
eScholarship provides open access, scholarly publishing
services to the University of California and delivers a dynamic
research platform to scholars worldwide.

Lawrence Berkeley National Laboratory

 Peer Reviewed

Title:
Estimation of Net Ecosystem Carbon Exchange for the Conterminous United States by Combining
MODIS and AmeriFlux Data

Author:
Gu, Lianhong

Publication Date:
09-23-2009

Publication Info:
Lawrence Berkeley National Laboratory

Permalink:
http://escholarship.org/uc/item/5kc1x6fj

Citation:
Gu, Lianhong. (2009). Estimation of Net Ecosystem Carbon Exchange for the Conterminous
United States by Combining MODIS and AmeriFlux Data . Lawrence Berkeley National
Laboratory: Lawrence Berkeley National Laboratory. LBNL Paper LBNL-2175E. Retrieved from:
http://escholarship.org/uc/item/5kc1x6fj

http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org/uc/lbnl
http://escholarship.org/uc/lbnl
http://escholarship.org/uc/search?creator=Gu, Lianhong
http://escholarship.org/uc/item/5kc1x6fj


Estimation of Net Ecosystem Carbon Exchange for the Conterminous United 
States by Combining MODIS and AmeriFlux Data 

 
Jingfeng Xiao1*, Qianlai Zhuang2, Dennis D. Baldocchi3, Beverly E. Law4, Andrew D. 
Richardson5, Jiquan Chen6, Ram Oren7, Gregory Starr8, Asko Noormets9, Siyan Ma10, Shashi B. 
Verma11, Sonia Wharton12, Steven C. Wofsy13, Paul V. Bolstad14, Sean P. Burns15, David R. 
Cook16, Peter S. Curtis17, Bert G. Drake18, Matthias Falk12, Marc L. Fischer19, David R. Foster20, 
Lianhong Gu21, Julian L. Hadley22, David Y. Hollinger23, Gabriel G. Katul7 , Marcy Litvak24, 
Timothy A. Martin25, Roser Matamala26, Steve McNulty27, Tilden P. Meyers28, Russell K. 
Monson15, J. William Munger29, Walter C. Oechel30, Kyaw Tha Paw U12, Hans Peter Schmid31, 
Russell L. Scott32, Ge Sun27, Andrew E. Suyker11, Margaret S. Torn33  
 
1Department of Earth & Atmospheric Sciences, Purdue Climate Change Research Center, Purdue 
University, West Lafayette, IN 47907, USA 
2Department of Earth & Atmospheric Sciences, Department of Agronomy, Purdue Climate 
Change Research Center, Purdue University, West Lafayette, IN 47907, USA 
3Atmospheric Science Center, University of California, Berkeley, Berkeley, CA 94720, USA 
4College of Forestry, Oregon State University, Corvallis, OR 97331, USA 
5Complex Systems Research Center Institute for the Study of Earth, Oceans and Space, 
University of New Hampshire, Durham, NH 03824, USA 
6Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA 
7Nicholas School of the Environment, Duke University, Durham, NC 27708, USA 
8Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA 
9Department of Forestry and Environmental Resources and Southern Global Change Program, 
North Carolina State University, Raleigh, NC 27695, USA 
10Department of Environmental Science, Policy, & Management, University of California, 
Berkeley, CA 94720, USA 
11School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA 
12Department of Land, Air and Water Resources, University of California, Davis, Davis, CA  
95616, USA 
13Division of Engineering and Applied Science/Department of Earth and Planetary Science, 
Harvard University, Cambridge, MA 02138, USA 
14Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA 
15Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 
35 80309, USA 
16Argonne National Laboratory, Environmental Science Division, Argonne, IL 60439, USA 
17Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 
Columbus, OH 43210, USA 
18Smithsonian Environmental Research Center, Edgewater, MD 21037, USA 
19Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, 
Atmospheric Science Department, Berkeley, CA 94720, USA 
20Harvard Forest and Department of Organismic and Evolutionary Biology, Harvard 
University, Petersham, MA 01366, USA 
21Oak Ridge National Laboratory Environmental Sciences Division, Oak Ridge, TN 37831, USA 
22Harvard Forest, Harvard University, Petersham, MA 01366, USA 
23USDA Forest Service, Northeastern Research Station, Durham, NH 03824, US47 A 



24Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA 
25University of Florida, Gainesville, FL 32611, USA 
26Argonne National Laboratory, Biosciences Division, Argonne, IL 60439, USA 
27USDA-Forest Service, Southern Research Station, Raleigh, NC 27606, USA 
28NOAA/ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN 37831, USA 
29Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA 
30Department of Biology, San Diego State University, San Diego, CA 92182, USA 
31Department of Geography, Indiana University, Bloomington, IN 47405, USA 
32USDA-ARS Southwest Watershed Research Center, Tucson, AZ 85719, USA 
33Lawrence Berkeley National Laboratory, Earth Science Division, Berkeley, CA 94720, USA 
 
 

 

 

 

03/22/2008 

 

 

 

 

 

 

 

 

 

 

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. 
Department of Energy under Contract No. DE-AC02-05CH11231. 
 

 

 



 1 

Estimation of Net Ecosystem Carbon Exchange for the Conterminous United 1 

States by Combining MODIS and AmeriFlux Data 2 

 3 

Jingfeng Xiao
1*

, Qianlai Zhuang
2
, Dennis D. Baldocchi

3
, Beverly E. Law

4
, Andrew D. 4 

Richardson
5
, Jiquan Chen

6
, Ram Oren

7
, Gregory Starr

8
, Asko Noormets

9
, Siyan Ma

10
, Shashi 5 

B. Verma
11

, Sonia Wharton
12

, Steven C. Wofsy
13

, Paul V. Bolstad
14

, Sean P. Burns
15

, David R. 6 

Cook
16

, Peter S. Curtis
17

, Bert G. Drake
18

, Matthias Falk
12

, Marc L. Fischer
19

, David R. 7 

Foster
20

, Lianhong Gu
21

, Julian L. Hadley
22

, David Y. Hollinger
23

, Gabriel G. Katul
7
, Marcy 8 

Litvak
24

, Timothy A. Martin
25

, Roser Matamala
26

, Steve McNulty
27

, Tilden P. Meyers
28

, 9 

Russell K. Monson
15

, J. William Munger
29

, Walter C. Oechel
30

, Kyaw Tha Paw U
12

, Hans 10 

Peter Schmid
31

, Russell L. Scott
32

, Ge Sun
27

, Andrew E. Suyker
11

, Margaret S. Torn
33

  11 

 12 

1
Department of Earth & Atmospheric Sciences, Purdue Climate Change Research Center, 13 

Purdue University, West Lafayette, IN 47907, USA 14 

2
Department of Earth & Atmospheric Sciences, Department of Agronomy, Purdue Climate 15 

Change Research Center, Purdue University, West Lafayette, IN 47907, USA 16 

3
Atmospheric Science Center, University of California, Berkeley, Berkeley, CA 94720, USA 17 

4
College of Forestry, Oregon State University, Corvallis, OR 97331, USA 18 

5
Complex Systems Research Center Institute for the Study of Earth, Oceans and Space, 19 

University of New Hampshire, Durham, NH 03824, USA 20 

6
Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA 21 

7
Nicholas School of the Environment, Duke University, Durham, NC 27708, USA 22 

8
Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA  23 



 2 

9
Department of Forestry and Environmental Resources and Southern Global Change Program, 24 

North Carolina State University, Raleigh, NC 27695, USA 25 

10
Department of Environmental Science, Policy, & Management, University of California, 26 

Berkeley, CA 94720, USA 27 

11
School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA 28 

12
Department of Land, Air and Water Resources, University of California, Davis, Davis, CA 29 

95616, USA 30 

13
Division of Engineering and Applied Science/Department of Earth and Planetary Science, 31 

Harvard University, Cambridge, MA 02138, USA 32 

14
Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA 33 

15
Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 34 

80309, USA 35 

16
Argonne National Laboratory, Environmental Science Division, Argonne, IL 60439, USA 36 

17
Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 37 

Columbus, OH 43210, USA 38 

18
Smithsonian Environmental Research Center, Edgewater, MD 21037, USA 39 

19
Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, 40 

Atmospheric Science Department, Berkeley, CA 94720, USA 41 

20
Harvard Forest and Department of Organismic and Evolutionary Biology, Harvard 42 

University, Petersham, MA 01366, USA 43 

21
Oak Ridge National Laboratory Environmental Sciences Division, Oak Ridge, TN 37831, 44 

USA 45 

22
Harvard Forest, Harvard University, Petersham, MA 01366, USA 46 



 3 

23
USDA Forest Service, Northeastern Research Station, Durham, NH 03824, USA 47 

24
Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA 48 

25
University of Florida, Gainesville, FL 32611, USA 49 

26
Argonne National Laboratory, Biosciences Division, Argonne, IL 60439, USA 50 

27
USDA-Forest Service, Southern Research Station, Raleigh, NC 27606, USA 51 

28
NOAA/ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN 37831, USA 52 

29
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, 53 

USA 54 

30
Department of Biology, San Diego State University, San Diego, CA 92182, USA 55 

31
Department of Geography, Indiana University, Bloomington, IN 47405, USA 56 

32
USDA-ARS Southwest Watershed Research Center, Tucson, AZ 85719, USA 57 

33
Lawrence Berkeley National Laboratory, Earth Science Division, Berkeley, CA 94720, USA 58 

 59 

 60 

*Corresponding author: jing@purdue.edu (Tel: 765-496-8678; Fax: 496-1210) 61 

 62 

 63 

Agricultural and Forest Meteorology 64 

 65 

Submitted: 03/22/2008 66 

 67 

 68 

 69 



 4 

Abstract 70 

Eddy covariance flux towers provide continuous measurements of net ecosystem 71 

carbon exchange (NEE) for a wide range of climate and biome types. However, these 72 

measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify 73 

the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for 74 

regions or continents, flux tower measurements need to be extrapolated to these large areas. 75 

Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer 76 

(MODIS) instrument on board NASA’s Terra satellite to scale up AmeriFlux NEE 77 

measurements to the continental scale. We first combined MODIS and AmeriFlux data for 78 

representative U.S. ecosystems to develop a predictive NEE model using a regression tree 79 

approach. The predictive model was trained and validated using NEE data over the periods 80 

2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably 81 

well at the site level. We then applied the model to the continental scale and estimated NEE for 82 

each 1 km × 1 km cell across the conterminous U.S. for each 8-day period in 2005 using 83 

spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal 84 

patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling 85 

up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE 86 

estimates across multiple biomes. Our estimates may provide an independent dataset from 87 

simulations with biogeochemical models and inverse modeling approaches for examining the 88 

spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas. 89 

Keywords: Net ecosystem carbon exchange; MODIS; AmeriFlux; NEE; Regression tree; Eddy 90 

covariance  91 

 92 
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1. Introduction 93 

Net ecosystem carbon exchange (NEE), the difference of photosynthetic uptake and 94 

release of carbon dioxide (CO2) by respiration from autotrophs (plants) and heterotrophs (e.g., 95 

microbial decomposition), represents the net exchange of carbon dioxide (CO2) between 96 

terrestrial ecosystems and the atmosphere (Law et al., 2006). The quantification of NEE for 97 

regions, continents, or the globe can improve our understanding of the feedbacks between the 98 

terrestrial biosphere and the atmosphere in the context of global change and facilitate climate 99 

policy-making. The estimation of NEE over large areas is therefore of scientific and political 100 

importance.  101 

To date, numerous techniques have been used to estimate NEE (Chen et al., 2004). 102 

Atmospheric inverse models (e.g., Tans et al., 1990; Denning et al., 1996; Fan et al., 1998; 103 

Gurney et al., 2002; Deng et al., 2007) and biogeochemical models (Parton et al., 1993; Potter 104 

et al., 1993; Running and Hunt, 1993; Field et al., 1995; Zhuang et al., 2003; Xiao et al., 2008) 105 

have been used to provide aggregated information on carbon balances over large areas during 106 

the past two decades. The accuracy of the estimates by atmospheric inverse models is limited 107 

by the sparseness of the CO2 observation network and their biased placement in the marine 108 

boundary layers (Tans et al., 1990; Denning et al., 1996; Fan et al., 1998). Moreover, this 109 

approach does not provide information about which ecosystems are contributing to the 110 

sinks/sources or the processes involved (Janssens et al., 2003). Most biogeochemical models, 111 

however, are dependent on site-level parameterizations, which limits the accuracy of model 112 

simulations over large areas. Moreover, besides atmospheric CO2 and climate variability, 113 

factors such as land use/land cover change (McGuire et al., 2001), disturbances (Zhuang et al., 114 

2002; Law et al., 2004), N deposition (Nadelhoffer et al., 1999), and management practices 115 
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(Xiao and Moody, 2004a; Magnani et al., 2007) significantly affect NEE. It is still a challenge 116 

for most biogeochemical models to consider all these factors due to model limitations and/or 117 

lack of input data.   118 

At the site level, eddy covariance flux towers have been providing continuous 119 

measurements of ecosystem-level exchanges of carbon at half-hourly or hourly time steps since 120 

the early 1990s (Wofsy et al., 1993; Baldocchi et al., 2001). At present, over 400 eddy 121 

covariance flux towers are operating on a long-term and continuous basis over the globe 122 

(FLUXNET, 2008). This global network encompasses a large range of climate and biome 123 

types (Baldocchi et al., 2001), and provides the most extensive, reliable, and longest 124 

measurements of NEE. However, these measurements only represent the fluxes at the scale of 125 

the tower footprint (Running et al., 1999), up to several square kilometers (Schmid, 1994). To 126 

quantify the net exchange of CO2 between the terrestrial biosphere and the atmosphere, we 127 

need to scale up these flux tower measurements to regions, continents, or the globe.  128 

Satellite remote sensing is a potentially valuable tool for scaling up NEE to large areas 129 

(Running et al., 1999). There have been several studies developing methods for integration of 130 

flux data with remote sensing data to quantify NEE over large areas. For example, Yamaji et 131 

al. (2007) linked MODIS (Moderate Resolution Imaging Spectroradiometer) data to flux tower 132 

NEE data for regional extrapolation to deciduous broadleaf forests over Japan. Wylie et al. 133 

(2007) estimated NEE for grasslands in the northern Great Plains using satellite data and flux 134 

tower NEE measurements. Papale and Valentini (2003) estimated NEE for European forests 135 

using flux tower data and NOAA AVHRR satellite data. Mahadevan et al. (2008) used eddy 136 

covariance flux data to calibrate the vegetation photosynthesis and respiration model (VPRM) 137 

for estimating NEE from MODIS data at an hourly time step. Similar to process-based 138 
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biogeochemical models, this empirical model is also based on site-level parameterizations. 139 

Despite these efforts, to our knowledge, no study has scaled up flux tower NEE measurements 140 

to the continental scale and produced spatially-explicit estimates of NEE across multiple 141 

biomes. 142 

Here we combined MODIS and eddy covariance flux data to scale up flux tower NEE 143 

measurements to the continental scale and produce wall-to-wall NEE estimates for the 144 

conterminous U.S. First, we developed a predictive NEE model based on site-specific MODIS 145 

and AmeriFlux data. Second, we validated the performance of the model with AmeriFlux data. 146 

Third, we applied the model to estimate NEE for each 1 km × 1 km cell across the 147 

conterminous U.S. for each 8-day period in 2005 using wall-to-wall MODIS data. Finally, we 148 

examined the spatiotemporal patterns of NEE.  149 

2. Methods 150 

2.1. Regression tree 151 

A regression tree approach was used to scale up tower-based NEE to the continental 152 

scale. Regression tree algorithms predict class membership by recursively partitioning a dataset 153 

into more homogeneous subsets. The partitioning process splits each parent node into two child 154 

nodes, and each child node is treated as a potential parent node (Breiman et al., 1984). These 155 

algorithms produce rule-based models containing one or more rules, each of which is a set of 156 

conditions associated with a linear submodel. Regression tree models can therefore account for 157 

a nonlinear relationship between predictive and target variables (Yang et al., 2003). These 158 

models also allow both continuous and discrete variables as input variables (Yang et al., 2003). 159 

In addition, regression tree approaches are proven not only more effective than simple 160 

techniques including multivariate linear regression, but also easier to understand than neural 161 
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networks (Huang and Townshend, 2003). Piecewise regression models were selected as the 162 

most appropriate approach for scaling the flux tower data to ecoregions (Wylie et al., 2007). 163 

We used the regression tree algorithm implemented in the commercial software called 164 

Cubist. Cubist has been used to estimate percent land cover (Huang and Townshend, 2003), 165 

impervious area (Yang et al., 2003), forest biomass (Salajanu et al., 2005), and ecosystem 166 

carbon fluxes (Wylie et al., 2007). We chose Cubist to construct a predictive NEE model based 167 

on AmeriFlux NEE and satellite data. Cubist is a powerful tool for generating rule-based 168 

predictive models. The predictive accuracy of a rule-based model can be improved by 169 

combining it with an instance-based/nearest-neighbor model that predicts the target value of a 170 

new case using the average predicted values of the n most similar cases. The use of the 171 

composite model can improve the predictive accuracy relative to the rule-based model alone. 172 

Cubist can also generate committee models made up of several rule-based models, and each 173 

member of the committee model predicts the target value for a case and the member’s 174 

predictions are averaged to give a final prediction.  175 

Cubist uses three statistical measures to measure the quality of the constructed 176 

regression tree model, including average error, relative error, and product-moment correlation 177 

coefficient. The average error is calculated as (Yang et al., 2003): 178 

     ∑
=

−=

N

i

ii yy
N

AE
1

ˆ
1

                                                       (1) 179 

where AE is the average error of a tree model, N is the number of samples used to establish the 180 

tree, and iy  and iŷ  are the actual and predicted values of the response variable, respectively. 181 

The relative error is calculated as (Yang et al., 2003): 182 

     
)(

)(

µAE

TAE
RE =                                                                  (2) 183 
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where RE is the relative error of a tree model, AE(T) is the average error of the tree model, and 184 

AE(µ) is the average error that would result from always predicting the mean value. All the 185 

three statistical measures provided by Cubist were used to evaluate the performance of the tree 186 

model.   187 

2.2. Explanatory variables 188 

NEE is the difference between two large carbon fluxes of photosynthesis and 189 

respiration (Law et al., 1999). It is influenced by a variety of physical, physiological, 190 

atmospheric, hydrologic, and edaphic variables. At the leaf level, photosynthesis or gross 191 

primary productivity (GPP) is influenced by several factors, including incoming solar 192 

radiation, air temperature, vapor pressure deficit, soil moisture, and nitrogen availability (Clark 193 

et al., 1999, 2004). At the ecosystem level, GPP is also influenced by leaf area index (LAI) and 194 

canopy phenology. Ecosystem respiration (Re) includes autotrophic (Ra) and heterotrophic 195 

respiration (Rh). Soil respiration is the largest component of ecosystem respiration. Because 196 

autotrophic and heterotrophic activity belowground is controlled by rooting systems and 197 

substrate availability, soil respiration is strongly linked to plant metabolism, photosynthesis 198 

and litterfall (Ryan and Law, 2005). Ra can be empirically modeled as a function of air 199 

temperature and tissue carbon (foliage, stem, roots), whereas Rh is often modeled as a function 200 

of substrate availability, soil temperature and soil moisture (Ryan and Law, 2005). At the stand 201 

or regional level, NEE is significantly affected by disturbances from fire and harvest (Law et 202 

al., 2004) and fractional vegetation cover (DeFries et al., 2002).  203 

Many of these factors influencing NEE can be assessed by satellite remote sensing. 204 

Optical remote sensing systems measure the surface reflectance, the fraction of solar energy 205 

that is reflected by the Earth’s surface. For a given wavelength, different vegetation types 206 
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and/or plant species may have different reflectance (Schmidt and Skidmore, 2003). The 207 

reflectance of the same vegetation type also depends on wavelength region, biophysical 208 

properties (e.g., biomass, leaf area, and stand age), soil moisture, and sun-object-sensor 209 

geometry (Ranson et al., 1985; Penuelas et al., 1993). Therefore, reflectance values from 210 

multiple spectral bands can provide useful information for estimating NEE. Moreover, surface 211 

reflectance can be used to develop vegetation indices and biophysical parameters that can 212 

account for factors influencing NEE, such as the enhanced vegetation index (EVI), the land 213 

surface temperature (LST), the normalized difference water index (NDWI), the fraction of 214 

photosynthetically active radiation absorbed by vegetation canopies (fPAR), and LAI.  215 

The normalized difference vegetation index (NDVI) captures the contrast between the 216 

visible-red and near-infrared reflectance of vegetation canopies. It is defined as: 217 

  
rednir

rednirNDVI
ρρ

ρρ

+

−
=                                                                    (3) 218 

where redρ  and nirρ  are the visible-red and near-infrared reflectance, respectively. NDVI is 219 

closely correlated to the fraction of photosynthetically active radiation (fPAR) absorbed by 220 

vegetation canopies (Asrar et al., 1984; Law and Waring, 1994) and photosynthetic activity 221 

(Xiao and Moody, 2004b). NDVI is also related to vegetation biomass (Myneni et al., 2001) 222 

and fractional vegetation cover (Xiao and Moody, 2005). However, NDVI has several 223 

limitations, including saturation in a multilayer closed canopy and sensitivity to both 224 

atmospheric aerosols and soil background (Huete et al., 2002; Xiao and Moody, 2005). To 225 

account for these limitations of NDVI, Huete et al. (1997) developed the improved vegetation 226 

index, EVI: 227 

                                  
1)5.76(

5.2
+×−×+

−
×=

bluerednir

rednirEVI
ρρρ

ρρ
                                            (4) 228 
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where nirρ , redρ , and blueρ  are the spectral reflectance at the near-infrared, red, and blue 229 

wavelengths, respectively.  230 

The LST derived from MODIS is a measure of the soil temperature at the surface. The 231 

MODIS LST agreed with in situ measured LST within 1 K in the range 263-322 K (Wan et al., 232 

2002). LST is likely a good indicator of Re as both Ra and RH are significantly affected by 233 

air/surface temperature. Rahman et al. (2005) demonstrated that satellite-derived LST was 234 

strongly correlated with Re.  235 

As the shortwave infrared (SWIR) spectral band is sensitive to vegetation water content 236 

and soil moisture, a combination of NIR and SWIR bands have been used to derive water-237 

sensitive vegetation indices (Ceccato et al., 2002). Gao (1996) developed the NDWI from 238 

satellite data to measure vegetation liquid water:  239 

                
swirnir

swirnirNDWI
ρρ

ρρ

+

−
=                                                               (5) 240 

where swirρ is the reflectance at the shortwave infrared (SWIR) spectral band. The NDWI was 241 

shown to be strongly correlated with leaf water content (equivalent water thickness (EWT), g 242 

H2O/m
2
) (Jackson et al., 2004) and soil moisture (Fensholt and Sandholt, 2003) over time. It 243 

was incorporated into the vegetation photosynthesis model (VPM) as a water scalar for 244 

estimating GPP (Xiao et al., 2005). Yet, there is still a question as to whether NDWI provides 245 

useful information on canopy water stress status that affects photosynthesis because of its 246 

sensitivity to the relatively small changes in relative water content observed in natural 247 

vegetation, and inability to discern changes in canopy biomass from changes in canopy 248 

moisture status (Hunt and Rock, 1989; Gao 1996). 249 
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Satellite data can also provide estimates for LAI and fPAR. These two variables 250 

characterize vegetation canopy functioning and energy absorption capacity (Myneni et al., 251 

2002), and are key parameters in most ecosystem productivity and biogeochemical models due 252 

to their high correlation with GPP (Sellers et al., 1997).  253 

We therefore selected surface reflectance, EVI, LST, NDWI, fPAR, and LAI as 254 

explanatory variables. All these variables were derived from MODIS data, which also avoided 255 

the complications and difficulties to merge disparate data sources.  256 

2.3. Data 257 

We obtained the following three types of data: NEE from eddy covariance flux towers, 258 

explanatory variables derived from MODIS data, and a land cover map derived from MODIS.  259 

2.3.1 AmeriFlux data 260 

The AmeriFlux network coordinates regional analysis of observations from eddy 261 

covariance flux towers across North America, Central America, and South America (Law, 262 

2006). We obtained the Level 4 NEE product for 42 AmeriFlux sites for the period 2000-2006 263 

from the AmeriFlux website (http://public.ornl.gov/ameriflux/) (Table 1). These sites are 264 

distributed across the conterminous U.S. (Fig. 1), and cover a range of vegetation types 265 

including forests, shrublands, savannas, grasslands, and croplands (Table 1). Moreover, the 266 

distribution of these sites in the mean annual climate space (Fig. 2) indicates that they cover 267 

typical U.S. climate types. In addition, they also include some forest sites at different times 268 

since stand replacing disturbance, which are located in disturbance clusters of sites. We 269 

therefore believe that these sites are roughly representative of U.S. ecosystem and climate 270 

types.  271 

        [insert Fig. 1 about here] 272 
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        [insert Fig. 2 about here] 273 

The Level 4 product consists of two types of NEE data, including standardized 274 

(NEE_st) and original (NEE_or) NEE (AmeriFlux, 2007). NEE_st was calculated using CO2 275 

flux estimated by the eddy covariance method, which includes summation with CO2 storage in 276 

the canopy air space that was obtained from the discrete approach (single point on the top of 277 

the tower) for all the sites, whereas NEE_or was calculated using the storage obtained from 278 

within canopy CO2 profile measurements in relatively tall forest canopies or from the discrete 279 

approach. The average data coverage during a year is only 65% due to system failures or data 280 

rejection, and therefore robust and consistent gap filling methods are required to provide 281 

complete data sets (Falge et al., 2001). Both NEE_st and NEE_or were filled using the 282 

Marginal Distribution Sampling (MDS) method (Reichstein et al., 2005) and the Artificial 283 

Neural Network (ANN) method (Papale and Valentini, 2003). The ANN method was 284 

generally, if only slightly, superior to the MDS method (Moffat et al., 2007). Therefore, we 285 

used the gap-filled NEE data based on the ANN method. For each site, if the percentage of the 286 

remaining missing values for NEE_st was lower than that for NEE_or, we selected NEE_or; 287 

otherwise, we used NEE_st.  288 

The Level 4 product consists of NEE data with four different time steps, including half-289 

hourly, daily, weekly (8-day), and monthly. We used 8-day NEE data (g C m
-2

 day
-1

) to match 290 

the compositing intervals of MODIS data. Moreover, the average NEE over such a period was 291 

shown to largely eliminate micrometeorological sampling errors, with the remaining spatial 292 

variability representing variation in ecosystem attributes such as LAI (Oren et al. 2006), here 293 

accounted for by data from MODIS.  294 

2.3.2. MODIS data 295 
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MODIS is a key instrument on board the NASA’s Terra and Aqua satellites. The Terra 296 

MODIS and Aqua MODIS view the entire Earth’s surface every one to two days, acquiring 297 

data in 36 spectral bands and with the spatial resolution of 250m, 500m, and 1km. We used the 298 

following four MODIS data products, including surface reflectance (MOD09A1; Vermote and 299 

Vermeulen, 1999), daytime and nighttime LST (MOD11A2; Wan et al., 2002), EVI 300 

(MOD13A1; Huete et al., 2002), and LAI/fPAR (MOD15A2; Myneni et al., 2002). Surface 301 

reflectance data consist of reflectance values of seven spectral bands: blue (459-479 nm), green 302 

(545-565 nm), red (620-670 nm), near infrared (841-875 nm, 1230-1250 nm), shortwave 303 

infrared (1628-1652 nm, 2105-2155 nm). Surface reflectance and EVI are at a spatial 304 

resolution of 500m, while LAI, fPAR, and LAI are at spatial resolution of 1km. Surface 305 

reflectance, fPAR, and LAI are at a temporal resolution of 8 days, while EVI is at a temporal 306 

resolution of 16 days.  307 

For each AmeriFlux site, we obtained the MODIS ASCII subsets (Collection 4) 308 

consisting of 7 km × 7 km regions centered on the flux tower from the Oak Ridge National 309 

Laboratory’s Distributed Active Archive Center (ORNL DAAC, 2006). We extracted average 310 

values for the central 3 × 3 km area within the 7 × 7 km cutouts to better represent the flux 311 

tower footprint (Schmid, 2002; Rahman et al., 2005). For each variable, we determined the 312 

quality of the value of each pixel within the area using the quality assurance (QA) flags 313 

included in the product. At each time step, we averaged the values of each variable using the 314 

pixels with good quality within the area to represent the values at the flux site. If none of the 315 

values within the 3 × 3 km area was of good quality, we treated the period as missing. Each 16-316 

day EVI value was split into two 8-day values to correspond with the compositing interval of 317 

other MODIS data products. 318 
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For the continental-scale estimation of NEE, we obtained continental-scale MODIS 319 

data including surface reflectance, daytime and nighttime LST, and EVI from the Earth 320 

Observing System (EOS) Data Gateway. For each variable and for each 8- or 16-day period, a 321 

total of 22 tiles were needed to cover the conterminous U. S., and these tiles were mosaiced to 322 

generate a continental-scale image. For each variable, we determined the quality of the value of 323 

each pixel using the QA flags, and replaced the bad-quality value using a linear interpolation 324 

approach (Zhao et al., 2005). The NDWI was calculated from band 2 (near-infrared, 841-325 

876nm) and band 6 (shortwave infrared, 1628-1652) of the surface reflectance product 326 

(MOD09A1) according to equation (5). Each 16-day EVI composite was split into two 8-day 327 

composites to correspond with the compositing interval of other MODIS data products. 328 

2.3.3. Land cover 329 

 To construct the predictive NEE model, we obtained the land cover type for each 330 

AmeriFlux site based on the site descriptions (Table 1), and categorized each site into a class 331 

of the University of Maryland land-cover classification system (UMD). Although the 42 332 

AmeriFlux sites used in this study cover a variety of vegetation classes of this classification 333 

system, some classes had a minimal or no sites (n = 0-2). We therefore reclassified all 334 

vegetation classes of the UMD classification system to seven broader classes (Table 2). 335 

Specifically, evergreen needleleaf forests and evergreen broadleaf forests were merged to 336 

evergreen forests, deciduous needleleaf forests and deciduous broadleaf forests to deciduous 337 

forests, closed shrublands and open shrublands to shrublands, and woody savannas and 338 

savannas to savannas.   339 

To estimate NEE for each 1 km × 1 km cell at the continental scale, we obtained the 340 

land cover type for each cell from the MODIS land cover map with the UMD classification 341 
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system (Friedl et al., 2002). Similarly, we reclassified the vegetation types of the MODIS land 342 

cover map to the seven broader classes (Table 2). The reclassified land-cover map is shown in 343 

Fig. 1.  344 

2.4. Model development  345 

We developed a predictive NEE model using Cubist based on the site-level MODIS 346 

and AmeriFlux NEE data. Our explanatory variables included surface reflectance (7 bands), 347 

daytime and nighttime LST, EVI, fPAR, and LAI, and our target variable was NEE. We split 348 

the site-level data set of AmeriFlux and MODIS data into a training set (2000-2004) and a test 349 

set (2005-2006). If a site only had NEE observations for the period 2000-2004, the site was 350 

only included in the training set; if a site only had NEE observations for the period 2005-2006, 351 

the site was only included in the test set; otherwise, the site was included in both training and 352 

test sets. The training and test sets included 40 and 34 AmeriFlux sites, respectively. 353 

Altogether we had a total of 4596 and 2257 data points for the training and test sets, 354 

respectively. We trained the model with the training set, and tested the model with the test set 355 

(2005-2006). In addition to the full model that includes all the 14 explanatory variables, we 356 

also developed a series of models by dropping one or more variables at a time using Cubist. To 357 

select the best model, we evaluated the performance of each model based on the average error, 358 

relative error, and correlation coefficient. We chose the model with the minimal average error 359 

and relative error and maximum correlation coefficient as the best model. We also evaluated 360 

the model performance using scatterplots of predicted versus observed NEE and seasonal 361 

variations between the predicted and observed NEE.  362 

2.5. Continental-scale estimation of NEE 363 
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The AmeriFlux network is representative of the conterminous U.S. ecoregions 364 

(Hargrove et al., 2003). The 42 sites used in this study included most of the active flux sites in 365 

the network and cover a variety of vegetation types (Fig. 1, Table 1). Moreover, these sites 366 

encompass typical U.S. climate types (Fig. 2). We believe that the predictive NEE model 367 

constructed from the 42 sites can be extrapolated to the conterminous U.S. Thus, we applied 368 

the predictive NEE model to estimate NEE for each 1 km × 1 km cell across the conterminous 369 

U.S. for each 8-day period in 2005 using wall-to-wall MODIS data. We then examined the 370 

spatiotemporal patterns of our NEE estimates.  371 

3. Results and discussion 372 

3.1. Model development 373 

The best model contained the following explanatory variables, including surface 374 

reflectance bands 1-6, EVI, daytime and nighttime LST, and NDWI (relative error = 0.64, 375 

average error = 0.986, r = 0.73). This model achieved slightly higher performance than the full 376 

model (relative error = 0.66, average error = 1.01, r = 0.72). The best model estimated NEE 377 

reasonably well (Fig. 3) considering that we used multiple years of data from a number of sites 378 

involving a variety of vegetation types across the conterminous U.S. The model slightly 379 

underestimated positive NEE values, and overestimated negative NEE values, where negative 380 

values indicate carbon uptake, and positive values indicate carbon release. In absolute 381 

magnitudes, the model slightly underestimated both carbon release and uptake rates, thus 382 

damping the observed amplitude. 383 

   [insert Fig. 3 about here] 384 

The analysis of NEE residuals (Fig. 4) indicated that the residuals were not randomly 385 

distributed. In absolute magnitudes, low NEE values were generally associated with low 386 
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prediction errors, whereas high NEE values were associated with high prediction errors. This 387 

indicated that the explanatory variables included in the model could not completely explain the 388 

variance of NEE. For example, the independent variables used in the model could not account 389 

for the sizes of soil organic carbon pools and the effects of disturbances, thereby affecting the 390 

performance of the model for estimating NEE.     391 

   [insert Fig. 4 about here] 392 

 We calculated the average error and relative error across all AmeriFlux sites for each 8-393 

day period, and then plotted these two types of error against time (Fig. 5). The average error 394 

showed a strong seasonality. In absolute magnitudes, winter had low average errors (~0.6 g C 395 

m
-2

 day
-1

), whereas warm season errors often exceeded 1 g C m
-2

 day
-1

. This suggests the 396 

relatively large uncertainties associated with NEE estimates, indicating that random errors in 397 

NEE measurements are substantial (Richardson et al., 2008), and these errors ultimately limit 398 

the agreement between observed and predicted NEE values. 399 

    [insert Fig. 5 about here] 400 

We also compared our NEE estimates with observed NEE for each AmeriFlux site (Fig. 401 

6). The NEE estimates captured most features of observed NEE such as seasonality and 402 

interannual variability over the period 2005-2006. For some sites, episodes of under- or over-403 

prediction occurred. The model could not capture exceptionally high and low NEE values that 404 

represented large carbon release and uptake rates, respectively for some sites (e.g., the 405 

Audubon Research Ranch site (AZ), Fermi National Accelerator Laboratory Agricultural site 406 

(IL), Goodwin Creek site (MS), and Fort Peck (MT)). In absolute magnitudes, the model 407 

substantially underestimated those exceptional values. For example, the model estimates were 408 

far below the observed NEE values that were greater than 2 g C m
-2

 day
-1

 at the Goodwin 409 
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Creek site (MS), and were far above the observed NEE values below -3 g C m
-2

 day
-1

 at the 410 

Audubon Research Ranch site (AZ). Overall, the model performed better for deciduous forests, 411 

savannas, grasslands and croplands than for evergreen forests and shrublands.  412 

   [insert Fig. 6 about here] 413 

The disagreement between estimated and observed NEE values is likely due to the 414 

following reasons. First, the MODIS and tower footprints do not always match with each other. 415 

As mentioned earlier, for each explanatory variable derived from MODIS data, we used the 416 

values averaged within the 3 km × 3 km area (i.e., MODIS footprint) surrounding each flux 417 

tower to represent the values of the tower site. The footprints of MODIS and AmeriFlux 418 

matched with each other for most sites because the vegetation structure within the 3 km × 3 km 419 

area surrounding the flux tower is similar to that at the tower. However, some sites are located 420 

in complex land mosaics, and the vegetation structure at the flux tower could be significantly 421 

different from that within the MODIS footprint. For example, the Tonzi Ranch site (CA) is 422 

dominated by deciduous blue oaks (Quercus douglasii), and the understory and open grassland 423 

are dominated by cool-season C3 annual species (Ma et al., 2007). The MODIS footprint, 424 

however, consists of a larger fraction of grassland. The phenologies of blue oaks and grassland 425 

are distinct from each other (Ma et al., 2007), and therefore these two plant species had 426 

differential contributions to the NEE integrated over the MODIS footprint. In the spring, wet 427 

conditions along with warm temperatures facilitated the fast growth of grass, leading to large 428 

carbon uptake rates within the MODIS footprint. As a result, in absolute magnitudes, our NEE 429 

estimates were higher than the observed values at the tower site. Grasses senesced by the end 430 

of the spring as the rainy season ended (Ma et al., 2007). The senescence of grasses led to 431 

carbon release in the summer, and thus lowered the carbon uptake rates integrated over the 432 
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MODIS footprint. Therefore, in absolute magnitudes, our NEE values were much lower than 433 

the observed values at the tower in the summer.  434 

Second, some sites experienced substantial disturbances that alter ecosystem carbon 435 

fluxes. For example, the Austin Cary site (FL) suffered from an extreme drought over the 436 

period 1999-2002; a prescribed burn at the site in 2003 removed 95% of the understory 437 

vegetation. The site was also hit by three hurricanes in 2004. These disturbances reduced 438 

carbon uptake rates, whereas MODIS data are less sensitive to changes in understory 439 

vegetation in forest ecosystems, thereby leading to substantial overestimation of carbon uptake 440 

rates.   441 

Third, our model could not sufficiently account for the factors influencing RH. As 442 

mentioned earlier, RH is influenced by substrate availability, soil temperature, and soil 443 

moisture. LST and NDWI can account for soil temperature and soil moisture. However, 444 

surface reflectance can only partly account for non-photosynthetic material (e.g., litter). Root 445 

and associated mycorrhizal respiration produce roughly half of soil respiration, with much of 446 

the remainder derived from decomposition of recently produced root and leaf litter (Ryan and 447 

Law, 2005). Changes in the carbon stored in the soil generally contribute little to soil 448 

respiration, but these changes, together with shifts in plant carbon allocation, determine 449 

ecosystem carbon storage belowground and its exchange with the atmosphere (Ryan and Law, 450 

2005). The incapability of our model to account for transient carbon pools contributed to the 451 

uncertainties in the NEE estimates (Richardson et al., 2007). 452 

Finally, we estimated NEE for 8-day interval, and therefore our estimates could not 453 

capture the variability of NEE within the interval. The MODIS LST and EVI products were 454 

averaged from the corresponding daily products over a period of 8 and 16 days, respectively 455 
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(Huete et al., 2002; Wan et al., 2002). For each period, only data with good quality were 456 

retained for compositing, and thus the number of days actually used for compositing is often 457 

lower than the total number of days over the period. The compositing technique for the 458 

MODIS surface reflectance product is based on the minimum-blue criterion that selects the 459 

clearest conditions over the 8-day period (Vermote and Vermeulen, 1999). Therefore, the 8- or 460 

16-day values do not always represent the average environmental conditions and average 461 

fluxes over the 8- or 16-day period. The exclusion of days with high and low values could lead 462 

to underestimation and overestimation of NEE values, respectively. For example, each 16-day 463 

EVI composite was an average of daily EVI over a period of 16 days. The number of 464 

acceptable pixels over a 16-day compositing period is typically less than 10 (often less than 5) 465 

due to cloud contaminations and extreme off-nadir sensor view angles (Huete et al., 2002). The 466 

compositing process may exclude high EVI values that represented high fPAR or fractional 467 

vegetation cover, therefore leading to lower carbon uptake rates. On the other hand, the 468 

compositing process may also exclude low EVI values that represented low fPAR or fractional 469 

vegetation cover, thereby leading to higher carbon uptake rates. Sims et al. (2005) suggested 470 

that midday GPP derived from daily satellite snapshots of vegetation was highly correlated 471 

with 8-day mean GPP, and the inclusion of cloudy days within 8-day intervals had less effect 472 

on daily GPP than expected. However, the exclusion of cloudy days may have a larger impact 473 

on Re, leading to a large impact on NEE. 474 

   [insert Fig. 7 about here] 475 

We averaged the estimated and observed 8-day NEE for each AmeriFlux site and 476 

examined the relationship between the estimated and observed mean 8-day NEE across the 477 

sites (Fig. 7). The model estimated NEE reasonably well at the site level (r
2
 = 0.72, p < 478 
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0.00001). Overall, in absolute magnitudes, the model underestimated NEE. The performance 479 

of the model also varied with site. On average, some sites were carbon sources, whereas other 480 

sites were carbon sinks. Large overestimation of carbon uptake occurred at the Toledo Oak 481 

Openings site (OH), whereas large underestimation of carbon uptake occurred at the Mature 482 

Red Pine site (WI), Duke Forest Pine site (NC), Duke Forest Hardwoods (NC), and North 483 

Carolina Pine (NC). Large overestimation of carbon release occurred at Audubon Research 484 

Ranch (AZ), ARM Oklahoma (OK), and Freeman Ranch Mesquite (TX), whereas large 485 

underestimation of carbon release occurred at Mead Irrigated (NE), Goodwin Creek (MS), and 486 

Austin Cary (FL).  487 

   [insert Fig. 8 about here] 488 

We also averaged our estimated and observed 8-day NEE over all AmeriFlux sites for 489 

each vegetation type (i.e., biome), and examined the relationship between estimated and 490 

observed NEE across the vegetation types (Fig. 8). The model predicted NEE at the biome 491 

level very well (r
2
 = 0.95, p < 0.00001). Again, in absolute magnitudes, the model 492 

underestimated NEE. The performance of the model also varied with vegetation type. In 493 

absolute magnitudes, large overestimation occurred for evergreen forests and shrublands.  494 

Our study demonstrated that MODIS data have great potential for scaling up flux tower 495 

NEE data to continental scales across a variety of vegetation types. Unlike GPP (Heinsch et al., 496 

2006; Yang et al., 2007), NEE is much more difficult to estimate because the transient carbon 497 

pools and associated heterotrophic respiration are difficult to estimate (Running et al., 2004). 498 

The performance of our model for estimating NEE is remarkable, given the diversity in 499 

ecosystem types, age structures, fire and insect disturbances, and management practices. In 500 

future research, additional explanatory variables should be selected to better account for live 501 
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and dead vegetation carbon pools, and other factors that influence decomposition of woody 502 

detritus and soil respiration.  503 

3.2. Continental-scale estimation of NEE 504 

We estimated NEE for each 1 km × 1 km cell across the conterminous U.S. for each 8-505 

day interval over the period 1/1/2005-2/28/2006. Fig. 9 shows examples of 8-day NEE maps 506 

that we produced for the conterminous U.S. from January through February. For each month, 507 

the second 8-day NEE map was shown here. The predictive model trained at the AmeriFlux 508 

sites generally captured the expected spatiotemporal patterns of NEE. The majority of the 509 

conterminous U.S. released carbon or were nearly carbon neutral in winter months because at 510 

this time of the year the canopies of most ecosystems were dormant; in summer months, 511 

ecosystems in the East assimilated carbon from the atmosphere, whereas many areas in the 512 

west released carbon, possibly due to summer drought effects on NEE, although the severity of 513 

drought was the greatest in August to September. In fall months, ecosystems in the East 514 

assimilated less carbon than in the summer months as vegetation began to senesce. Some 515 

ecosystems, particularly evergreen forests in the Pacific Northwest and California, assimilated 516 

carbon from the atmosphere throughout the year. Douglas-fir, a major species in the Pacific 517 

Northwest and California, is known to be highly plastic and able to photosynthesize in winter 518 

when temperatures are above freezing.  519 

   [insert Fig. 9 about here] 520 

We aggregated 8-day NEE estimates for each season in 2005 (Fig. 10). Our NEE 521 

estimates exhibited strong seasonal fluctuations, agreeing with previous studies (e.g., Falge et 522 

al., 2002). The NEE estimates also varied substantially over space. In the spring, many areas in 523 

the eastern half of the conterminous U.S. including the Southeast and the Gulf Coast 524 
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assimilated carbon from the atmosphere. The growing season of these ecosystems started in the 525 

mid- to late spring, and GPP quickly exceeded Re, leading to net carbon uptake in the season. 526 

By contrast, the Upper Great Lakes region, the northern Great Plains, and the New England 527 

region assimilated carbon. The Upper Great Lakes region and the northern Great Plains are 528 

dominated by croplands with most crops planted between April-June (corn planted between 529 

April and mid-May; soybeans between mid-May and mid-June; and sorghum between late 530 

May and late June; Shroyer et al., 1996). Crops were sparse in the beginning of the growing 531 

season and Re exceeded GPP, thereby leading to carbon releases. The New England region and 532 

the northern portion of the Upper Great Lakes region are dominated by temperate-boreal 533 

transitional forests, and their relatively late greenup due to low air temperatures led to carbon 534 

releases in the spring. Many regions in the western half of the conterminous U. S. released 535 

carbon in the spring because of the sparse vegetation and the dominance of Re over GPP. The 536 

Pacific Coast assimilated carbon even in the spring because the dominant evergreen forests in 537 

the region assimilated carbon due to mild temperatures and moist conditions (Anthoni et al., 538 

2002). The Mediterranean regions in California also assimilated carbon in the spring. The 539 

Mediterranean climate is characterized by mild winter temperatures concomitant with the rainy 540 

season as opposed to severe summer droughts and heat (Barbour and Minnich, 2000). These 541 

ecosystems assimilated carbon because of precipitation surplus and relatively warm 542 

temperatures in the spring (Xu and Baldocchi, 2004; Ma et al., 2007). 543 

   [insert Fig. 10 about here] 544 

In the summer months, the eastern half of the conterminous U.S. assimilated carbon 545 

because GPP far exceeded Re owing to favorable temperature and soil moisture conditions. By 546 

contrast, a vast majority of the land across the western counterpart released carbon, including 547 
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the Great Basin, the Colorado Plateau, and the western Great Plains. The 2005 summer drought 548 

affected these regions (National Climatic Data Center, 2008) and reduced GPP, whereas the 549 

high temperatures increased Re, leading to net carbon releases. Some other regions in the West 550 

also assimilated carbon, including the northern Rocky Mountains and the Pacific Coast. Some 551 

Mediterranean ecosystems in California also released carbon due to precipitation deficits in the 552 

summer.  553 

In the fall, the Southeast and the Gulf Coast still assimilated carbon, but net carbon 554 

uptake rates substantially decreased relative to those in the summer. This is because vegetation 555 

began to senesce in these regions in the fall. The Upper Great Lakes region and the Great 556 

Plains largely released carbon due to the harvesting of crops. The majority of the land across 557 

the west including the Great Plains, the Great Basin, and the Colorado Plateau released carbon. 558 

The northern Pacific Coast, however, still absorbed carbon. The Mediterranean ecosystems in 559 

California continued releasing carbon as the dry season spanned into the fall. 560 

In the winter, the vast majority of the conterminous U.S. released carbon as the 561 

canopies of most ecosystems were dormant at this season of the year. Some regions in the 562 

Pacific Coast, however, assimilated carbon even in the winter because of the dominance of 563 

evergreen forests and mild temperatures in the regions (Waring and Franklin, 1979). This 564 

agreed with the finding of Anthoni et al. (2002) that old-growth ponderosa pine in Oregon 565 

slightly assimilated carbon in the winter season. For the Mediterranean ecosystems in 566 

California, a smaller part of the region released carbon into the atmosphere relative to the fall 567 

as the wet season started in the winter. 568 

   [insert Fig. 11 about here] 569 
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The trajectory of the mean 8-day NEE (g C m
-2

 day
-1

) for each vegetation type 570 

averaged over the entire conterminous U.S. throughout 2005 (Fig. 11a) showed that deciduous 571 

forests, croplands, savannas, and mixed forests had large intra-annual variability in NEE, 572 

whereas evergreen forests, grasslands, and shrublands exhibited much less interannual 573 

variability. The seasonal patterns of NEE were determined by the seasonal differences in LAI, 574 

physiological capacity, meteorological conditions, growing season length, soil temperature, 575 

moisture status, and management practices (Falge et al., 2002). In the late fall, winter, and 576 

early spring, on average, the U.S. terrestrial ecosystems released carbon. Taken separately, 577 

only evergreen forests and grasslands assimilated carbon. Among vegetation types exhibiting 578 

positive NEE values, deciduous forests had the highest values, followed by mixed forests; 579 

croplands exhibited intermediate values; shrublands and savannas exhibited lowest values 580 

while evergreen forests still assimilated carbon. During the growing season, on average, the 581 

U.S. terrestrial ecosystems strongly assimilated carbon. Taken separately, only shrublands 582 

released carbon because of high temperatures and low soil moisture conditions. Among 583 

vegetation types assimilating carbon, the highest absorption rates occurred for deciduous 584 

forests, followed by croplands, savannas, and mixed forests; intermediate rates occurred for 585 

evergreen forests; the lowest rates occurred for grasslands. Baldocchi et al. (2001) showed that 586 

the net CO2 exchange of temperate deciduous forests increases by about 5.7 g C m
2
 day

-1
 for 587 

each additional day that the growing season, defined as the period over which mean daily CO2 588 

exchange is negative due to net uptake by ecosystems, is extended. We found that on average, 589 

the CO2 exchange of deciduous and evergreen forests across the conterminous U.S. increased 590 

3.6 and 1.2 g C m
-2

 day
-1

 for each additional day that the growing season is extended, 591 

respectively. Our continental-scale estimate for deciduous forests was 37% lower than that 592 
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estimated by Baldocchi et al. (2001) likely because our estimate was based on all the areas 593 

covered by deciduous forests encompassing the full range of productivity.  594 

The trajectory of the total 8-day NEE (Tg C day
-1

) aggregated from the NEE estimates 595 

over the conterminous U.S. (Fig. 11b) showed clear dependence on vegetation type. The 596 

differences in the trajectories of total 8-day NEE among vegetation types were different from 597 

those of mean 8-day NEE because of the differences in the areas among vegetation types 598 

(Figure 11b). In the late fall, winter, and early spring, the U.S. terrestrial ecosystems released 599 

carbon (1-2 Tg C day
-1

). Taken separately, croplands, deciduous forests, and mixed forests 600 

released carbon, whereas evergreen forests assimilated carbon; shrublands, savannas, and 601 

grasslands, however, were nearly carbon neutral. During the growing season, the U.S. 602 

terrestrial ecosystems assimilated carbon, with peak total NEE of -17 Tg C day
-1

. All 603 

vegetation types except shrublands assimilated carbon. In absolute magnitudes, the highest 604 

total NEE (≈ 10 Tg C day
-1

) occurred for croplands; the intermediate values occurred for 605 

deciduous forests, savannas, and mixed forests; the lowest values occurred for evergreen 606 

forests and grasslands. By contrast, shrublands released carbon. Total 8-day NEE also showed 607 

largest intra-annual variability for croplands, intermediate variability for deciduous forests, 608 

savannas, and mixed forests, and lowest variability for evergreen forests, grasslands, and 609 

shrublands. 610 

4. Summary and conclusions 611 

We combined MODIS and NEE data from 42 AmeriFlux sites involving a variety of 612 

vegetation types to develop a predictive NEE model using a regression tree approach. The 613 

model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, 614 

respectively. The model estimated NEE at the site level reasonably well. We then applied the 615 
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model to estimate NEE for each 1 km × 1 km cell across the conterminous U.S. for each 8-day 616 

period in 2005. The model generally captured the expected spatial and seasonal patterns of 617 

NEE. Our study demonstrated that our empirical approach along with MODIS data have great 618 

potential for scaling up AmeriFlux NEE measurements to the continental scale.  619 

Our wall-to-wall NEE estimates across the conterminous U.S. provided an independent 620 

dataset from simulations by biogeochemical modeling and inverse modeling for examining the 621 

spatiotemporal patterns of NEE and constraining U.S. terrestrial carbon sinks/sources. Our 622 

estimates have advantages over these models simulations by taking advantage of NEE 623 

measurements from a number of AmeriFlux sites involving representative U.S. ecosystems. 624 

Our scaling-up approach implicitly considered the effects of climate variability and extreme 625 

climate events. Disturbances such as wildfires, hurricanes, and insect defoliation significantly 626 

affect ecosystem carbon fluxes (e.g., Thornton et al., 2002). Although our NEE estimates could 627 

not capture the immediate emissions of CO2 due to the burning of biomass in wildfires and 628 

logging, our estimates could partly account for the carbon fluxes following the disturbances 629 

because the MODIS data we used provide real-time observations of ecosystems. Compared to 630 

inverse modeling techniques, our approach provided estimates at high spatial (1 km × 1 km) 631 

and temporal resolutions (8 day). In addition, NEE is notoriously difficult to quantify over 632 

large areas (Running et al., 2004), and the accuracy of simulated NEE for regions and 633 

continents by biogeochemical models is poorly known due to lack of spatially explicit, 634 

independent validation datasets. Our estimates may also provide an independent validation 635 

dataset for these model simulations. 636 

The AmeriFlux sites provide valuable measurements of ecosystem carbon exchange for 637 

examining terrestrial carbon dynamics (Law, 2006, 2007). Our study demonstrated that the 638 
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AmeriFlux measurements could be used to examine continental-scale carbon dynamics, and 639 

the continuing operation of the AmeriFlux network will continue to improve our understanding 640 

of the impacts of climate variability, disturbances, and management practices on terrestrial 641 

carbon cycling. Our study also suggested that the current AmeriFlux network should be 642 

augmented by establishing more sites for certain biomes in the UMD classification system 643 

(Table 1), including open shrublands, savannas, grasslands, and croplands. The augmentation 644 

will enable the differentiation of open shrublands from closed shrublands, woody savannas 645 

from savannas, and C3 from C4 plants in scaling-up studies, thereby improving the estimation 646 

of carbon fluxes for large areas.  647 
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Figure captions: 1045 

Fig. 1. Location and spatial distribution of the AmeriFlux sites used in this study. The base 1046 

map is the reclassified MODIS land-cover map that was used for the continental-scale 1047 

estimation of NEE. Symbols indicate the location of the AmeriFlux sites.  1048 

Fig. 2. Distribution of the 42 AmeriFlux sites in mean annual climate space. Climate 1049 

parameters are the mean annual precipitation (x-axis) and mean annual temperature (y-axis) 1050 

taken over a 30-year period of record (1971-2000) from the PRISM database 1051 

(http://www.prism.oregonstate.edu/). Gray points indicate the climate space distribution of 1052 

landmass within the conterminous United States. The climate data have been resampled to 12 1053 

km resolution for plotting points in this figure. Symbols show the location of each AmeriFlux 1054 

site in the climate space. The climate data of the sites are from the AmeriFlux website 1055 

(http://public.ornl.gov/ameriflux/) and the PRISM database.  1056 

Fig. 3. Scatterplot of observed 8-day NEE versus predicted 8-day NEE. The solid line is the 1057 

1:1 line.  1058 

Fig. 4. Scatterplot of predicted 8-day NEE versus residuals (observed - predicted) over the 1059 

period 2005-2006.  1060 

Fig. 5. The average error and relative error averaged across all AmeriFlux sites for each 8-day 1061 

period.  1062 

Fig. 6. Observed and predicted 8-day NEE (g C m
-2

 day
-1

) for each AmeriFlux site over the 1063 

period 2005-2006. The green line with square symbols represents the observed values, and the 1064 

red line with circle symbols represents the predicted values. The x-axis is the Julian day over 1065 

the period 2005-2006. Site abbreviations are used here, and their full names are given in Table 1066 
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1. The vegetation type for each site is given in parenthesis: evergreen forests (EF), deciduous 1067 

forests (DF), mixed forests (MF), shrublands (Sh), savannas (Sa), grasslands (Gr), and 1068 

croplands (Cr).  1069 

Fig. 7. Scatterplot of observed mean NEE versus predicted mean NEE across the AmeriFlux 1070 

sites. Error bars are standard errors (defined as the standard deviation divided by the square 1071 

root of the number of observations) of the observed and predicted 8-day mean NEE. 1072 

Abbreviations of AmeriFlux sites are given in Table 1. 1073 

Fig. 8. Scatterplot of observed mean NEE versus predicted mean NEE across vegetation types: 1074 

EF - evergreen forests; DF - deciduous forests; MF - mixed forests; Sh - shrublands; Sa - 1075 

savannas; Gr - grasslands; Cr – Croplands. Error bars are standard errors (defined as the 1076 

standard deviation divided by the square root of the number of observations) of the observed 1077 

and predicted 8-day mean NEE. 1078 

Fig. 9. Examples of estimated 8-day NEE for the conterminous U.S. from January through 1079 

December in 2005. For each month, the second 8-day NEE composite is shown here. The units 1080 

are g C m
-2

 day
-1

. Positive values indicate carbon release, and negative values indicate carbon 1081 

uptake. 1082 

Fig. 10. Predicted NEE for each season in 2005: (a) spring (March-May); (b) summer (June-1083 

August); (c) fall (September-November); (d) winter (December-February). The units are g C 1084 

m
-2

 season
-1

. Positive values indicate carbon release, and negative values indicate carbon 1085 

uptake. 1086 

Fig. 11. Estimated mean and total 8-day NEE for each vegetation type in the conterminous 1087 

U.S. in 2005. (a) Mean 8-day NEE (g C m
-2

 day
-1

); (b) Total 8-day NEE (Tg C day
-1

). Inset in 1088 
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plot (b) indicates the area (10
6
 km

2
) of each vegetation type: evergreen forests (EF), deciduous 1089 

forests (DF), mixed forests (MF), shrublands (Sh), savannas (Sa), grasslands, (Gr), and 1090 

croplands (Cr). The x axis is labeled with both 8-day composite number and the starting date 1091 

(month/day) of each composite.  1092 

  1093 
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Table 1. Site descriptions including name, latitude, longitude, vegetation structure, years of data available, and references for each flux 

site in this study. 

Site State Lat Lon Vegetation structure Vegetation type Year References 

Audubon Research Ranch 

(ARR) 

AZ 31.59 -110.51 Desert grasslands Grasslands 2002-2006  

Santa Rita Mesquite (SRM) AZ 31.82 -110.87 Mesquite-dominated savanna Savannas 2004-2006 Watts et al., 

2007 

Walnut Gulch Kendall 

Grasslands (WGK) 

AZ 31.74 -109.94 Warm season C4 grassland Grasslands 2004-2006  

Sky Oaks Old Stand (SOO) CA 33.37 -116.62 Chaparral (Mediterranean-type ecosystems) Shrublands 2004-2006 Lipson et al., 

2005 

Sky Oaks Young stand 

(SOY) 

CA  33.38 -116.62 Chaparral (Mediterranean-type ecosystems) Shrublands 2001-2006 Lipson et al., 

2005 

Tonzi Ranch (TR) CA 38.43 -120.97 Oak savanna, grazed grassland dominated by blue 

oak and grasses 

Savannas 2001-2006 Ma et al., 2007 

Vaira Ranch (VR) CA 38.41 -120.95 Grazed C3 grassland opening in a region of 

oak/grass savanna 

Grasslands 2001-2006 Xu and 

Baldocchi, 

2004 

Niwot Ridge Forest (NRF) CO 40.03 -105.55 Subalpine coniferous forest dominated by subalpine, 

Engelmann spruce, and lodgepole pine 

Evergreen forests 2000-2003 Monsoon et al., 

2002 

Kennedy Space Center -

Scrub Oak (KSC) 

FL 28.61 -80.67 Scrub-oak palmetto dominated by schlerophyllous 

evergeen oaks and the Saw Palmetto Serenoa repens 

Shrublands 2000-2006 Dore et al., 

2003 

Austin Cary - Slash Pine 

(AC) 

FL 29.74 -82.22 Naturally regenerated pine dominated by Pinus 

palustris/Pinus ellottii 

Evergreen forests 2001-2005 Powell et al., 

2005 

Bondville (Bon) IL 40.01 -88.29 Annual rotation between corn (C4) and soybeans 

(C3) 

Croplands 2001-2006 Hollinger et al., 

2005 

FNAL agricultural site 

(FAg) 

IL 41.86 -88.22 Soybean/corn Croplands 2005-2006  

FNAL Prairie site (FPr) IL 41.84 -88.24 Tall grass prairie Grasslands 2004-2006  

Morgan Monroe State 

Forest (MMS) 

IN 39.32 -86.41 Mixed hardwood deciduous forest dominated by 

sugar maple, tulip poplar, sassafras, white oak, and 

black oak 

Deciduous forests  2000-2005 Schmid et al., 

2000 

Harvard Forest EMS Tower 

(HFE) 

MA 42.54 -72.17 Temperate deciduous forest dominated by red oak, 

red maple, black birch, white pine, and hemlock 

Deciduous forests 2000-2004 Urbanski et al. 

2007 

Harvard Forest Hemlock 

Site (HFH) 

MA 42.54 -72.18 Temperate coniferous forest dominated by hemlock Evergreen forests 2004  
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Little Prospect Hill (LPH) MA 42.54 -72.18 Temperate deciduous forest dominated by red oak, 

red maple, black birch, white pine, and hemlock 

Deciduous forests 2002-2005  

Howland forest (HF) ME 45.20 -68.74 Boreal--northern hardwood transitional forest 

consisting of hemlock-spruce-fir, aspen-birch, and 

hemlock-hardwood mixtures 

Evergreen forests 2000-2004 Hollinger et al., 

1999, 2004 

Howland forest (west tower) 

(HFW) 

ME 45.21 -68.75 Deciduous needle forest, Boreal/northern hardwood 

ecoton, old coniferous 

Deciduous forests 2000-2004 Hollinger et al., 

1999, 2004 

Sylvania Wilderness Area 

(SWA) 

MI 46.24 -89.35 Old-growth eastern hemlock/sugar 

maple/basswood/yellow birch 

Mixed forests 2002-2006 Desai et al., 

2005 

Univ. of Mich. Biological 

Station (UMB) 

MI 45.56 -84.71 Mid-aged conifer and deciduous, northern 

hardwood, pine understory, aspen, mostly 

deciduous, old growth hemlock 

Mixed forests 2000-2003 Gough et al., 

2008 

Missouri Ozark (MO) MO 38.74 -92.20 Oak hickory forest Deciduous forests 2004-2006 Gu et al. 2006, 

2007 

Goodwin Creek (GC) MS 34.25 -89.97 Temperate grassland Grasslands 2002-2006  

Fort Peck (FPe) MT 48.31 -105.10 Grassland Grasslands 2000-2006  

Duke Forest loblolly pine 

(DFP) 

NC 35.98 -79.09 Even-aged loblolly pine forest Evergreen forests  2001-2005 Oren et al. 

1998, 2006 

Duke Forest hardwoods 

(DFH) 

NC 35.97 -79.10 An uneven-aged closed-canopy stand in an oak-

hickory type forest composed of mixed hardwood 

species with pine (P. taeda) as a minor component 

Deciduous forests 2003-2005 Pataki and 

Oren, 2003 

North Carolina loblolly pine 

(NCP) 

NC 35.80 -76.67 Loblolly pine plantation Evergreen forests 2005-2006  

Mead -irrigated continuous 

maize site (MIC) 

NE 41.17 -96.48 Continuous maize Croplands 2001-2005 Verma et al. 

2005 

Mead  irrigated rotation 

(MIR) 

NE 41.16 -96.47 Maize-soybean rotation Croplands 2001-2005 Verma et al. 

2005 

Mead  rainfed (MR) NE 41.18 -96.44 Maize-soybean rotation Croplands 2001-2005 Verma et al. 

2005 

Bartlett Experimental Forest 

(BEF) 

NH 44.06 -71.29 Temperate northern hardwood forest dominated by 

American beech, red maple, paper birch, and 

hemlock 

Deciduous forests 2004-2005 Jenkins et 

al., 2007 

Toledo Oak Openings 

(TOP) 

OH 41.55 -83.84 Oak Savannah dominated by quercus rebrua, 

quercus alba, and acer rubrum 

Savannas 2004-2005  

ARM Oklahoma (ARM) OK 36.61 -97.49 Winter wheat, some pasture and summer crops Croplands 2003-2006  

Metolius intermediate aged 

ponderosa pine (MI) 

OR 44.45 -121.56 Temperate coniferous forest dominated by pinus 

ponderosa, purshia tridentate, arctostaphylos patula 

Evergreen forests  2003-2005 Law et al. 

2003; Irvine et 

al. 2007 

Metolius new young pine OR 44.32 -121.61 Temperate coniferous forest dominated by pinus Evergreen forests  2004-2005 Law et al. 



 52 

(MN) ponderosa and purshia tridentata 2003; Irvine et 

al. 2007 

Brookings (Bro) SD 44.35 -96.84 Temperate grassland Grasslands 2004-2006  

Freeman Ranch Mesquite 

Juniper (FRM) 

TX 29.95 -98.00 Grassland in transition to an Ashe juniper-

dominated woodland 

Savannas 2004-2006  

Wind River Crane Site 

(WRC) 

WA 45.82 -121.95 Temperate coniferous forest dominated by douglas-

fir and western hemlock 

Evergreen forests 2000-2004 Falk et al., 

2008 

Lost Creek (LC) WI 46.08 -89.98 Alder-willow deciduous wetland Deciduous forests 2000-2005  

Willow Creek (WC) WI 45.81 -90.08 Temperate/Boreal forest dominated by white ash, 

sugar maple, basswood, green ask, and red oak 

Deciduous forests 2000-2006 Cook et al., 

2004 

Wisconsin intermediate 

hardwood (WIH) 

WI 46.73 -91.23  Deciduous forests 2003  

Wisconsin mature red pine 

(MRP) 

WI 46.74 -91.17  Evergreen forests 2002-2005  

 

Descriptions on vegetation structures are from the site information available at http://public.ornl.gov/ameriflux/ for all sites except 

Duke Forest - hardwoods.  The description on the vegetation for Duke Forest - hardwoods is from 

http://www.env.duke.edu/other/AMERIFLUX/hwsite.html.  
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Table 2. The seven broader vegetation types used in the study and the corresponding UMD 

vegetation classes.   

 

Vegetation types UMD classes Definition (Belward and Loveland, 1996) 

Evergreen forests Evergreen needleleaf 

forests (1), evergreen 

broadleaf forests (2) 

Tree canopy cover > 60% and tree height > 2m. 

Most of the canopy remains green all year 

Deciduous forests Deciduous needleleaf 

forests (3), deciduous 

broadleaf forests (4) 

Tree canopy cover > 60% and tree height > 2m. 

Most of the canopy is deciduous 

Mixed forests Mixed forests (5) Tree canopy cover > 60% and tree height > 2m. 

Mixed evergreen and deciduous canopy 

Shrublands Closed shrublands (6), 

open shrublands (7) 

Shrub canopy cover > 10% (10-60% for open 

shrublands, >60% for closed shrublands) and 

height < 2m 

Savannas Woody savannas (8), 

savannas (9) 

Forest canopy cover between 10-60% (30-60% 

for woody savannas, 10-30% for savannas) and 

height > 2m 

Grasslands Grasslands (10) Herbaceous cover. Woody cover < 10% 

Croplands Croplands (12) Temporary crops followed by harvest and a 

bare soil period 
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