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l database was used to develop broad quantitative relationships between the
environmental factors of climate, parent material and topography and a range of important soil properties
(pH, sum of bases, organic carbon, clay content and others). Three different analytical approaches were used
in the analysis, involving (i) multiple linear regressions, (ii) fitted decision trees and (iii) categorical analysis
with median values.
The strengths of the predictive relationships are generally only moderate at best, with R2 values in the
regression relationships typically in the range 0.2 to 0.4 and a wide spread in inter-quartile values in
categorical median results. Testing with 100 random samples revealed only broadly moderate accuracy for
the soil property predictions, with root mean square error down to 0.84 for pH predictions and down to
2.6 cmolc/kg for sum of bases. Despite their low strengths, the predictive relationships can provide useful
first approximations of soil character under different environmental conditions and could be applied in broad
quantitative soil modelling and mapping programs. They have the potential for widespread application as
they should be universally applicable, are based on readily available data and do not require sophisticated
quantitative modelling techniques.
The relationships revealed in the study can assist in our understanding of soil formation and soil distribution.
Most relationships are in accord with accepted pedological thinking and support the state factor model of soil
formation, but some anomalies are observed and deserve further examination. The results reveal the
dominant influence of climate and parent material in controlling the distribution of many soil properties,
with the influence of topography being less evident, at least at the global scale.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.
1. Introduction

A knowledge and understanding of soil and how it is distributed
across the landscape is essential for the effective use, management
and conservation of this most vital resource. As soil is an integral
component of many physical and ecological processes, soil informa-
tion is increasingly being required for input into ecological, hydrologic,
climatic and other environmental models, particularly due to the ever-
rising environmental concerns around the planet. Despite this need,
much of the world has only very poor coverage of soil data, with many
countries, particularly larger and/or poorer ones, only having data
available at very broad scale if at all, and typically of low reliability
(McBratney et al., 2003). For example, in Australia, only 50% of the
Murray Darling Basin, the country's most important agricultural
region, has been mapped at 1:250000 and only 3% at 1:100000 or
finer; most is at a scale of 1:2 million (Bui and Moran, 2003).
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1.1. Need for quantitative relationships

There is a clear need for precise quantitative relationships between
soil and key environmental factors to facilitate soil data collection and
soil modelling around the globe. Such relationships form the basis of
digital soil mapping techniques, which is widely considered to be
where the future of soil survey lies (Lagacherie and McBratney, 2007;
Hartemink, 2006; Grunwald, 2006a). However, most published
information on soil–environment relationships is of a qualitative
form, and even these are often not clearly enunciated. For example, it
is widely reported that parent material influences soil character, but
there is little detail on what the precise influence is, for example how
pH changes with increasing mafic character, particularly in quantita-
tive terms. Few universally applicable quantitative relationships have
been published and widely accepted to date. Most that have been
published relate to specific regions rather than to continental or global
scales. Heuvelink (2006) laments that most of our knowledge on soil
forming processes is available only in a conceptual or descriptive form
and that so far we have not succeeded in building a generic,
quantitative, reproducible model that predicts the soil from its
controlling factors in a satisfactory way.
hts reserved.
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Table 2
Parent material classes.

Parent
material
class

Silica
range
(%)

Average
Silica
(%)

Ca–Mg–Fe
oxides
Range (%)

Examples

Extremely
siliceous (ES)

N85 90 b3 Quartz sands, quartzite, chert,
jasper (generally N90% quartz)

Highly
siliceous (HS)

68–85 76.5 3–7 Granite, rhyolite, adamellite,
quartz sandstone, quarts
siltstone, siliceous tuff (~30–60%
quartz)

Intermediate
(Int)

52–68 60 7–20 Granodiorite, dacite, trachyte,
syenite, monzonite, diorite,
andesite, greywacke, lithic
sandstone, argillaceous materials
(mudstone, shale, slate, phyllite),
clay, loess (~0–30% quartz)

Mafic (Maf) 45–52 48.5 20–30 Gabbro, dolerite, basalt, mafic
tuff (generally nil quartz)

Calcareous
(Cal)

Not
applicable

Not
applicable

Not
applicable

Limestone, dolomite,
calcareous shale, calcareous
sands (generally low quartz)

Approximate compositions derived from Best (1982) and Duff (1993).
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1.2. The state factor model

Soil–environment relationships are generally based on the
principles inherent in the now widely accepted state factor model of
soil formation and the associated fundamental soil equation. This
model, sometimes referred to as the “clorpt”model, maintains that the
soil or soil property is a function of the factors of climate (cl), organism
or biota (o), relief or topography (r), parent material (p) and time (t)
(Jenny, 1941). The equation has been described as “a general
statement implying that soils are natural bodies that are distributed
in a predictable way in response to a systematic interaction of
environmental factors” (Hudson, 1992). McBratney et al. (2003)
expanded on this model, proposing a new seven-factor “scorpan”
model for use in digital soil mapping applications. This has the
additional factors of s (a soil attribute predictor), and n (geographic
position predictor) together with the five traditional factors.

1.3. Development of quantitative relationships

The fundamental soil equation provides in theory for a quantitative
prediction of soil classes or properties. However, due to the inability to
derive effective quantitative indicators of each factor and the
complexity of the resulting mathematical relationships, the equation
has not been solved in its entirety to date. Partial solving of the
equation is possible through the use of individual pedofunctions such
as climofunctions or topofunctions where all factors bar the one of
interest are held constant (Jenny, 1961). Pedofunctions have been
attempted by numerous workers, particularly in the decades follow-
ing Jenny's 1941 book (see Yaalon, 1975; Bokheim, 1980; Jenny, 1980).
The frequent low number of sample points in many of these studies
limits their statistical reliability. The majority of the functions were
based on relatively localised locations and do not have universal
applicability.

There appears to have been few standard pedofunctions published
in recent decades. McBratney et al. (2003) note that it is difficult to
find studies that explicitly consider the interactions between the
different soil forming factors, ie multi-variate functions. They suggest
that Webster (1977) came closest with his canonical correlation
studies relating soil properties to topography, lithology and time.
Rasmussen et al. (2005) established linear relationships for soil
carbon and clay contents from an “energy index” based on climate and
parent material factors, using the US State Soil Geographic (STATSGO)
database.

The advent of digital soil mapping over the past two decades has
led to the development of sophisticated multi-variate regression
relationships and decision tree models relating soil properties to
digital environmental data. These relationships use secondary
ancillary data such as from geophysical and satellite image sources
to represent the various state factors. Examples include McKenzie and
Austin (1993), Skidmore et al. (1997), McKenzie and Ryan (1999),
Ryan et al. (2000) and McBratney et al. (2000); others are given in
McBratney et al. (2003). However, these relationships tend not to have
universal applicability, being only relevant to the study area being
surveyed. The sophisticated ancillary data they use may not be readily
available for other locations. Thus, in most cases they cannot be
applied more generally for soil distribution modelling applications.
Table 1
Topographic classes.

Topographic class Slope gradient Landform feature

Sloping sites (S)
(sites of depletion)

N5% Medium and high gradient hill,
mountain, ridge, valley and escarpment

Near level lowland sites (L)
(sites of accumulation)

b=5% Plain, valley floor, depression and
low-gradient footslope
1.4. Prediction of soil properties at two hypothetical sites

An illustration of the current lack of universal and readily applicable
quantitative soil–environmental relationships is providedbyattempting
to predict the precise nature of soils likely to occur in two hypothetical
sites. Site A is on moderately sloping terrain (slope 10%) with highly
siliceous parent material (eg, granite) and wet climate (1800 mm pa
rainfall) while Site B is on near level terrain with mafic parent material
(eg, basalt) in a dry climate (400 mm pa rainfall). What soils would we
expect at these two sites? There is currently very little published
information to assist in this prediction process, even to provide broad
qualitative predictions let alone detailed quantitative predictions. These
two hypothetical sites are revisited later in this paper.

1.5. Study aims

There appears to be a need for pragmatic, easy-to-apply relation-
ships for predicting soil character under different environmental
conditions. Such relationships would assist in soil data collection by
providing useful first approximations of soil properties occurring in
different locations. They might encourage a more widespread
application of quantitative predictive techniques by the soil survey
community, perhaps in association with conventional mapping
techniques. The relationships may be incorporated into quantitative
models of other scientific disciplines, for example in ecological,
climatic or hydrological studies. More generally, they may provide
valuable insights into soil formation and soil distribution.

This study used the International Soil Reference and Information
Centre (ISRIC)WISE Global database in an exploratory analysis to reveal
broad quantitative soil–environment relationships. The potential for
such “datamining” to develop important environmental relationships is
well recognised. Henderson et al. (2005) and Bui et al. (2006) adopted a
similar approach to model the distribution of various soil properties
Table 3
Climate classes.

Climate class Rainfall/evapotranspiration (R/EV) Annual rainfall (R) (mm pa)

A. Extremely dry b0.125 b250
B. Very dry 0.125–0.25 250–500
C. Dry 0.25–0.5 500–750
D. Moderately dry 0.5–0.75 750–1000
E. Moderately wet 0.75–1.0 1000–1250
F. Wet 1.0–1.25 1250–1500
G. Very wet 1.25–1.5 1500–2000
H. Extremely wet N1.5 N2000



Table 4
Multiple linear regression relationships for key soil properties.

Property Climate index Horizon Regression equationa N R2 F model p value

pH R/EV A pH=8.69−1.22(R/EV)−0.025(silica%)−0.0072(slope%) 490 0.40 106.0 b0.0000
B pH=8.57−1.07(R/EV)−0.025(silica%)−0.0077(slope%) 604 0.33 99.9 b0.0000

R A pH=8.86−0.0008(R)−0.030(silica%)−0.013(slope%) 491 0.35 89.3 b0.0000
B pH=8.59−0.0007(R)−0.029(silica%)−0.009(slope%) 606 0.29 82.2 b0.0000

Sum of bases (ln cmolc/kg) R/EV A ln(SB)=5.57−0.81(R/EV)−0.051(silica%) 781 0.30 168.8 b0.0000
B ln(SB)=6.26−1.22(R/EV)−0.057(silica%) −0.013(slope%) 549 0.33 88.3 b0.0000

R A ln(SB)=5.73−0.0007(R)−0.052(silica%) 783 0.31 176.5 b0.0000
B ln(SB)=6.46−0.0009(R)−0.061(silica%) −0.010(slope%) 550 0.34 93.3 b0.0000

Organic C (ln %) R/EV A ln(OrgC)=0.74+0.65(R/EV)−0.014(silica%)+0.009(slope%) 485 0.21 42.1 b0.0000
B ln(OrgC)=−0.23+0.40(R/EV)−0.012(silica%)+0.009(slope%) 591 0.12 26.5 b0.0000

R A ln(OrgC)=0.82+0.0003(R)−0.011(silica%)+0.012(slope%) 486 0.12 22.9 b0.0000
B ln(OrgC)=0.082+0.0002(R)−0.011(silica%)+0.011(slope%) 592 0.07 15.7 b0.0000

Clay (%) R/EV A Clay=76.17+4.00(R/EV)−0.80(silica%) 856 0.29 174.6 b0.0000
B Clay=87.59+4.91(R/EV)−0.86(silica%) 908 0.29 183.0 b0.0000

R A Clay=74.11+0.0042(R)−0.79(silica%) 857 0.30 187.2 b0.0000
B Clay=82.28+0.0064(R)−0.83(silica%) 909 0.33 220.3 b0.0000

aVariables excluded where not significant (p valueN0.10).
See Appendices A and B for additional soil properties and statistics.
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across the agricultural zone of Australia using a large Australian
database, the Australian Soil Resource Information System (ASRIS,
Johnson et al., 2003; McKenzie et al., 2005). To date the approach does
not appear to have beenused to develop soil–environment relationships
at the global scale.

Specific aims of the study were to:

• develop broad universal quantitative relationships between envir-
onmental factors (climate, parent material and topography) and key
soil properties, using three different analytical approaches.
Fig. 1. Regression planes of key soil
• demonstrate the use of these relationships as pragmatic tools that
facilitate a broad quantitative prediction of soil properties under
different environmental conditions, for use in quantitative soil
mapping and modelling exercises at a local to global scale.

• examine the soil–environment relationships revealed in relation to
current accepted thinking on soil formation and distribution.

A semi-quantitative analysis of World Reference Base (WRB) soil
type relationships with environmental factors was also undertaken
using the ISRIC database. The results may aid in the prediction of WRB
properties v R/EV and silica%.
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soil types under different conditions and will be presented in an
upcoming paper (Gray et al., in preparation). This study builds on
work presented in Gray (2008), Gray et al. (2007), Gray and
Humphreys (2004) and Gray and Murphy (2002).

2. Methods

2.1. The ISRIC WISE Global database

This dataset was examined to extract relationships that could be
used to model soil behaviour at the global level. It contains 4382 geo-
referenced soil profiles from 123 countries (Batjes, 2002). It was
established by ISRIC using the framework of the World Inventory of
Fig. 2. Fitted decision trees fo
Soil Emission Potential (WISE) project (Batjes and Bridges, 1994). The
dataset includes, for most soil profiles, a comprehensive listing of site
conditions, soil type (including FAO 1988 legend) and soil physical and
chemical data. The dataset, in Microsoft Access 2000 format, was
downloaded from the ISRIC website. Rainfall and potential evapo-
transpiration data were derived from a world climatic dataset (with
5 arc min grid) contained in FAO/IIASA (2002) and linked to soil
profiles using their spatial coordinates.

2.2. Extraction of soil and environmental variables

Multiple queries were created to extract key soil properties and the
associated environmental variables relating to topography, parent
r four key soil properties.



Fig. 2 (continued).
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material and climate from the database. These variableswere divided into
classes as outlined below. The variables of age and biotic activity could not
be included in the query process due to their lacking meaningful
indicators.
Topography — the topographic indicator used was slope percent in
conjunction with landform features, as provided for each soil
profile in the database. Just two broad classes were established:
(i) Sloping sites and (ii) Near level sites as shown in Table 1. These
classes, with the 5% slope gradient cut off point, are intended to
broadly reflect sites of depletion or accumulation respectively,
where soil particles and chemical material is either lost or gained
due to erosional and leaching processes. Crest and plateau sites less
than 5% slope were excluded.
Parentmaterial— thiswas categorised on the basis of broad chemical
composition, considered the singlemost important feature of parent
material in influencing soil properties. Of the five classes selected,
four are based on broad silica (SiO2) content and one on calcareous
(CaCO3) character, as shown in Table 2. Other classes such as
ultramafic and organic materials were omitted due to low sample
numbers in the database. Table 2 shows the declining base Ca–Mg–
Fe oxides with increasing silica contents in parent materials.
Classification into thesefive classeswas based on theparentmaterial
name and description as given in the database. Assumptions had to
be made on many materials, eg, unqualified “loess” and “clay” were
considered to be intermediate and unqualified “sand” was consid-
ered to be extremely siliceous.

Climate — two straightforward climatic indices were used in the
project: annual rainfall (R) and annual rainfall/annual potential eva-
potranspiration (R/EV). The former (R) has the advantage of being
easilyunderstoodandaccessibleat thesiteordistrict level, however the
latter (R/EV)may be expected to give a better indication ofwetness of
the environment, as it effectively includes a temperature variable. Eight
broad climatic classes based onR andR/EVwere established as shown
in Table 3. These range from extremely dry to extremely wet climates
and attempt to best represent global moisture regimes.

The combination of 2 topographic, 5 parent material and 8 climatic
classes resulted in the creation of 80 different environmental regimes,
which provided a basis for presenting categorical analysis results.
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Only 1646 profiles within the database matched the final query
requirements, comprised of 1108 in near level sites and 538 in sloping
sites. The main reason for the relatively low return rate was
incomplete site data for many profiles, such as insufficient topo-
graphic data, or inadequately defined parent material, for example
“fluvial” or “aeolian”, terms that give little indication of lithological
composition. Some environmental regimes were represented only
poorly or not at all, particularly those with extremely siliceous parent
materials and many arid-sloping regimes.

A range of potentially important soil propertieswere extracted and/or
derived for a single topsoil layer (uppermost A horizon) and subsoil layer
(uppermost B horizon) from each profile. Key properties examined in
detail included pH, sum of bases, organic carbon and clay content, these
being considered to be fundamental indicators of the character and
agricultural potential of a soil. Other properties briefly examined included
cation exchange capacity (CEC), base saturation, exchangeable sodium
percent (ESP), electrical conductivity (ECe) and sand and silt contents.

2.3. Statistical analysis

Data extracted from the database were further organised using
Microsoft Excel software. Exploratory statistical analysis was then
undertaken using S-Plus (2003) software. Although several approaches
were trialled, only results from three are presented in this paper:
(i) multi-variate linear regression involving the three environmental
variables giving regression relationships for each soil property; (ii) fitted
decision trees for each soil property and (iii) a categorical median
approach giving median values for each soil property in 80 different
environmental regimes. Standard statistical techniques were applied to
test the performance of the relationships and the relative contributions of
each variable. Graphical plots were prepared for all relationships.
Predictions of soil properties derived using the three approaches were
tested foraccuracyagainst actual values from100 randomsamplesdrawn
from the ISRIC database prior to the development of the relationships.

3. Results

3.1. Soil property–environment relationships

The relationships of the various soil properties with the variables
of climate, parent material and topography were examined using the
three different analytical approaches. Results are presented in this
section, together with key statistical parameters.

3.1.1. Multiple linear regression approach
Regression relationships between the various soil properties and the

three environmental variables were established. Results for pH, sum of
bases, organic carbon and clay content are presented in Table 4. Results
for other properties including CEC, base saturation, ESP, ECe, sand and
silt contents are presented in Appendix A. Additional statistics
associated with the four key properties including standard errors, t
values, and ANOVA F values are presented in Appendix B. Three-
dimensional plots with regression planes were prepared for each key
property, aspresented in Fig.1,with rainfall/evapotranspiration (R/EV)
on the x axes and silica content on the y axes. These display key trends in
soil behaviour with varying climate and parent material.

Coefficient of determination (R2) values are generally in the low to
moderate range for most properties. For pH they are moderate
(~0.30–0.40), indicating a moderate correlation and that these
regression relationships are at leastmoderately effective in accounting
for the variation of this property in the database. R2 values are low to
moderate for sum of bases and clay (~0.30–0.35) and only low for
organic carbon (~0.10–0.25), indicating that these relationships are of
only low to moderate effectiveness in accounting for the variation of
these properties. Note that for sum of bases and organic carbon, a
natural log (ln) transformer is used in the regression to address the
positive skew in the data. ANOVA F values of the regression models
are generally high, in the order of 100 or more, except for organic
carbon which are only moderate, and the p values are all extremely
low (b0.0000) confirming that significant relationships do exist
between the properties and the environmental variables.

The similarity in R2 values between relationships using the two
different climatic indices (R/EV and R) suggests that the two indices
have similar effectiveness, however the R index appears less effective
in the organic carbon relationships.

3.1.2. Decision tree approach
Decision trees were fitted to the data for each of the four key soil

properties. For the purposes of simplicity and ease of presentation, the
sensitivity of the trees was set so as to finish with approximately 10–
12 leaves at the base. Themodels, as presented in Fig. 2a–d, use rainfall
classes as the climatic index for pH, sum of bases and clay content, but
rainfall/evapotranspiration (R/EV) classes for the organic carbon
model as this gave significantly more reliable results. By way of
example, it can be seen that hypothetical site A (climate G, parent
material HS and topography S) may be expected to have a pH of 5.2
and sum of bases 3.4 cmolc/kg.

The models all reveal a generally consistent change in soil
properties as the environmental factors vary, eg, increasing pH with
increasing dryness and increasing mafic character. However, some
minor anomalies occur, which may be due to low sample numbers or
other factors as discussed in Section 4.1. It is apparent that the slope
class does not have a strong influence in the models. If a greater
number of leaves had been allowed for in the sensitivity settings there
would be less grouping of results from different environmental
regimes and thus potentially more reliable predictive ability.

3.1.3. Categorical median value approach
This approach involved division of the 1646 profiles into different

environmental categories based on the two topographic classes, five
parentmaterial classes and the eight climatic classes. This gave rise to 80
different topographic-parentmaterial-climatic regimes. For each regime,
the median values were determined for the four key soil properties, as
presented in Appendix C.1–C.4 along with sample numbers (using
rainfall climate index). Themedian valuesmay be presented in box plots
as shown for the fourkeyproperties in thefivenear level regimes in Fig. 3
(using R/EV climate index). These plots also reveal the broad trends in
the behaviour of these properties with changing conditions.

The inter-quartile ranges are frequently high, particularly for
organic carbon, reflecting the wide variability in results within each
regime. Low sample numbers in many regimes reduce the effective-
ness of the results. Mean values in each regime, plus associated
statistics (standard deviation, standard error, etc) were also derived
but were found to be slightly less effective than the median values,
presumably due to the effect of occasional significant outliers.

3.2. Soil property behaviour

Broad quantitative trends in the behaviour of the key soil
properties with varying environmental conditions were revealed by
the analysis, with all three analytical approaches giving similar results.

By way of example, the regression relationships (presented in
Table 4) reveal the following trends in behaviour for topsoil pH:

• a pronounced decrease in pH as climate becomes wetter, with an
average 1.2 unit decrease per R/EV unit increase or 0.8 unit
decrease per 1000 mm increase in R.

• a moderate decrease in pH as parent material becomes more
siliceous, with an average 0.3 unit decrease with each 10% increase
in silica content.

• a slight decrease in pH with increasing slope, with an average
0.1 unit decrease for each 10% increase in slope.



Fig. 3. Box-plots of key topsoil properties (near level regimes).
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Table 6
Accuracy of predictions for 100 random samples (topsoils).

Approach Climate
index

pH Sum of
basesa

Organic C (%) Clay (%)

RMSE ME RMSE ME RMSE ME RMSE ME

1. Multiple linear
regression

R/EV 0.91 −0.33 2.80 0.86 1.45 0.26 14.7 −3.6
R 0.91 −0.30 2.80 0.96 1.48 0.28 14.4 −3.4

2. Decision tree R/EV 0.92 −0.09 3.10 0.65 1.50 −0.25 14.8 −2.8
R 0.94 −0.12 3.40 0.54 1.75 −0.47 14.7 −2.9

3. Categorical
median

R/EV 0.88 −0.12 2.70 0.82 1.57 0.16 16.9 −2.6
R 0.84 −0.13 2.60 0.95 1.79 0.01 15.0 −1.5

a cmolc/kg.
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• the rate of decrease of pH as climate becomes wetter is generally
greater with increasing mafic character (decreasing silica %) of
parent material (although the ES class does not follow this trend).
The trend is even more pronounced for sum of bases.

Examination of other regression relationships, from Table 4 and
Appendix A, allows similar quantitative behavioural trends to be
determined for other soil properties. The ANOVA results (with R/EV,
as presented in Appendices A and B) provide indications of the relative
importance of each factor for the different properties, for example:

• For pH, the F and t values indicate that climate exerts the greatest
influence (t values −14.5), then parent material (−6.5) with slope
gradient exerting the least influence (−2.0).

• For sum of bases, F and t values indicate that parent material has the
greatest influence on this property (t values−14.6) closely followed
by climate (−10.7) with the influence of slope being insignificant.

• For organic carbon, F and t values indicate that climate has the
strongest influence on this property (t value 9.3) with parentmaterial
then slopehaving lesser influence (t values−4.3 and3.1 respectively).

• For clay content, F and t values indicate the dominant influ-
ence of parent material (t value −18.4), the lesser influence of
climate (t value 5.3) and the insignificant influence of slope %.

3.3. Prediction of soil properties

Three different approaches to the analysis of the data have been pre-
sented, representingdifferent avenues for theprediction of soil properties.
For the regression approach, the R2 values are generally only moderate at
best, suggesting that it is only of moderate reliability as a universal pre-
dictive tool. The fitted decision tree approach (as presented) resulted in
considerable grouping and loss of distinction between different regimes,
with several minor anomalies apparent. For the categorical median value
approach, relatively large inter-quartile ranges again suggest only mode-
rate reliability. It is apparent that all three approaches could generally only
be relied upon for first approximations of likely soil properties under
different environmental conditions.

The use of these approaches as predictive tools is demonstrated by
attempting predictions for the four key soil properties in the two hypo-
thetical sites A and B referred to in the Introduction, as shown in Table 5.
Predictions from each approach vary slightly but are generally broadly
equivalent.

3.4. Testing

The accuracy of predictions made from the three analytical
approaches was tested. The process involved the determination of
root mean square error (RMSE) and mean error (ME) on predictions
made on a set of 100 random independent samples, drawn from the
database prior to analysis. The difference in predictionsmade from the
three analytical approaches and two climate indices was also tested.
Table 5
Comparison of predictions from the three approaches for hypothetical sites A and B.

Site Soil property
(upper A horizon)

Predictive approacha

Multi-variate
regression

Decision
tree

Categorical
median

Site A (sloping, highly siliceous
parent material, very wet)

pH 4.9 5.2 4.8
Sum of basesb 1.8 3.4 1.5
Organic C % 1.94 2.94 2.88
Clay % 22 26 30

Site B (level, mafic parent
material, very dry)

pH 7.1 7.8 7.5
Sum of basesb 19.8 31.6 38.4
Organic C % 1.43 0.80 0.44
Clay % 38 32 37

a Using rainfall climate index.
b cmolc/kg.
The predicted values for pH, sum of bases, organic carbon and clay
content derived from each of the three analytical approaches, for both
climate indices, were compared against the actual property values for
each of the 100 random samples. The predictions used the climate,
parent material and topographical data associated with each sample.
Results are presented in Table 6.

The results generally reveal only moderate at best predictive per-
formance of the different approaches. The lowest RMSE recorded for pH
was 0.84pHunits, for sumof bases itwas 2.6 cmolc/kg, fororganic carbon,
1.45% and for clay content,14.4%. Note that the RMSE for sumof baseswas
initially calculated in loge units and then converted back into normal units.
The mean errors suggest that the predictions tended to slightly over-
estimate values relative to actual sample values for pH and clay contents
and slightly underestimate for sum of bases, with no clear trend for orga-
nic carbon. In all tests, the five most extreme outliers of the 100 samples
were removed, however results are still weakened by other outliers.

All three analytical approaches gave broadly similar levels of accuracy,
although the categorical median approach generally gave the lowest
RMSEvalues for pHandsumofbases,while themultiple linear regression
approach gave the lowest values for organic carbon and clay content. The
actual predictionsmade from each approach and climate indexwere also
generally very similar. The RMSE values derived from comparisons of
these predictions are generally low,with an overallmeanvalue of 0.40 for
pH,1.85 cmolc/kg for sum of bases, 0.87% for organic carbon and 5.2% for
clay content. There is a broad tendency for the categorical approaches to
give a broader range of predicted values than the regression and decision
tree approaches. The latter approaches appear to be associated with a
smoothing effect and removal of extremes.

There is generally close agreement between predictions derived
from the use of either annual rainfall (R) or rainfall/evapotranspira-
tion (R/EV) as the climatic variable. The two indices have similar
overall accuracy levels in the prediction of the test samples as shown
by RMSE values in Table 6, although one may be more effective than
the other for individual properties and approaches.

4. Discussion

4.1. Variability in the relationships

The regression relationships appear to be generally only of low to
moderate effectiveness in accounting for the variation of the soil
properties within the ISRIC database. Coefficient of determination (R2)
values typically falls in the range 0.2–0.4. Of the four key properties, the
strongest relationships were associated with pH, followed by sum of
bases and clay content, then organic carbon with the weakest relation-
ships. The categorical median analysis also revealed only moderate
strengths of relationships. The test of accuracy of predictions of the four
properties with 100 random samples revealed generally moderate to
high RMSE values, indicating only low tomoderate predictive reliability.

The relatively low tomoderate effectiveness of the three predictive
approaches reflects the inherent complexity of the soil property–
environmental factor relationships. A high variability in soil properties
is demonstrated even within samples in supposedly similar



Table 7
Predicted soil properties for hypothetical sites A and B.

Site A Site B

Wet climate (1800 mm pa
rain, class G); highly siliceous
parent material (granite);
sloping site (10% slope)

Dry climate (400 mm pa rain,
class B);mafic parentmaterial
(basalt), near level site
(2% slope)

Soil propertya A horizon
(uppermost)

B horizon
(uppermost)

A horizon
(uppermost)

B horizon
(uppermost)

pH 4.8 (28)b 4.7 (25) 7.5 (14) 8.0 (16)
CEC (cmolc/kg) 12.6 (28) 7.4 (24) 30.7 (15) 31.0 (17)
Base saturation (%) 12.0 (23) 6.5 (20) 100 (13) 100 (17)
Sum of bases (cmolc/kg) 1.5 (28) 0.4 (20) 36.4 (15) 41.9 (17)
Organic C (%) 2.88 (27) 0.55 (24) 0.44 (15) 0.40 (17)
P available (mgP2O5/kg) 2.4 (5) 1.40 (3) 13.7 (7) 4.6 (9)
ECe (DS/m) 0.07 (5) 0.02 (7) 0.20 (7) 0.20 (8)
ESP (%) 0.6 (5) 3.1 (5) 2.1 (15) 4.2 (17)
Clay (% 30 (28) 36 (25) 37 (15) 49 (17)
Silt (%) 18 (28) 16 (25) 20 (15) 21 (17)
Sand (%) 50 (28) 47 (25) 46 (15) 23 (17)
WRB soil typec Cambisols, Ferralsols,

Acrisols or possibly Alisols
Luvisols, Vertisols, possibly
Chernozems or Calcisols

WRB qualifierc Umbric, haplic or ferralic Eutric, chromic or rendzic

a Soil properties derived from median of values for each environmental regime using
annual rainfall as climate index (partly presented in Appendix Ca–d).

b Numbers in brackets indicate number of sampleswith lab data in the environmental
regime.

c WorldReference Base soil type and qualifier derived fromadditional analysis of ISRIC
database, to be presented in Gray et al. (in preparation).

317J.M. Gray et al. / Geoderma 150 (2009) 309–323
environmental conditions, at least in terms of topography, parent
material and climate. A number of factors may contribute to the lack of
strong relationships revealed in the analysis. These include:

• The database does not adequately represent all environmental
regimes; it contains an abundance of observations in certain regimes
but a paucity of observations in others. Although the original
database contained over 4300 profiles, the number of usable profiles
with all necessary quantitative data was far less than this. Low
sample numbers decrease the reliability of the statistical analyses.

• Variation in other environmental factors apart from climate, parent
material and topography is undoubtedly a major cause of the spread
in observed soil property values and resulting weak relationships.
The factors of age (of soils and/or landscape) and biota (including
vegetation, micro-fauna and land management issues) are key
elements in controlling soil behaviour but neither of these was
directly incorporated into the analysis.

• The simplification of climate into annual rainfall or annual rainfall/
annual evapotranspiration does not adequately address the role of
varying seasonal conditions (eg, distinctive wet or dry winters) in
controlling overall water balance andmany soil formation processes.
The important influence of micro-climate due to aspect and other
topographic features is likewise not considered.

• The classification of parent material into classes, with assumed
specific silica contents, is a major simplification. For example, shales
may regularly vary from 50–75% silica and accordingly give rise to
soils with a range of properties, therefore ascribing a value of 60%
silica to all thesematerials will often be inaccurate. The actual parent
material may vary considerably from that suggested from its name in
the database, for example, due to being based on a broad geological
map rather than actual field observation or to the influence of
externally derived materials such as aeolian dust.

• The primary use of slope percent, together with some consideration
of landform element, may not adequately represent site behaviour
in terms of being sites of material depletion or accumulation. For
example, sites with 4% slope may in some cases be subject to
accumulation but in others to depletion. Hillcrest and plateau
elements were effectively omitted from the analyses.

• The polygenetic nature of many soils must be considered. Where
soils are old enough to have been influenced by previous climates,
they may carry the imprint of those earlier conditions, and not
entirely reflect current climatic conditions.

• A portion of the soil variability giving rise to theweak relationshipsmay
be attributable to “intrinsic” factors rather than traditionally accepted
“extrinsic” factors of soil formation, as suggested by Phillips (1993a,b,
2001) in his non-linear dynamic system model of soil formation.

4.2. Pragmatic soil prediction tools

The soil–environment relationships derived from the database,
although not strong, may serve as general predictive tools to provide
useful first approximations of soil properties under different environ-
mental conditions. These may have application in broad quantitative
predictive soil modelling and mapping exercises ranging from single
site to global scale studies where no other more reliable data is
available. They could be applied in a purely manual process to provide
simple soil property class maps or in a fully automated process to
produce continuous soil property maps on a raster grid, depicting a
continuous variation in soil properties across a landscape.

The potential of the predictive approaches to derive first approxima-
tions of soil conditions over specific sites is illustrated with the two
hypothetical sites A and B. Table 7 gives a detailed listing of soil
properties expected over both sites, using results from the categorical
median approach. It can be seen that, broadly, the soils fromSite Awould
be expected to be highly acid, low fertility soils, characterised by sandy
clay subsoils while those from Site B would be expected to be neutral to
alkaline, high fertility, uniformly clayey soils. The table also includes a
listing of World Reference Base (WRB) soil types predicted to occur at
these sites. This is based on a semi-quantitative analysis of WRB soil
type–environment relationships revealedby the ISRIC database,with full
results tobepresented in anupcomingpaper (Grayet al., inpreparation).

The relatively straightforward nature of the predictive approaches
means that they have the potential for widespread application. They
are based on primary environmental data; climate (annual rainfall or
rainfall/evapotranspiration), parent material (assumed silica %) and
topography (slope % and/or landscape position) that should bewidely
available around the world. They do not use the more sophisticated
but less widely available environmental indices such as derived from
geophysical techniques or satellite imagery (see McBratney et al.,
2000, 2003). There is no requirement for sophisticated computer
technologies or quantitative modelling skills. They can therefore be
readily and cheaply applied by all users, including those without
access to more sophisticated datasets and technologies.

Levels of certainty associated with predictions could be applied.
Results for each predicted soil property, could include the associated
residual standard error, where regression relationships are used (from
Appendices A and B) or the associated root mean square error values
derived from the 100 sample test (from Table 6), eg, pH=5.2
(associated RMSE=0.84). Alternatively, results could be presented in
terms of particular confidence intervals displayed by the ISRIC database
(not presented here), eg, ISRIC derived relationships suggest a 95%
probability that the sum of bases in Site A falls between 1.0 and 3.5.

As the relationships have been based on a worldwide dataset, rather
than from a particular location or region, they have a claim to be globally
applicable. They should bemost suitable for the production of broad scale
maps at the global or continental scale. Their reliability would decrease
with finer scales of map production, but there is no inherent reasonwhy
the predictive relationships would not apply at finer levels. They should
still give useful first approximations of soil conditions at most regional
and even localmap scales. Scull et al. (2005), Henderson et al. (2005) and
Bui et al. (2006) demonstrated how relationships derived from large soil
databases, using data mining techniques, can be used to produce digital
predictive soil maps over regional and continental scales.

The results suggest that the two climate indices used (annual rainfall
(R) and annual rainfall/annual potential evapotranspiration (R/EV))
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have almost equal effectiveness in the predictive relationships, although
one may be more effective than the other for specific predictive
approaches and properties. For example, when using the regression
approach, coefficient of determination values (Table 4) suggests that R
may be more effective for sum of bases and clay content while R/EV
may be more effective for pH and organic carbon. The R index has
important advantages in terms of its inherent simplicity, ease of
understanding and ready availability at the local level, which may
compensate for a small loss in reliability inmanyapplications. The use of
more advanced indices such as the Thornthwaite moisture index or
others usingmonthly or seasonal datamay enhance the effectiveness of
the relationships.

Any of the three predictive approaches presented could be applied,
the choice depending on the nature of the program being undertaken.
The categorical predictive approaches for providing median soil proper-
ties may be the most readily applied for non-sophisticated programs, as
no mathematical processing is required. The regression approach may
have the greater potential application inmore sophisticated programs as
it can accommodate specific continuous data for each variable.

Despite the clear utility and importance of quantitative approaches to
soil data collection, theyhavenot yet achieved systematic andwidespread
application in soil survey around the world. The qualitative application of
the state factor model through conventional mapping techniques
continues to be the guiding paradigm in national soil survey programs
(Grunwald, 2006a). Even with all the technical advances in recent years
there appears to have been little movement away from conventional
mapping approaches by government agencies in the USA (Scull et al.,
2003) and in Australia, at least at the state government level. The inherent
and perceived complexities of the quantitative approaches, and the need
for sophisticated technologies may be factors that discourage the more
widespread application of these approaches in many organisations. The
simpleandpragmatic toolsdeveloped in this studymayovercomesomeof
these concernsand thereby facilitate an increaseduseof theseapproaches.

The quantitative relationships developed in this study may also be
important for inclusion into other environmental and earth science
quantitative models. This application is becoming increasingly
important as the crucial role of soils in many ecological, climatic,
hydrologic and other natural processes is being recognised. They can
help us to identify the role of soil in these processes. Grunwald
(2006b) suggests that quantitative soil relationships can ultimately
contribute to unifying soil science with these other natural sciences.

4.3. Understanding soil formation and distribution

The relationships and associated statistical data derived from the
database analysis can assist in our theoretical understanding of soil
formation and distribution. They shed light on the precise role and
relative influence that the environmental factors of climate, parent
material and topography have in controlling various key properties in
soils (see section 3.2). They can be examined in relation to currently
accepted pedological thinking. Quantitative information has been
yielded, rather than the qualitative information that has dominated
the literature to date.

The behaviour revealed for each environmental variable for each
property examined can generally be explained by first principles of
soil science. For example, the pH and base cation behaviour are due to
the increased leaching of bases with increasingly wet conditions, the
greater supply of bases associated withmafic parent materials and the
transferral of bases from higher to lower points in the landscape. The
behaviours are generally in accord with standard thinking on the role
of each of the environmental factors. However, several anomalies and
unexpected findings are observed, including:

• The surprisingly weak influence of topography in controlling pH, base
cation behaviour and soil texture (ie, clay, sand and silt contents) —

standard thinkingwould suggest amuch greater influence of this factor,
withclaysandbasesbeing leachedand transported fromhigher to lower
points in the landscape (eg, Dan et al., 1968; Birkeland 1999; Murphy
2006). Thismay be at least partly a reflection of the broad global scale of
the study and the low density of sites, as variations due to topography
may bemore evident at a fine scale, with several sites on single catenas.

• The negligible change in CEC with climate (see Appendix A) — a
general decrease with wetter climate would have been expected as
high activity clays such as smectites transform to low activity clays
such as kaolin or sesqui-oxides like gibbsite (Tardy et al., 1973;
Birkeland 1999).

• The relationship between base saturation and silica content (see
Appendix A) is more significant than might be expected, as the degree
of leaching, in which base saturation is thought to reflect, would be
expected to be independent of parent material type — a possible
explanation is that more mafic parent materials are more effective in
replenishing the soil with additional bases following their depletion by
leaching.

• The weak influence of parent material on organic carbon — one
might have expected higher values associated with the more fertile
soils derived from mafic materials.

• The lack of a significant relationship of available phosphorous with
the environmental variables (R2 values were all less than 0.05) — a
moderate relationship with parent material would be expected,
with increasing values with increasing mafic content as suggested
by geochemical compositions of parent materials. Phosphorous
might also be expected to decline with increasing wetness as for
base elements.

The results support the state factor model of soil formation,
demonstrating how soil distribution is controlled by the combined
influence of several environmental factors. They particularly confirm
the dominant roles played by climate and parent material in
determining the distribution of many soil properties. The influence
of topography is also apparent, but appears to exert the least influence
of the three factors on the properties examined in this global scale
study. The unexpected findings may be a reflection of weaknesses in
the databases and analytical processes of the study, or they may be a
true reflection of actual pedogenic processes. The findings parallel
those of Bui et al. (2006), in their establishment of quantitative
relationships derived from ASRIS for the digital mapping of Australia's
agricultural zone. They found climate and lithology to be the dominant
variables at the broad continental scale and that terrain only became
significant at much finer scales.

The results suggest that present day climate has a clear influence
on soils properties, even though the soils may have been subject to
different climates in the past. This conclusion was also drawn by Bui
et al. (2006) who noted that its marked imprint on the old and
polygenetic Australian soils challenged the view that present climate
has little relevance to the character of these soils (eg, Taylor, 1983).
Recent data from Wilkinson and Humphreys (2005) reveal relatively
high rates of soil production, meaning that many Australian soils may
be younger than previously thought, and thus more markedly subject
to the influences of current climatic conditions. This may also be true
at the global scale.

The ANOVA results (Appendices A and B) show that the influence
of the various factors varies with different properties. For example, pH
and organic carbon are most influenced by climate, while clay content
is most influenced by parent material and sum of bases almost equally
by both those factors. The influence of topography may be more
marked in other soil properties not examined in this study; for
example, soil thickness would almost certainly be strongly influenced
by topographic position.

Although there are many potential sources of variation in the soil
data, as discussed in the section 4.1, the observed weak relationships
support the notion that soil variability may be attributable to
“intrinsic” factors rather than traditionally accepted “extrinsic” factors
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of soil formation, as postulated by Phillips (1993a,b, 2001) in his non-
linear dynamic system model of soil formation. Intrinsic factors such
as deterministic chaos, dynamical instability and divergent self-
organisation may be crucial processes. The model recognises that
considerable soil variability may occur in apparently homogeneous
landscape units and independent of any observable variations in
environmental controls.

A better understanding and knowledge of how the state factors
influence soil distribution will improve our ability to model and map
soils, particularly by conventional methods. Our understanding of the
factors and processes contributing to soil formation and distribution
has to date been largely based on qualitative relationships and
descriptive concepts (eg, Heuvelink, 2005). Our knowledge of soil
formation has been suggested to be “far behind reality” (Dobos, 2006).
The important role that quantitative soil studies can play in
quantifying these relationships and improving our understanding
and knowledge of them is clear. Continuing analysis of soil databases
as carried out in this study would undoubtedly yield further fine detail
and subtle relationships in soil formation and distribution.

5. Conclusion

This study has used the ISRIC WISE Global database to develop
broad quantitative relationships between the environmental factors of
climate, parent material and topography and a range of key soil
properties. The predictive relationshipsmayassist in the collection and
modelling of soil data as required to meet the growing demands for
this information in many earth, environmental and other scientific
modelling programs. More specifically, the relatively simple and
pragmatic relationships may:
Multiple linear regression relationships for other soil properties.

Property

Climate
index

Horizon Regression equationa

Cation exchange
capacity (ln cmolc/kg)

R/EV A ln(CEC)=4.71−0.034(silica%)−0.011(slo
B ln(CEC)=4.81−0.19(R/EV)−0.36(silica%

R A ln(CEC)=4.71−0.034(silica%)−0.011(slo
B ln(CEC)=5.04−0.0003(R)−0.037(silica%

Base saturation (%) R/EV A BS=143.34−28.75(R/EV)−0.89(silica%)
B BS=136.88−32.03(R/EV)−0.79(silica%)

R A BS=147.06−0.019(R)−1.01(silica%)−0.4
B BS=138.66−0.022(R)−0.89(silica%)−0

Exchangeable sodium
percent (ln %)

R/EV A ln(ESP)=2.66−6.88(R/EV)b

B ln(ESP)=2.77−6.52(R/EV)b

R A ln(ESP)=2.03−0.0039(R)+0.010(silica%
B ln(ESP)=2.59−0.0034(R)c

Electrical conductivity
(extract) (ln DS/m)

R/EV A ln(ECe)=1.55−12.21(R/EV)d

B ln(ECe)=1.89−13.39(R/EV)d

R A ln(ECe)=2.68−0.012(R)e

B ln(ECe)=2.43−0.011(R)e

Sand (%) R/EV A Sand=−28.3−11.49(R/EV)+1.31(silica
B Sand=−35.0−11.53(R/EV)+1.31(silica

R A Sand=−29.63−0.0064(R)+1.28 (silica%
B Sand=−35.08−0.0075(R)+1.29 (silica%

Silt (%) R/EV A Silt=51.53+7.80(R/EV)−0.51(silica%)
B Silt=47.28+6.67(R/EV)−0.46(silica%)

R A Silt=54.93+0.0024(R)−0.49 (silica%)
B Silt=52.8+0.0011(R)−0.47 (silica%)

aVariables excluded where not significant (p value N0.10).
bBased on R/EVb0.4.
cBased on Rb750 mm pa.
dBased on R/EVb0.3.
eBased on Rb400 mm pa.
Note: available phosphorous (P) and nitrogen (N) tested but no significant relationships ap

Appendix A
• provide useful first approximations of soil character under different
environmental conditions that could be applied in broad quantita-
tive soil modelling and mapping programs.

• have the potential for widespread application as they
should be universally applicable, are based on readily avail-
able data and do not require sophisticated quantitative mo-
delling techniques. They may thus facilitate an increased
application of digital techniques in addition to conventional
techniques in soil survey organisations and in the broader soil
science community.

• assist in our understanding of soil formation and soil distribu-
tion. Most relationships revealed are in accord with accepted
pedological thinking and support the state factor model of soil
formation, but some anomalies are observed and deserve further
examination.

The project has demonstrated the potential value of large
world soil databases for the understanding, modelling and
mapping of soil distribution around the globe. Further analyses
of the ISRIC and other large soil databases with more sophisticated
data mining techniques would undoubtedly help to refine the
predictive tools and shed further light on factors influencing soil
distribution.
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t values of variables

N R2 F stat. Residual
SE

p value Climate Silica Slope

pe%) 486 0.23 71.7 0.8 b0.0000 – −11.3 3.9
)−0.009(slope%) 603 0.22 55.5 0.9 b0.0000 − 3.0 −12.0 3.0
pe%) 486 0.23 71.7 0.8 b0.0000 – −11.3 3.9
)−0.011(slope%) 604 0.26 69.6 0.8 b0.0000 − 6.3 −12.7 3.7
−0.30(slope%) 429 0.35 75.0 29.2 b0.0000 −10.7 − 7.4 −2.7
−0.39(slope%) 544 0.35 98.4 30.0 b0.0000 −13.8 − 7.1 −3.4
0(slope%) 428 0.31 65.0 28.9 b0.0000 − 9.5 − 8.3 −3.5
.39(slope%) 544 0.34 92.2 30.3 b0.0000 −13.1 − 7.9 −3.4

165 0.28 63.3 1.07 b0.0000 − 8.0 – –

175 0.25 56.9 1.07 b0.0000 − 7.5 – –

)c 193 0.32 43.9 0.97 b0.0000 − 8.8 1.7 –

261 0.22 70.0 1.10 b0.0000 − 8.4 – –

62 0.36 33.0 1.45 b0.0000 − 5.7 – –

61 0.45 48.7 1.40 b0.0000 − 7.0 – –

47 0.51 46.0 1.49 b0.0000 − 6.8 – –

39 0.49 35.4 1.42 b0.0000 − 5.9 – –

%) 862 0.39 271.4 21.6 b0.0000 − 9.2 22.0 –

%) 910 0.41 314.8 20.9 b0.0000 −10.1 22.9 –

) 863 0.36 240.4 22.2 b0.0000 − 6.4 21.0 –

) 911 0.39 293.4 21.2 b0.0000 − 8.5 22.1 –

860 0.18 95.9 15.9 b0.0000 8.5 −11.5 –

911 0.18 96.5 15.0 b0.0000 8.1 −11.2 –

861 0.12 61.2 16.6 b0.0000 3.1 −10.6 –

912 0.12 61.9 15.6 b0.0000 1.7 −10.9 –

parent.
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Appendix B
Multiple linear regression additional statistics.

Property Climate index Horizon Variable Value SEa t value ANOVA F p value Residual SE N

pH R/EV A Intercept 8.69 0.27 32.3 0.0000 1.01 490
R/EV −1.22 0.085 −14.5 272.9 0.0000
Silica −0.025 0.0039 −6.5 42.0 0.0000
Slope 0.0072 0.0036 −2.0 44.0 0.0468

B Intercept 8.57 0.25 35.0 0.0000 0.98 604
R/EV −1.07 0.07 −14.4 241.6 0.0000
Silica −0.025 0.0034 −7.4 53.0 0.0000
Slope −0.0077 0.0034 −2.3 5.1 0.0238

R A Intercept 8.86 0.28 31.4 0.0000 1.04 491
R −0.0008 0.0001 −12.9 198.1 0.0000
Silica −0.03 0.0039 −7.7 57.8 0.0000
Slope −0.013 0.0037 −3.4 11.8 0.0006

B Intercept 8.59 0.25 33.8 0.0000 1.01 606
R −0.0007 0.0001 12.6 172.3 0.0000
Silica −0.029 0.0035 −8.3 67.9 0.0000
Slope −0.0089 0.0035 −2.5 6.3 0.0120

Sum of bases (ln cmolc/kg) R/EV A Intercept 5.57 0.25 22.6 0.0000 1.21 781
R/EV −0.81 0.075 −10.7 183.4 0.0000
Silica −0.051 0.0035 −14.6 312.7 0.0000

B Intercept 6.26 0.38 16.6 0.0000 1.45 549
R/EV −1.22 0.11 −10.7 143.2 0.0000
Silica −0.058 0.005 −10.9 116.4 0.0000
Slope −0.013 0.005 −2.3 5.3 0.0230

R A Intercept 5.73 0.25 22.9 0.0000 1.22 783
R −0.0007 0.0001 −11.8 131.5 0.0000
Silica −0.052 0.0035 −14.9 221.6 0.0000

B Intercept 6.46 0.38 17.1 0.0000 1.44 550
R −0.0009 0.0001 −11.3 139.7 0.0000
Silica −0.062 0.0053 −11.7 136.5 0.0000
Slope −0.011 0.0054 −1.9 3.7 0.0535

Organic C (ln, %) R/EV A Intercept 0.74 0.22 3.4 0.0009 0.82 485
R/EV 0.65 0.07 9.3 85.0 0.0000
Silica −0.014 0.0032 −4.3 27.7 0.0000
Slope 0.009 0.003 3.1 33.5 0.0023

B Intercept −0.23 0.2 −1.1 0.2600 0.8 591
R/EV 0.40 0.06 6.6 50.0 0.0000
Silica −0.0117 0.0028 −4.2 18.4 0.0000
Slope 0.0092 0.0028 3.3 11.1 0.0009

R A Intercept 0.82 0.24 3.5 0.0060 0.86 486
R 0.0003 0.001 5.8 39.8 0.0000
Silica −0.011 0.0033 −3.3 11.6 0.0007
Slope 0.013 0.0031 4.1 17.2 0.0000

B Intercept −0.082 0.21 −0.4 0.6951 0.82 592
R 0.0002 0.0000 3.5 18.3 0.0005
Silica −0.011 0.0029 −3.7 14.1 0.0003
Slope 0.011 0.0029 3.8 14.7 0.0001

Clay (%) R/EV A Intercept 76.17 3.04 25.1 0.0000 15.6 856
R/EV 4 0.9 4.4 11.9 0.0006
Silica −0.8 0.043 18.4 343.9 0.0000

B Intercept 87.59 3.36 26.0 0.0000 16.9 908
R/EV 4.91 0.93 5.3 29.1 0.0000
Silica −0.86 0.047 −18.4 336.8 0.0000

R A Intercept 74.12 3.04 24.3 0.0000 15.4 857
R 0.0042 0.0007 6.1 34.6 0.0000
Silica −0.79 0.043 −18.4 339.8 0.0000

B Intercept 82.28 3.3 24.9 0.0000 16.42 909
R 0.0064 0.0007 9.3 108.7 0.0000
Silica −0.93 0.045 −18.2 332.0 0.0000

aStandard error.

Appendix C.1

Median values of pH (H2O) in 80 environmental regimes.

Topo.
class

Parent
material

Horizon Rainfall class and mm pa

A B C D E F G H

b250 250–500 500–750 750–1000 1000–1250 1250–1500 1500–2000 N2000

Median N Median N Median N Median N Median N Median N Median N Median N

Level ES A 8.7 2 5.8 3 6.3 10 4.2 11 4.6 2 5.1 3 4.4 5 5.0 4
B 7.8 4 6.1 4 5.4 10 4.8 13 – 1 5.6 6 5.3 4 5.2 3

HS A 8.5 6 6.5 56 5.7 53 5.4 21 5.7 27 5.3 37 4.5 15 4.5 36
B 8.1 5 6.1 79 5.9 55 5.6 33 5.4 28 5.3 36 4.5 16 4.7 42



Appendix C.1 (continued)

Topo.
class

Parent
material

Horizon Rainfall class and mm pa

A B C D E F G H

b250 250–500 500–750 750–1000 1000–1250 1250–1500 1500–2000 N2000

Median N Median N Median N Median N Median N Median N Median N Median N

Int A 8.7 8 7.5 16 6.8 36 5.6 22 5.9 29 5.6 20 4.8 7 4.8 24
B 8.4 8 7.6 11 5.8 31 6.0 30 6.2 35 5.7 26 5.0 7 4.8 27

Maf A 8.3 5 7.5 14 6.9 27 8.1 13 6.8 14 5.8 9 5.3 9 4.4 6
B 8.5 4 8.0 16 7.1 16 7.4 8 6.2 11 6.4 7 5.2 8 4.9 8

Cal A 8.2 14 8.0 23 7.6 17 7.2 19 6.4 7 7.6 3 5.8 9 5.8 9
B 8.2 8 8.1 22 7.7 21 7.8 38 7.8 20 6.0 8 5.4 11 5.4 11

Sloping ES A – 1 – 0 3.8 2 4.4 2 6.0 3 5.8 6 4.9 4 – 0
B – 0 – 0 4.5 2 – 1 – 1 5.5 5 – 1 – 0

HS A – 0 5.2 6 4.6 7 4.5 13 5.6 26 5.2 26 4.8 28 4.2 35
B – 0 4.8 5 5.5 9 4.6 17 5.7 22 5.0 20 4.7 25 4.7 36

Int A – 1 8.3 3 6.0 14 6.1 11 4.9 4 5.1 16 5.4 16 5.1 34
B – 1 7.7 2 5.2 11 5.5 10 4.5 5 4.9 10 5.4 12 4.8 41

Maf A – 1 7.6 6 7.1 11 – 1 6.3 5 5.5 14 5.6 10 5.3 13
B – 1 7.7 6 7.6 12 – 1 6.1 3 5.8 13 5.6 9 5.2 16

Cal A – 0 8.0 9 7.4 16 6.7 9 6.5 11 – 1 6.8 14 – 1
B – 0 – 1 7.2 16 7.4 14 5.7 11 6.2 3 6.4 23 – 1

Level
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Appendix C.2
Median values of sum of bases in 80 environmental regimes.

Topo.
class

Parent
material

Horizon Rainfall class and mm pa

A B C D E F G H

b250 250–500 500–750 750–1000 1000–1250 1250–1500 1500–2000 N2000

Median
(cmolc/kg)

N Median
(cmolc/kg)

N Median
(cmolc/kg)

N Median
(cmolc/kg)

N Median
(cmolc/kg)

N Median
(cmolc/kg)

N Median
(cmolc/kg)

N Median
(cmolc/kg)

N

Level ES A – 1 1.6 3 8.7 9 2.8 10 1.3 2 0.4 3 0.8 4 0.8 3
B 0.1 3 4.6 4 1.7 6 0.4 10 – 0 2.0 5 0.6 3 – 0

HS A 44.6 6 4.1 56 2.6 52 3.8 25 3.1 25 2.9 37 1.2 16 0.7 33
B 8.0 5 4.9 77 3.7 55 3.0 35 1.5 26 2.6 34 0.7 17 0.4 33

Int A 17.0 8 16.7 16 15.3 29 5.6 22 11.0 21 9.6 20 2.8 6 2.4 24
B 19.5 7 15.8 11 13.3 26 10.1 33 16.1 28 15.1 25 1.5 5 1.0 23

Maf A 72.9 3 36.4 15 25.5 28 27.7 12 10.2 13 17.9 9 1.3 8 1.9 6
B 35.1 3 41.9 17 33.9 18 10.2 9 17.9 10 28.1 7 0.8 7 0.3 7

Cal A 11.4 12 28.1 22 23.5 31 28.2 33 12.1 7 15.9 3 11.3 10 24.7 3
B 15.1 8 41.6 22 23.2 31 23.2 45 10.7 20 8.0 8 8.5 12 8.6 3

Sloping ES A – 1 – 0 0.2 2 10.4 2 3.1 2 1.8 6 0.2 4 – 0
B – 0 – 0 – 0 – 1 – 1 0.9 5 – 0 – 0

HS A – 0 2.0 5 1.1 7 1.4 13 2.2 14 1.9 25 1.5 28 1.1 31
B – 0 1.2 5 1.4 9 1.2 17 1.1 13 0.8 20 0.4 20 0.6 33

Int A – 1 30.0 2 2.5 13 18.3 10 1.7 4 3.2 16 3.7 15 5.3 27
B – 1 46.9 2 4.6 12 5.7 10 0.8 4 1.4 18 7.8 12 0.9 31

Maf A – 0 16.1 4 56.4 11 6.3 3 8.7 4 2.5 14 4.3 9 4.0 13
B – 0 41.9 2 62.2 12 2.9 3 23.5 2 4.0 12 1.1 8 2.0 14

Cal A – 0 21.9 9 23.6 16 22.8 8 16.5 8 – 1 15.9 14 – 1
B – 0 – 1 23.2 15 22.1 12 12.7 5 – 1 10.6 24 – 1
Median values of organic carbon in 80 environmental regimes.

Topo.
class

Parent
material

Horizon Rainfall class and mm pa

A B C D

b250 250–500 500–750 750–

Median (%) N Median (%) N Median (%) N Med

Level ES A – 1 0.20 3 0.75 10 3.85
B 0.10 3 0.27 4 1.20 7 0.36

HS A 0.20 6 0.40 55 0.30 50 1.74
B 0.25 4 0.30 77 0.20 50 0.48

Int A 0.29 7 1.00 14 1.97 34 3.15
B 0.18 5 0.40 9 0.70 30 0.50

Maf A 0.47 5 0.44 15 1.05 26 0.54
B 0.22 4 0.40 17 0.63 18 0.81

Cal A 0.16 14 0.94 22 2.14 33 1.92
B 0.14 8 0.82 22 0.91 32 0.90

Sloping ES A – 1 – 0 2.64 2 –

B – 0 – 0 1.44 2 –

HS A – 0 1.58 6 1.00 7 2.10
B – 0 0.30 4 0.30 8 0.80

Appendix C.3
E F G H

1000 1000–1250 1250–1500 1500–2000 N2000

ian (%) N Median (%) N Median (%) N Median (%) N Median (%) N

12 2.14 2 1.02 3 1.39 5 2.67 4
13 – 1 0.31 6 0.29 4 0.11 3
26 1.24 29 1.07 37 1.67 16 2.47 36
37 0.43 28 0.40 36 0.43 16 0.73 44
23 1.92 29 1.70 21 2.01 8 3.10 24
27 0.60 35 0.88 26 0.68 8 0.70 28
13 0.84 13 3.51 8 2.20 9 2.62 6
10 0.80 11 1.00 7 0.75 7 0.95 9
38 2.82 8 1.94 3 3.05 10 5.70 3
49 0.91 21 0.78 8 1.10 11 1.18 3
0 0.91 3 0.70 6 1.59 4 – 0
1 – 1 0.50 6 – 1 – 0

14 2.90 24 2.17 27 2.88 27 2.41 33
17 0.56 22 1.00 18 0.55 24 0.61 37

(continued on next page)



Appendix C.3 (continued)

Topo.
class

Parent
material

Horizon Rainfall class and mm pa

A B C D E F G H

b250 250–500 500–750 750–1000 1000–1250 1250–1500 1500–2000 N2000

Median (%) N Median (%) N Median (%) N Median (%) N Median (%) N Median (%) N Median (%) N Median (%) N

Int A – 1 0.96 3 2.00 14 3.49 11 3.31 4 2.38 16 3.00 16 2.89 34
B – 1 0.44 2 0.61 10 1.03 8 0.53 5 0.53 18 0.87 12 0.80 41

Maf A – 1 1.12 6 0.96 11 1.49 3 2.34 5 4.42 14 3.33 10 4.38 12
B – 1 0.82 5 0.86 11 2.84 2 0.87 3 1.51 12 0.90 9 1.27 15

Cal A – 0 1.30 8 2.38 17 2.46 10 3.66 11 – 1 2.93 15 – 1
B – 0 – 1 0.83 17 0.56 15 0.90 11 0.70 3 0.80 24 – 1

Median values of clay content in 80 environmental regimes.

Topo.
class

Parent
material

Horizon Rainfall class and mm pa

A B C D E F G H

b250 250–500 500–750 750–1000 1000–1250 1250–1500 1500–2000 N2000

Median (%) N Median (%) N Median (%) N Median (%) N Median (%) N Median (%) N Median (%) N Median (%) N

Level ES A 5.0 2 8.5 2 8.5 8 4.0 12 4.5 2 5.0 3 11.0 5 1.0 4
B 4.5 4 10.0 4 4.0 9 3.5 14 – 1 8.5 6 10.0 4 1.0 3

HS A 11.0 4 13.0 57 9.0 50 14.0 22 16.0 29 17.0 37 25.0 16 26.5 36
B 11.0 5 19.0 79 15.0 54 26.5 36 28.0 29 32.0 36 39.0 17 38.0 42

Int A 22.0 8 29.5 16 24.5 34 22.5 22 26.5 28 29.0 21 37.5 8 21.0 23
B 28.0 8 37.0 11 36.0 31 33.0 33 37.0 34 49.0 26 48.5 8 32.0 28

Maf A 20.0 5 37.0 15 39.0 27 58.0 13 46.0 14 56.0 9 38.0 9 62.0 5
B 43.5 4 49.0 17 53.5 18 59.5 10 45.0 10 52.5 8 59.5 9 65.0 7

Cal A 15.0 13 24.5 24 39.0 33 46.5 38 28.5 8 49.0 3 50.5 10 56.0 3
B 20.0 8 31.0 23 46.5 32 38.0 50 39.0 21 55.5 8 64.0 11 55.0 3

Sloping ES A – 1 – 0 2.5 2 7.5 2 6.5 2 13.5 6 53.0 4 – 0
B – 0 – 0 – 1 – 1 – 1 12.0 6 – 1 – 0

HS A – 0 13.5 6 6.0 6 9.5 14 18.0 26 22.0 25 30.0 28 22.5 34
B – 0 7.0 5 10.0 8 21.0 20 26.5 22 33.0 19 36.0 25 38.0 37

Int A – 1 19.0 3 23.0 14 31.0 11 36.5 4 41.0 16 34.0 16 27.0 33
B – 1 29.0 2 28.0 12 34.0 11 31.0 5 46.0 17 40.0 12 39.0 40

Maf A – 0 18.5 6 59.0 11 13.0 3 13.0 3 52.0 13 45.5 10 59.0 11
B – 1 17.0 6 64.0 12 23.0 3 56.0 3 57.0 13 59.0 9 67.0 15

Cal A – 0 24.0 9 34.0 16 25.5 10 29.0 11 – 1 42.0 15 – 1
B – 0 – 1 43.0 17 35.0 15 14.0 10 47.0 3 51.5 24 – 1

Appendix C.4

Sloping
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