
the visible and near-infrared radiances are used directly
instead of the NDVI product, and the statistical method
finds the best way of extracting the flux-related information
from the radiances.
3.3.2. Thermal-IR: ISCCP Surface Skin Temperature
and Its Diurnal Cycle

[19] The land surface skin temperature is a key variable in
the determination of the heat fluxes. The most extensive
data set of surface skin temperature is produced at 3 hour
intervals since 1983 over the globe, every 30 km, by ISCCP
[Rossow and Schiffer, 1999]. It combines all the infrared
measurements from polar and geostationary operational
weather satellites. For this study the surface skin temper-
atures were extracted from the ISCCP-DX product. Aires et
al. [2004] developed a method to reconstruct the diurnal
cycle of surface skin temperature for each location over the
globe, based on a statistical analysis of the 3-hourly skin
temperatures for clear scenes. The reconstructed skin tem-
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peratures are averaged to provide the monthly temperature
and to derive the amplitude of the temperature diurnal cycle.
The IR surface estimates are limited to clear sky, meaning
that the monthly mean skin temperatures and amplitudes are
clear-sky biased. Depending on the cloudiness of each
location, this can have an impact when estimating the
monthly mean fluxes from these satellite products, as the
original LSM fluxes are estimated from LSMs forced under
the naturally occurring clear and cloudy conditions.
3.3.3. Active Microwaves: ERS Scatterometer
Backscattering

[20] The European Remote-sensing Satellite ERS-1 was
launched in 1991 and remained operational until 2001
[Francis et al., 1991]. Its suite of instruments included a
vertically polarized radar operating at C-band (5.3 GHz).
This scatterometer was originally designed to measure near-
surface winds over oceans, with a nominal resolution of
50 km, but it has also proved useful for land surface
characterization [e.g., Frison and Mougin, 1996; Schmullius,
1997; Magagi and Kerr, 1997; Wagner et al., 1999]. The
signal relates to surface characteristics by the dependence of
the backscatter with the soil and vegetation moisture, the
vegetation coverage and type, and the surface roughness.
The interplay between soil and vegetation is complex, but
the incident angle of the backscatter has been found to allow
some separation of the different contributions [Frison and
Mougin, 1996]. Prigent et al. [2001a] also studied the
sensitivity of the backscattering coefficient to vegetation,
and Prigent et al. [2005] and Aires et al. [2005] evaluated
its potential to estimate soil moisture. For this study, the
backscattering coefficients were processed following a
method similar to that of Frison and Mougin [1996],
keeping the values at 20° and 45°
3.3.4. Passive Microwaves: SSM/I Emissivities

[21] The SSM/I instruments on board the Defense Mete-
orological Satellite Program (DMSP) polar orbiters observe
the Earth twice daily at 19.35, 22.24, 37.00, and 85.50 GHz
with both vertical and horizontal polarizations, with the
exception of 22 GHz which is vertically polarized only. The
observing incidence angle is close to 53° and the fields-of-
view decrease with frequency, from 43 x 69 km? to 13 x
15 km? [Hollinger et al., 1987]. The land microwave
emissivities are estimated from SSM/I observations by
removing contributions from the atmosphere, clouds, rain,
and the surface temperature using ancillary data from
ISCCP and the NCEP reanalysis [Prigent et al., 1997,
2006]. In contrast to the direct use of the microwave
brightness temperatures for surface characterization, these
calculated emissivities are related to the surface properties
themselves without confusing signals from atmospheric
contribution or surface temperature variations. Their poten-
tial for surface characterization has been discussed in the
study by Prigent et al. [2001b, 2005].
3.3.5. Net Radiation: ISCCP Radiative Fluxes

[22] Radiative fluxes are linked to the heat fluxes through
the surface energy balance. Global estimates of the radiative
fluxes are derived either from atmospheric reanalysis or
from satellite retrievals. For this study, the products de-
scribed in the study by Zhang et al. [2004] are selected
(ISCCP-FD). This data set is an elaborated product, derived
from a collection of global properties of clouds, atmosphere,
and surface, used into a radiative transfer model to calculate
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Table 1. Correlation Coefficients and RMS Errors for a Nonlinear
Estimation Between Individual Groups of Satellite-Derived Vari-
ables and Sensible and Latent Fluxes (GSWP Multimodel Analysis
and NCEP Reanalysis)®

Correlation RMSE
Satellite Products GSWP NCEP GSWP NCEP
Sensible Flux
Emissivity 0.44 0.61 27.1 (58.1) 34.9 (63.0)
Backscatter 0.32 0.52 28.6 (61.3) 37.5 (67.7)
Reflectance 0.42 0.59 27.4 (58.8) 35.4 (63.8)
Skin Temperature 0.64 0.63 23.0 (49.5) 34.1 (61.6)
Diurnal Cycle 0.59 0.71 24.4 (52.3) 30.8 (55.5)
Net Radiation 0.69 0.70 21.8 (46.8) 31.5 (56.9)
Latent Flux
Emissivity 0.80 0.83 21.6 (46.2) 31.5 (56.9)
Backscatter 0.70 0.75 25.6 (55.0) 36.7 (66.2)
Reflectance 0.82 0.79 20.2 (43.4) 34.5 (62.4)
Skin temperature 0.48 0.48 31.5 (67.7) 49.3 (89.1)
Diurnal cycle 0.72 0.76 24.9 (53.4) 36.2 (65.3)
Net radiation 0.82 0.84 20.6 (44.3) 29.5 (53.4)

“The satellite-derived variables are SSM/I emissivity, ERS backscatter,
AVHRR reflectance, ISCCP skin temperature, amplitude of its diurnal cycle,
and net radiation. The RMS error is given in W/m® and as a percentage of the
mean flux (in brackets).

the radiative fluxes. The global cloud and surface properties
are extracted from ISCCP, and the NASA Goddard Institute
for Space Studies (GISS) radiative transfer model is
employed for the calculations. It provides short-wave and
long-wave, upwelling and downwelling fluxes at 5 levels
between the top of the atmosphere and the surface, at 3 hour
time steps and 280 km intervals.

4. Information Content of the Satellite
Observations
4.1. Analysis for Individual Satellite Observations

[23] The study starts by comparing the fluxes from the
GSWP multimodel analysis and the NCEP reanalysis with
the fluxes estimated by individual statistical models linking
the satellite observations and the GSWP or NCEP fluxes.
For instance, for the SSM/I emissivity data, the statistical
model is built with a NN having as inputs the 7 channels at
different frequencies; for the IR skin temperature, the NN
has only one input with skin temperatures; and so on. The
statistical models are calibrated with data from February,
May, August, and November 1993, as explained in section 2,
while the correlation and errors are derived from the
remaining data in 1993. Very similar statistics are obtained
for 1994 or 1995. Global mean correlations and estimation
errors are given in Table 1.

[24] For both sensible and latent fluxes the correlations
with the net radiation are one of the strongest. This reflects
the close relationship between radiative and heat fluxes
through the surface energy balance, but it can also be due to
cross-correlations between the radiation product and the
LSM forcings. As the ISCCP radiative fluxes are quite an
elaborated product requiring large ancillary data sets, it is
difficult to asses the independence of this radiative fluxes
from the LSM forcings. The downwelling short and long-
wave components of the net radiation product from Zhang
et al. [2004] used here are different from the downwelling
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radiative fluxes by Stackhouse et al. [2004] used for the
GSWP forcings, though they are still different estimates of
a similar product. The skin temperature and the amplitude
of its diurnal cycle are also highly correlated with the
sensible fluxes (compared to the other satellite products):
this reflects the close relationship between the sensible
fluxes and the radiative surface temperature, as discussed
in section 1. For the latent fluxes the AVHRR reflectances
are next, but followed closely by the SSM/I emissivities and
the amplitude of the surface temperature diurnal cycle. This
is also expected: the difference between atmospheric and
surface moisture controls the latent fluxes and the AVHRR
reflectances, the SSM/I emissivities and the amplitude of
the diurnal cycle have shown good correlations with veg-
etation and the available surface moisture, as discussed in
section 3.3. However, for the particular case of the reflec-
tances and the GSWP fluxes, the correlations should be
interpreted with caution as some of the forcings related to
vegetation are derived from NDVI time series. Note that
this is not the case for the NCEP reanalysis, and the
correlation is also relatively high. In general, the correla-
tions with the latent fluxes are higher than with the sensible
fluxes. This could be an indication that the processes
modulating the latent fluxes are better captured by the
satellite data, but also an indication that the sensible fluxes
cannot be reproduced by the LSMs as well as the latent
fluxes.

4.2. Analysis for Combinations of Satellite
Observations

[25] The statistical model is now calibrated with all the
satellite observations as inputs. The global mean correla-
tions and estimation errors are given in Table 2 (“All
Groups”). As expected, the statistical model using all

Table 2. Correlation Coefficients and RMS Errors for a Nonlinear
Estimation Between Different Combinations of Individual Groups
of Satellite-Derived Variables and the Sensible and Latent Fluxes
(GSWP Multimodel Analysis and NCEP Reanalysis)®

Correlation RMSE
Satellite Products GSWP NCEP GSWP NCEP
Sensible Flux
All groups 0.83 0.84 16.7 (36.0) 23.5 (42.4)
No emissivity 0.78 0.80 18.7 (40.2) 26.0 (46.9)
No backscatter 0.79 0.81 18.5 (39.7) 25.8 (46.5)
No reflectance 0.78 0.80 18.7 (40.0) 26.0 (47.0)
No skin temperature 0.69 0.75 21.9 (47.0) 29.1 (52.5)
No diurnal cycle 0.73 0.78 20.5 (44.0) 27.2 (49.2)
No net radiation 0.79 0.81 18.4 (39.6) 25.5 (46.1)
No rad no reflec 0.78 0.80 18.4 (39.3) 26.2 (47.2)
Latent Flux
All groups 0.92 0.92 14.2 (30.5) 22.0 (39.7)
No emissivity 0.88 0.87 17.0 (36.6) 27.1 (48.9)
No backscatter 0.88 0.87 17.0 (36.3) 27.3 (49.2)
No reflectance 0.86 0.87 18.5 (39.7) 27.6 (49.9)
No skin temperature 0.87 0.87 17.9 (38.5) 27.5 (49.7)
No diurnal cycle 0.88 0.88 16.8 (36.2) 27.0 (48.7)
No net radiation 0.89 0.89 16.5 (35.4) 25.8 (46.7)
No rad no reflec 0.85 0.87 18.8 (40.4) 27.4 (49.5)

#All Groups’ means with all the satellite variables listed in Table 1. ‘No
variable X means all variables but the variable X. The last case labeled as
‘No Rad No Reflec’ corresponds to all variables but the net radiation and
the reflectances (see the text for more details). The RMS error is given in
W/m? and as a percentage of the mean flux (in brackets).
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satellite products estimates the fluxes better than the statis-
tical models using only one satellite product. The sensible
flux relative errors are lowered approximately by 13% and
16% for the GSWP multimodel analysis and the NCEP
reanalysis, respectively, and 15% and 12% for the latent
fluxes. Then the individual satellite products are removed
one by one, to evaluate how the newly calibrated statistical
model with all inputs but one performs with respect to the
all-inputs statistical model. The global mean correlations
and estimation errors are given in Table 2 in the rows named
as “No X, where X is the satellite product removed.
Removing the skin temperature has the largest impact on
the sensible fluxes. For the latent fluxes, the information
given by the different products seems more redundant. In
principle, different statistical models with all satellite inputs
but one could be calibrated and used to estimate the fluxes
for those situations where one of the satellite products is
absent. The case where both radiation and reflectances are
not used as inputs to the statistical model is also given, to
show that the capacity of the statistical model to estimated
the multimodel fluxes is not just a consequence of cross-
correlations between the NDVI LSM forcings and the
AVHRR inputs. Even without those two inputs, the corre-
lations and estimation errors are close to the case where
only radiation was not used as an input.

5. Evaluation of the Satellite-Driven Fluxes

[26] In this section the capacity of a statistical model to
estimate the land surface heat fluxes is evaluated. The
statistical model has as inputs the SSM/I emissivities, the
ERS backscatter, the AVHRR reflectances, the IR skin
temperatures, and the diurnal cycle of the skin temperatures.
The outputs are the sensible fluxes and the latent fluxes, and
for each LSM one independent NN statistical model is
calibrated with the corresponding satellite data and fluxes
as described in section 2. The net radiation is not used as an
input. As discussed in section 4.1, it is more likely to be
correlated with the LSM forcing and a more complex
product. This decision could be revised in the future for a
given LSM and radiation product. The AVHRR reflectances
could also be correlated with the vegetation forcing in the
GSWP exercise, as also explained in section 4.1. Some of
the analyses for the GSWP LSMs were rerun with and
without the reflectances, and very similar statistics were
obtained. In order to emphasize the synergy between the
observations from the visible to the microwave, the AVHRR
reflectances are kept as inputs to the statistical models.

5.1. Analyzing the Estimation Error

[27] The estimation error, the difference between the
original LSM fluxes and the fluxes estimated by the
statistical model, arises from different sources. Firstly,
the link between the fluxes and the satellite observations
can be established because some of the processes modulat-
ing the fluxes have a signature in the satellite measurements.
However, a completely deterministic mapping between
fluxes and satellite data cannot be expected as some of
the processes affecting the fluxes are not captured by the
satellite data. A second source of errors is related to the two
data sets themselves: the fluxes produced by the LSMs will
always be an approximation of the real fluxes, and the
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satellite observations are also subject to errors, both instru-
mental errors and limitations or errors in the data process-
ing. For instance, the skin temperature product is clear-sky
biased. Even if there was a completely deterministic map-
ping between fluxes and satellite data and error-free flux
observations and satellite data, a third source of error would
come from the statistical model itself. The statistical model
will always be an approximation of the processes to be
modeled, even if it can be a very good one.

[28] The histograms of the fluxes estimated by the statis-
tical model and the corresponding LSM fluxes are displayed
in Figure 3. Starting with the sensible fluxes, the histograms
show that the NCEP fluxes are different from the GSWP
fluxes. The distributions from the estimated fluxes follow
the shape of the original fluxes, though a narrowing of the
distributions is visible. Extreme values are not well repre-
sented in the training data set (see the shapes of the LSM
histograms), and as a consequence it is more difficult for the
statistical model to reproduce those cases. Techniques exist
where the original distribution is equalized in order to have
all regions equally represented. In this case the calibration
for the rare events is better, but at the expense of a poorer
calibration for the more frequent events. Another possibility
is to calibrate different statistical models for different
regimes, as long as they can be recognized. This could be
based on a geographical classification. These techniques
could be consider for further developments.

[20] For the latent fluxes, the NCEP histogram looks also
different from the GSWP histograms. The histograms show
the same tendency to reduce the extreme values, but now
only for the very large values or the very few negative
values. Low positive values are now well represented in the
data sets, and the errors for this part of the flux range do not
increase (compared with the intermediate fluxes) as much as
for the sensible fluxes.

5.2. Comparing Geographical and Temporal Patterns

[30] An example of the original and estimated monthly
mean fluxes for the GSWP models, and the NCEP reanal-
ysis is given in Figures 4 and 5 for August 1995. The data
gaps in Figures 4 and 5 correspond to regions where some
satellite inputs are not available. This happens essentially in
central Asia, a region that was not covered by geostationary
satellite at that time, and as a consequence, the diurnal cycle
of the skin temperatures has not been calculated. The gaps
could be filled by training the statistical model without this
variable.

[31] Large efforts from the modeling community has led
to comprehensive parameterization of the different processes
and today the land surface heat fluxes derived from the
models are the only realistic estimates at the global scale.
Nevertheless, large differences can still be observed, in
magnitude and geographical patterns, when comparing the
original fluxes (left columns in Figures 4 and 5) even when
they are equally forced LSMs (the multimodel, ISBA, and
ORCHIDEE). For instance, significant differences between
the ISBA and ORCHIDEE fluxes and their partitioning can
be observed in the tropics. In general, there is a better
agreement among the different LSMs themselves for the
latent fluxes than for the sensible fluxes. The corresponding
estimated fluxes by the statistical models are displayed in
the right columns in Figures 4 and 5. The maps show that

8 of 22



D06305 JIMENEZ ET AL.: GLOBAL LAND HEAT FLUXES FROM MULTISATELLITE OBSERVATIONS D06305

0.03 0.03
*  Orig * Orig
. * Est ' s Est
0.02} A 1 0.02 i
— LA a— [
° f ) S I
2 I P A
0.01} Pl = : 0.01 ’.; T, e
V4 " [ RO
0 iz. N \k:‘.!h. b 0 l’-', N .‘c-\“lu L0-0-8 L
0 50 100 150 200 0 50 100 150 200
Sensible Flux (W/m2) Latent Flux (W/m2)
0.03 0.03
0.02¢ 1 0.02 I
I
5 T b
(=9 —"‘q [=% 1]
0.01} goor, ! oot} ! ‘“.\. A
(:’ o f g e
0 r'f‘a . N tteees 0 .‘f . .{:}_‘ﬂh_
0 50 100 150 200 0 50 100 150 200
Sensible Flux (W/m2) Latent Flux (W/m2)
0.03 0.03
L ]
0.02} r 1 002p A
1!
B fh\ g w1
AN 1\
0.01} 4 “.\, : 001F & N ga
=‘.r/‘ \t\* . : ?\
0 !'f \.:}n-‘4==¢¢ Oée ..«é i\:"-\‘_‘ - - -
0 50 100 150 200 0 50 100 150 200
Sensible Flux (W/m2) Latent Flux (W/m2)
0.03— : . : : 0.03—5
|I%I
I
0.02 0.02 i
- r - i
= \ = ]
a ,’.‘J. b o .'rﬂ\lu
0.01} PN 1 0.01 j
i k\_ -
Jr [ eI pr, I '::htrr'/: \
0 g N ‘\2‘ $0-0-0-00 0 _!rl. . . 3. -
50 100 150 200 0 50 100 150 200
Sensible Flux (W/m2) Latent Flux (W/m2)

Figure 3. Histograms for the 1993—-1994—1995 original (Orig) and estimated (Est) fluxes. The
histograms of original (red) and estimated (blue) fluxes are plotted normalized to unity area. (left)
Sensible fluxes. (right) Latent fluxes. (top to bottom) Fluxes for the multimodel analysis, ISBA,
ORCHIDEE, and the NCEP reanalysis.
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Figure 5. As in Figure 4 but for the latent fluxes.

a0

Table 3. Comparison of the Multimodel Original and Satellite-Derived Sensible and Latent Fluxes (W/m?) for Six Latitude Bands and
6 Months in 1994*

February April June August October December All Months
Sensible Flux
40°N60°N 0.4 (5.1) 35.9 (37.0) 52.9 (39.1) 45.8 (42.3) 0.6 (4.8) —11.8 (—6.5) 28.5 (27.3)
20°N40°N 26.2. (33.5) 65.5 (64.4) 74.7 (67.9) 70.2 (67.2) 32.8 (38.6) 7.7 (11.6) 44.4 (45.4)
0°20°N 65.7 (62.3) 66.3 (61.9) 58.4 (51.3) 47.9 (45.5) 40.7 (46.9) 44.3 (43.2) 54.5 (52.4)
20°S0° 39.5 (39.9) 33.4 (36.1) 30.6 (37.4) 52.5 (55.6) 59.4 (57.2) 454 (44.1) 44.2 (44.6)
20°840°S 58.2 (64.0) 352 (43.5) 19.5 (35.3) 38.9 (53.0) 70.4 (66.3) 85.8 (69.9) 58.9 (58.4)
40°S60°S 69.1 (52.3) —0.3 (15.0) 29.0 (36.3) 73.6 (57.4) 44.5 (38.8)
Global 45.8 (48.2) 49.1 (50.1) 50.3 (48.4) 54.5 (54.8) 44.6 (47.2) 42.6 (40.4) 48.1 (47.7)
Latent Flux
40°N60°N 11.4 (17.4) 36.0 (27.2) 75.5 (67.5) 54.6 (63.9) 26.8 (32.1) 12.0 (21.0) 44.6 (46.4)
20°N40°N 16.3 (20.8) 26.2 (27.8) 31.4 (32.3) 30.0 (32.6) 23.8 (25.2) 11.4 (19.3) 22.1 (25.4)
0°20°N 33.4 (27.9) 47.9 (46.3) 54.0 (52.6) 66.5 (58.6) 63.0 (54.3) 46.5 (43.4) 51.3 (48.6)
20°S0° 85.4 (76.4) 78.3 (77.8) 54.9 (63.8) 47.4 (51.6) 59.9 (60.0) 79.7 (72.8) 67.8 (67.8)
20°S40°S 68.9 (54.5) 32.2 (45.1) 18.4 (31.0) 18.2 (21.0) 33.5 (36.9) 54.2 (47.3) 42.0 (43.0)
40°S60°S 37.3 (28.3) 36.6 (25.0) 39.4 (22.1) 53.4 (34.8) 41.0 (26.3)
Global 47.9 (45.6) 48.1 (49.6) 49.4 (52.0) 44.4 (46.5) 44.3 (43.5) 48.1 (46.0) 46.7 (47.0)

“In each cell, the first number gives the zonal value for the original fluxes, the number in brackets corresponds to the estimated fluxes. The last column
gives the averaged fluxes over the 6 months for a given latitude band. The last row gives the globally averaged fluxes for a given month. The values at the
right-bottom corner give the global mean fluxes for the 6 months considered.
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Figure 6. Examples of area averaged sensible fluxes for different regions. (Left) Averages for the
original fluxes. (Right) Estimated fluxes. (Top to bottom) Fluxes corresponding to a tropical (10°S0°,
70W50°W) and savana (20°S10°S, 65°W40°W) regions in South America, coniferous forest (50°N60°N,
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12 of 22



D06305 JIMENEZ ET AL.: GLOBAL LAND HEAT FLUXES FROM MULTISATELLITE OBSERVATIONS D06305
ST T T T LA . E Bt e [ e 2 i B M B 2o e A 2 e e BT™'*Y JHLEN N B I e e B S e B S B e B S B e B B e
" k]
= 125 tropical 125 |- tropical g
%m- P . o '.HO’ o-o,/rl %100- Py s soos |
y - 3 a2ttty it eantes e e o
E ﬁm:ﬂm z\‘# é m;_,\wrﬁduww-m _,_,,_;mﬂ",
E i i i MULT-BO | A
ZE- = it o 4 IsBABO . '2 so
o sl ~—w-— ORCH-B0 A S =5l .
MNCEP
1] N TR TN S TS T T TN TN T T S IS T TS T T TV NS U VO T O TSN TN O S O T T =" [i] N TS TN TN NN TR U T A NN VT S TN S T N TS TS T N S " T N—————
Feb83 Mayd3 Aug93 Movd3 Feb4 May3d Augdd Movdd FebdS May35 Aug®s Movas Feb33 May33 Augd3 Novad Feb24 May34 Augd4 MNovdd FebdS Mayds Augds Novas
B - ./ I S S S B B B S S R S B B B B R S R B B B B N B S S S R BT ") LI S S e B Bt e 2 S B S B e B S e 2 B
= 125} conifers -4 & 125} conifers -
g :
£ 100} 4 Zo0f E
§
s X, 1 € Tf A (=S pe .
E sl /:‘t\. 1 3 sof ;f‘“’\ / ’\ /""\‘ il
3 v/ : A\ ¢ J
O L b : - E1s % ‘I)' \ v Y -
- Y
aFehm May93 Augd3 MNove3 Feb04 Maydd Augdd Movdd FebdS MaydS Augds News “Febo3 Mayas Augd3 Novod Febd4 Mmydd Augdd Novdd FebSS Mayd5 AugdS Novas
PV N o W et o e e st e e F P g o o e e e o e e e e
3
= 125 savana & 125| savana
g A f o ~— B o A& g
Z woga a s, = 100} " .
§ "'a""o\ /e -\ f@ u E ;.‘g-. atp s
- SN /’:/W e - 3T fyte poLs oo J¥T
L ’ v 3 w R A
% 50 \\" S \\ ’/' \ o E 50 r! ‘_"\T",‘(
S sl Yov v \'w:. il
uFahssl Maya3 Augd3 anws Fe;ﬂ Mayaq nu:gm Nm Follasﬁ Mayas lulgﬁ No\es 'Fe;ﬂu an; nug% an Fel.:m May34 Augdd ;\Imml Faboﬁ. Maw.’; &ugﬂ& nwas
= 125} steppes -+ g 125 steppes -
g 100 |- s Emo- 1
:’ o
i nf T S 4
= 3
£ s0f F g " S0 1
S u e - E
5 - A2, =, 3 4 A
£ & & B 25 Al S, - .
L} E = g L o~ ake:
,_.3:,-:{:__;- ,.@.ﬂ‘\drf'“ s sadiiiiie B 2 2 aotiliiies I 5o 2 adiilins
Fabi3 Mayd3 Augdd Mova Febdd Maysd Augda Movaa FebsS Mayds AugdS Novas “Feb83 Maya3 Augd3 Noves Febd Maydd Augdd Novad FeboS Mayd5 Auge5 Novas
o T —r T B e L T =TT T=T—T——T—T ~
= 125} mountains 4 W 125 mountains -
g £
2 100f 1 Sl i
g 5
é 75 - 2 st -
= K
1 v ] 4 z.w Hfr'*'*"
o Ll L J\J’: Ll 11 L rﬁ{ Ll 1 3 oyl Ll Imh— | N - - ; Ll L 11 1 TA F
Fab93 uqﬂ Augd3 Nowa3 Febdd Mayds Augds Nam Feb35 Mayd5 Augd5 Novas Feb33 May33 Augd3 Novd3 Feb3d Mayda Augdd Noved Fabss May35 Augds Novas
TN B St B e e o o i e i e i e e e i e e e DU B B I A oo i e e e e e e e e e
gﬁﬁ - desert e g 125 desert 4
Z w0 E % 100 - -
i~ e |
% w { 3w :
& 184l }
T A, N NN e RRr S fia = = SIS . Y . s,

SN
Fob3 Mays3 .ﬁum Nnm Feb84 May34 Augdd Movdd Febd5 Mayd5 Augds Moves

s i, s e, e
Fobg3 Mayd3d Augd3 Nova3 Feb®4 May34 Augdd MNovid Febd5 Mayd5 AugsS Novas
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Figure 8. GSWP-2 downward long-wave radiative for-
cing. The daily mean values averaged in a 10°S0° latitude
band over South America for 1993 (black), 1994 (blue), and
1995 (red) are plotted. For comparison, the ISCCP monthly
mean values are also plotted for the same years as closed
circles.

the estimated fluxes capture relatively well the regional
variations associated to different climate and vegetation
regimes, although some exceptions are visible. A more
quantitative analysis is summarized in Table 3, where the
multimodel original and estimated zonal mean fluxes for six
different latitude bands and 6 months in 1994 are given.
There are some dispersion between the original and esti-
mated fluxes, but in general the zonal and monthly gradients
are well reproduced by the statistical model. The largest
differences are found for the 60°S40°S latitude band, which
only includes a relatively small number of land pixels. Table 3
also gives the yearly averaged fluxes for a given latitude
band, and the monthly averaged fluxes for the whole globe.
Both yearly and monthly original and estimated averaged
fluxes agree relatively well. The statistical model is calibrated
to represent the global relationship between satellite data and
fluxes, and will reproduce the original LSM global means.
[32] In order to analyze their time evolution, the fluxes
from the multimodel analysis, the ISBA and ORCHIDEE
models, and the NCEP reanalysis were averaged for a set of
six regions with different vegetation covers over the 1993 —
1995 period. A comparison of the original LSM fluxes and
the estimated fluxes by the statistical model is presented in
Figures 6 and 7 for these regions. In general, the estimated
fluxes capture the seasonal variations in all the regions,
although in some cases there are noticeable differences
between the original and estimated fluxes. The estimated
fluxes agree better with each other than the original LSM
fluxes themselves. This is clear particularly for the conifer-
ous region. It could be argued that the statistical model
tends to reduce the extreme values for a given model and
‘smooth’ the fluxes: consequently the estimations for the
different models would tend to agree better. However, this
can also be the consequence of the statistical model forcing
the consistency between satellite data and the different LSM
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estimates. If the estimated fluxes are a better estimate of the
real fluxes, they are expected to be closer than the original
LSM fluxes themselves.

[33] As said before, the statistical model cannot remove
global biases. However, if there are specific regions with
anomalous fluxes in disagreement with the global relation-
ship, the statistical model can potentially identify these
cases. For instance, the original ISBA fluxes in the Amazon
region behave differently during summer, whereas the
statistically reproduced ISBA fluxes are in better agreement
with the fluxes from the other LSMs. A comparison with
tower fluxes from a station in this region (see following
section 5.3) seems to indicate anomalous ISBA fluxes for
this part of the year. Another example is the large fluxes
produced by the multimodel, ISBA, and ORCHIDEE in the
last months of 1995 in the tropical and savana regions. The
statistical models also modify those fluxes and estimate
fluxes that agree better with the fluxes from the previous
years. In this case, it was confirmed that the anomalous
GSWP fluxes were the result of an anomaly in the radiative
forcing of the models. Figure 8 plots the downward long-
wave radiative forcing for the same latitude band in South
America. The forcing anomaly was caused by a filling
procedure that replaced the original radiative forcing that
was missing for those months [Zhao and Dirmeyer, 2003].
In both examples the statistical model helps diagnose
specific problems in the LSMs. However, a difference
between original and estimated fluxes could also highlight
a potential problem with the satellite data, or with the
capacity of the statistical model to reproduce the fluxes in
that region, so any differences between original an estimated
fluxes have to be carefully interpreted.

5.3. Comparison With Tower Fluxes

[34] A validation of the original LSM fluxes and the
fluxes estimated by the statistical model would be of great
interest in order to see whether the statistical models driven
by the satellite observations can reproduce more realistic
fluxes than the original LSMs. However, this task is very
challenging, especially at the global scale and for the period
selected here. Spatially, comparison of point measurements
from a flux tower with flux estimates averaged over a large
area is a problem. Geographically, stations are concentrated
in midlatitude regions, and as a consequence, do not
represent global conditions. The largest differences between
the model fluxes are precisely outside these relatively well
characterized regions, such as the African deserts or the
Amazonian forest (see Figures 4 and 5). Temporally, for all
stations but one there is no data available for 1993—1995.

[35] The only station with a relatively long record of flux
measurements is the Harvard forest station (42.5°N,
72.2°W), located in an area of temperate deciduous forest.
Figure 9 shows a comparison of its tower monthly fluxes
with the original and estimated monthly fluxes averaged
over a 2° x 2° longitude-latitude box around the station
(smaller boxes were also tested, but without changing the
conclusions of the comparison). Absence of LSM fluxes
corresponds to snow periods or/and missing satellite data.
Some gaps in the tower fluxes are also noted. The tower
sensible fluxes show a large inter-annual variability and
differ significantly from the LSM fluxes. Note also the large
dispersion between the LSM sensible fluxes, even among
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Figure 9. Averaged fluxes in a 2° x 2° box around the Harvard Forest station. (Top to bottom) Original
sensible fluxes, the estimated sensible fluxes, the original latent fluxes, and the estimated latent fluxes.
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Table 4. Correlation Coefficients and RMS Errors for the
Comparison of the Multimodel, ISBA, ORCHIDEE, and NCEP
Original and Satellite-Derived Estimated Fluxes With the Tower
Fluxes From the Harvard Forest Station Plotted in Figure 9°

Correlation RMSE (W/m?)
LSM SM LSM SM
Sensible Flux
MULT 0.57 0.57 252 26.2
ISBA 0.52 0.57 37.5 26.3
ORCH 0.47 0.56 23.8 24.5
NCEP 0.46 0.42 33.5 27.1
Latent Flux
MULT 0.97 0.91 25.5 17.6
ISBA 0.70 0.91 22.3 19.8
ORCH 0.95 0.87 15,6 15.3
NCEP 0.70 0.89 52.6 36.8

4LSM refers to the original model fluxes; SM, to the fluxes estimated by
each corresponding statistical model.

the original GSWP fluxes. The latent fluxes are in better
agreement. The results are statistically summarized in Table 4.
The worst agreement for the sensible fluxes is reflected in
the lower correlations, compared with the latent fluxes.
Even if the estimated sensible fluxes show less dispersion
than the original fluxes, errors and correlations are not very
different in general. For the latent fluxes, ISBA and NCEP
fluxes are significantly less correlated than the fluxes from
the multimodel and ORCHIDEE, and the satellite-derived
fluxes for these models show better agreement with the
tower fluxes. The correlations for the multimodel and
ORCHIDEE were already over 0.9, and the statistical model
seems to lower them slightly. However, this is just one
example of an admittedly coarse comparison (specially in
spatial terms) and no general conclusions can be derived.
[36] In order to extend the analysis further we also
compared the surface fluxes with an annual climatology
averaged over the existing years of tower data. This is again
a coarse comparison, but for those locations where there is
no large inter-annual variability it can nevertheless be
illustrative. For example, for the measurements at the
Tapajos national forest (2.9°S, 54.96°W) an annual clima-
tology has been built by averaging the 2000—2006 fluxes,
and these climatological fluxes are compared with the
1993-1995 LSM fluxes and the fluxes estimated by the
statistical model over a 2° X 2° box around the station
(Figure 10). An annual climatology is used, and as a
consequence, each flux tower has an identical time series
for each year. An idea of the inter-annual variability of the
tower fluxes is given by plotting their monthly maximum
and minimum for the years considered, showing that in this
case the variability is relatively small compared with the
mean climatological values. As observed with the Harvard
forest fluxes, better agreement is found between the tower
climatology and the LSM latent fluxes, compared with the
LSM sensible fluxes. The NCEP sensible fluxes agree well
with the climatology, but the latent fluxes are overestimated.
The unusual behavior of the GSWP LSMs for the end of
1995 is not reproduced by the statistical models, as already
discussed in section 5.2. Figure 11 presents the results at the
Walnut Gulch Kendall grassland site (31.7°N, 109.9°W) in
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Arizona. The seasonal amplitude of the original LSM
sensible fluxes is larger than observed by the tower measure-
ments, with also a significant inter-annual variability. The
statistical models reproduce better the tower climatology and
tend to yield fluxes with a reduced spread, compared to the
large spread observed between the LSMs.

[37] In order to produce a more systematic comparison,
the 1993—1995 fluxes and the 2000—2006 annual climatol-
ogies of 76 AmeriFlux stations and the 1996—1998 annual
climatologies of 17 stations from the Marconi Conference
data set have been compared. A box of 0.5° x 0.5° was
used to match tower and modeled fluxes (the size of the box
has been reduced, compared with the previous tests on
individual stations, to allow a closer match between tower
and model fluxes). This results in 798 matches for the
AmeriFlux data set and 141 for the Marconi Conference
data set. The Marconi Conference data set is processed with
4 different gap-filling techniques and the comparison is
performed with the fluxes from the four techniques. For this
particular comparison, slightly better agreement is found
between the modeled fluxes and the climatological Marconi
fluxes that use filling by mean daily courses (method
MDC orr). A summary of the comparison is given in
Table 5 and Table 6 respectively for the AmeriFlux and
Marconi (method MDC orr) data sets. In general, the
original LSM fluxes and the fluxes estimated by the
statistical model compare similarly with the independent
flux tower climatologies.

[38] The AmeriFlux data set results in a larger number of
matches and is analyzed further. Histograms showing the
distribution of the errors for the AmeriFlux comparison are
plotted in Figure 12, and the mean and standard deviation of
the differences are given in Table 7. The histograms for the
differences between the AmeriFlux fluxes and the original
and estimated fluxes are quite similar. No significant differ-
ences are found between the biases for the original and
estimated fluxes. The global relationships should hold for
these relatively well characterized midlatitude environ-
ments, and the statistical models cannot remove any biases
if they exist, as discussed in section 5.2. Regarding the sign
of the biases, all the models and the reanalysis sensible
fluxes are negatively biased with respect to the AmeriFlux
climatology, while for the latent fluxes all but ORCHIDEE
are positively biased.

[39] As already said, this comparison is limited to the
midlatitude regions, where most LSMs have been carefully
studied, and no general conclusion can be drawn. The
largest differences between the LSMs or between
the original LSM fluxes and the fluxes estimated by the
statistical models are not observed in these regions. For
the transition regions where the LSMs may not capture
correctly all the spatial and temporal variability, we would
argue that the statistical models driven by the satellite data
could be more efficient in terms of capturing this variability,
but this cannot be demonstrated here with the analyzed flux
tower data sets.

6. Conclusions

[40] The potential of a suite of satellite observations to
estimate the latent and sensible heat fluxes over snow-free
continents has been evaluated, using a methodology based
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Figure 10. Same as in Figure 9 but around the Tapajos National Forest (primary forest station) and with
the flux tower data corresponding to an annual climatology built by averaging the tower fluxes over the
2002-2006 period (see the text for more details). The black solid line represents the tower monthly
maximum and minimum fluxes for that period.
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Table 5. Comparison of the Fluxes From the Multimodel, ISBA,
ORCHIDEE, and NCEP Models With Tower Fluxes®

Correlation RMSE (%)
LSM SM LSM SM
Sensible Flux
MULT 0.66 0.68 66.3 59.1
ISBA 0.64 0.68 78.5 68.0
ORCH 0.70 0.67 51.8 52.8
NCEP 0.73 0.67 66.7 58.5
Latent Flux
MULT 0.77 0.78 56.8 46.9
ISBA 0.70 0.71 58.0 55.0
ORCH 0.82 0.79 40.4 47.8
NCEP 0.76 0.75 72.0 64.4

“The table corresponds to a comparison with a 2000-2006 annual
climatology from AmeriFlux data. LSM refers to the original model fluxes;
SM, to the fluxes estimated by each corresponding statistical model. The
correlation between model and tower fluxes is given, together with the
RMS error of the differences between model and tower fluxes, expressed as
percentage of the tower fluxes (see the text for more details).

on calibrating a statistical method linking a suite of satellite
observations to the fluxes. The statistical model learns the
global relationship between satellite data and fluxes, and
can then be used to produce satellite-driven fluxes. The
satellite data have been selected for their known sensitivity
to the surface properties that affect the fluxes (soil moisture,
surface temperature and its diurnal cycle, vegetation) as well
as for their global coverage and their availability over many
years. They cover a broad range of wavelengths from the
visible to the microwaves. The in situ flux measurement
being very scarce in space and time, the fluxes calculated
from land surface models (LSMs) are adopted as the most
reliable estimates of land surface heat fluxes at a global
scale. GSWP outputs are selected, along with NCEP re-
analysis. Three estimates from GSWP are studied: the
multimodel, ISBA, and ORCHIDEE. The model and satel-
lite data are gridded on a 0.25° x 0.25° grid and averaged
over a month, for the 19931995 period.

[41] The statistical links between the satellite data and the
different LSM fluxes are analyzed using statistical models
based on neural networks. The analyses are conducted
separately for the four LSMs (three GSWP LSMs and the
NCEP reanalysis), setting independent statistical models for
each combination of satellite observations and LSM. The
statistical models that use all the considered satellite obser-
vations as inputs can reproduce the modeled land fluxes on
a global scale with theoretical RMS errors <25 W/m?,
proving that the satellite data contain relevant information
for flux estimation. The spatial and temporal patterns of the
fluxes are well captured in general, although exceptions
exist. Our analysis shows that individual satellite informa-
tion cannot yield such results: the synergetic use of various
wavelengths with complementary sensitivity improves the
ability to reproduce the fluxes for all types of environments.
The use of multiple satellite information also makes the
scheme more robust to the lack of one specific observation,
and the accuracy of the method with missing data has also
been assessed.

[42] The LSM fluxes (original fluxes) and the satellite-
derived estimates (estimated fluxes) have been qualitatively
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evaluated. Comparisons of the original fluxes from the four
land surface models (multimodel, ISBA, ORCHIDEE, and
NCEP) revealed that in some regions the differences could
be large, both in terms of magnitude and spatial structures.
This is especially significant for the sensible fluxes, even
when the models share the same forcing, as for the multi-
model, ISBA, and ORCHIDEE. The statistical model can-
not remove existing biases at the global scale, but for
specific regions where there is a departure from the global
relationship, the statistical model can potentially produce
local fluxes that are more consistent with the learned global
relationships. For instance, the comparison between original
fluxes and estimated fluxes at the end of 1995 evidenced an
anomaly in the GSWP radiation forcing fluxes. This scheme
can thus help diagnose specific problems with the LSMs,
though any discrepancies between original and estimated
fluxes have to be also evaluated in the context of possible
observation artifacts or errors introduced by the statistical
model.

[43] It is very difficult to globally asses the accuracy of
both original and estimated fluxes. A quantitative analysis
has been attempted by comparing the original and estimated
fluxes to independent available flux tower measurements.
The comparison is of limited significance in the context of a
global estimation of fluxes, as the geographical coverage of
the tower data is almost limited to midlatitude environ-
ments. The largest differences between the LSM fluxes are
observed outside these regions, where the LSMs have more
difficulties to estimate the fluxes. Spatially, the comparison
is rather coarse, as flux point measurements are compared
with fluxes averaged over large areas. Temporally the
comparison is rather limited, as only one station in a
temperate deciduous forest was found to have data during
1993-1995. Comparison of the tower and LSM fluxes at
this station showed that latent fluxes were more accurately
modeled than the sensible fluxes, and no significant
improvements were observed when comparing with the
satellite-derived fluxes. In order to extend the comparison,
a climatology of the tower flux measurements have been
produced and compared with the flux estimates. Examples
tend to show that adding the satellite information improved
the modeled values when the differences between the LSM
and tower fluxes are large, but a systematic comparison with
all the available stations did not statistically prove it. As
stated before, this exercise is essentially limited to midlat-

Table 6. As in Table 5 but for a Comparison With a 19961998
Annual Climatology From the Marconi Conference Data

Correlation RMSE (%)
LSM SM LSM SM
Sensible Flux
MULT 0.62 0.65 56.8 56.3
ISBA 0.65 0.61 97.5 86.8
ORCH 0.60 0.62 52.3 58.1
NCEP 0.54 0.60 84.7 65.7
Latent Flux
MULT 0.73 0.75 55.5 422
ISBA 0.58 0.65 53.1 46.8
ORCH 0.74 0.69 40.3 37.5
NCEP 0.55 0.65 99.0 87.0
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Figure 12. Histograms of the differences between the AmeriFlux climatologies and the modeled fluxes
summarized in Table 7. The histograms of original (red) and estimated (blue) fluxes are plotted
normalized to unity area. (Left) Sensible fluxes. (Right) Latent fluxes. (Top to bottom) Fluxes for the
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Table 7. Absolute Means and Standard Deviations of the Error
Distributions Plotted in Figure 12 for the Comparison Between
Original and Estimated Fluxes With the 2000-2006 Annual
Climatology From AmeriFlux Data®

Mean (W/m?) SD (W/m?)
LSM SM LSM SM
Sensible Flux
MULT —14.6 —12.0 252 23.1
ISBA —1.2 —1.6 345 29.9
ORCH —5.0 -2.5 223 23.1
NCEP —4.5 —4.8 30.3 253
Latent flux
MULT 12.6 7.7 22.4 19.8
ISBA 7.8 10.6 25.0 22.5
ORCH -3.6 —6.7 17.9 20.6
NCEP 15.3 20.0 28.9 21.2

“LSM refers to the original model fluxes; SM, to the fluxes estimated by
each corresponding statistical model.

itude areas and cannot be conclusive in the context of a
global comparison. The extension of the exercise to other
regions remains very challenging in the absence of valida-
tion data, and the arguable superiority of the proposed
methodology in those regions could not be demonstrated
here.

[44] In a broad sense the proposed methodology can be
considered similar in nature to an assimilation scheme
[Aires et al., 2005]: it combines satellite observations and
model estimation to maximize consistency. Our methodol-
ogy bypasses the actual estimation of the true land estate
(e.g., soil moisture) and directly estimates heat fluxes
without using a physical relationship, but a statistically
derived relationship linking satellite observations and
LSM outputs. As the methodology is tightly related to
LSM outputs, it cannot be considered as a method to derive
independent land surface heat fluxes from satellite obser-
vations. However, given the lack of any other reliable
methodology at a global scale, it is a promising and
pragmatic step forward, and a contribution toward the goal
of deriving a global climatology of land surface fluxes,
within the LANDFLUX initiative.
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