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(GPP) changes occur at different time-scales and due to various mechanisms such
as variations in leaf area, chlorophyll content, rubisco activity, and stomatal conductance. Diagnostic estimates
of primary productivity are obviously error prone when these changes are not accounted for. Additional
complications arise when factors inuencing a biome-specific maximum light use efficiency (LUE) must be
estimated over a large area. In these cases a direct estimation of ecosystem LUE could reduce uncertainty of GPP
estimates. Here, we analysewhether a MODIS-based photochemical reectance index (PRI) is a useful proxy for
the light use efficiency of aMediterraneanQuercus ilex forest. As the originally proposed reference band for PRI
is not available onMODIS, we tested the reference bands 1 (620–670 nm), 4 (545–565 nm),12 (546–556 nm),
13 (662–672 nm), and 14 (673–683 nm) using different atmospheric correction algorithms. We repeated the
analysis with different temporal resolutions of LUE (half-hourly to daily). The strongest correlation between
LUE and PRIwas foundwhen considering only a narrow range of viewing angles at a time (especially 0–10° and
30–40°). We found that the MODIS-based PRI was able to track ecosystem LUE even during severe summer
time water limitation. For this Mediterranean-type ecosystemwe could show that a GPP estimation based on
PRI is a huge improvement compared to theMODIS GPP algorithm. In this study, MODIS spectral band 1 turned
out to be the most suitable reference band for PRI, followed by the narrow red bands 13 and 14. As to date no
universally applicable reference bandwas identified inMODIS-based PRI studies, we advocate thorough testing
for the optimal band combination in future studies.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Many diagnostic models of terrestrial ecosystem productivity
compute gross primary productivity (GPP) as the product of the
amount of absorbed photosynthetically active radiation (aPAR) and a
light use efficiency term (Kumar & Monteith, 1981; Monteith, 1972,
1977). aPAR can be conceived as the product of photosynthetically
active radiation incident on the ground (incPAR) and the fraction of
incPAR absorbed by the vegetation (faPAR). These entities can be
derived from global meteorological fields and satellite products,
respectively (e.g. Goetz et al., 1999; Ruimy et al., 1994).

It follows from the above that light use efficiency (LUE) is the ratio
of productivity to aPAR. In this study, we refer more specifically to LUE
as mols of CO2 captured per mol of photons absorbed. LUE is
inherently variable as it is determined by the quantum efficiency of
photosynthesis (Grace et al., 2007). Photoprotective mechanisms
reduce the photosynthetic quantum efficiency at times of environ-
mental stress (such as temperature extremes, water or nutrient
oerner).
erner).
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deficit, exposure to high light intensities, e.g. Green et al., 2003;
Runyon et al., 1994). In addition, decreased stomatal conductance in
times of drought will reduce available CO2 and thus the rate of
photosynthesis (Galmés et al., 2007).

In current diagnostic models, the light use efficiency (LUE) term is
implemented either as a constant (sometimes stratified according to
plant functional type) or as a (biome-specific) maximum LUE that is
reduced by scalars representing environmental stress (Yuan et al.,
2007). It has been shown that this look-up table approach is not able
to capture the full range of productivity dynamics, especially at finer
temporal scales (Schwalm et al., 2006; Turner et al., 2002, 2006),
primarily due to inaccurate maximum LUE estimates (Martel et al.,
2005). Additional uncertainty arises when environmental drivers
reducing maximum LUE need to be estimated on a global scale
(Heinsch et al., 2006). Also, current remote-sensing based models
have difficulties to detect drought stress (Turner et al., 2005) unless
soil water content is accounted for (Leuning et al., 2005), which is
difficult on a global scale. If we can obtain direct estimations of LUE
from remote sensing data, this will lead us to more accurate
calculations of GPP. We would need an integrative indicator of how
photosynthetic capacity is controlled by environmental stress. Tradi-
tional vegetation indices such as the normalised difference vegetation
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Table 1
Bandwidth of the MODIS' spectral bands used in this study.

Band Bandwidth (nm) Use in this study

1 620–670 PRI, NDVI, EVI
2 841–876 NDVI, EVI
3 459–479 EVI
4 545–565 PRI
11 526–536 PRI
12 546–556 PRI
13 662–672 PRI
14 673–683 PRI
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index (NDVI) seem inappropriate for this task because they mainly
measure greenness and can only track decreases in photosynthetic
activity when they lead to yellowing or shedding of leaves (Gamon
et al., 1995).

Another option to estimate LUE employs the mechanisms with
which plants protect their chloroplasts from the creation of harmful
reactive oxygen species. This danger arises if plants are subject to
more light than they can use for photosynthesis. The photoprotection
process includes changes in the trans-thylakoid pH-gradient, con-
formational changes in the chloroplasts, and the de-epoxidation of
violaxanthin via antheraxanthin to zeaxanthin (Demmig-Adams &
Adams, 2006). The formation of zeaxanthin is necessary to dissipate
excess light as heat (Demmig et al., 1987) and at the same time
decreases reflectance in a narrow wavelength range centred around
531 nm (Gamon et al., 1990).

The photochemical reflectance index (PRI) combines reflectance at
this wavelength (ρ531) with a reference wavelength insensitive to
short-term changes in light energy conversion efficiency (usually
570 nm, ρ570) and normalises it (Gamon et al., 1992; Penuelas et al.,
1995):

PRI = ρ531 − ρ570ð Þ= ρ531 + ρ570ð Þ ð1Þ

Many studies have been conducted at the leaf and canopy scale
with plants representing different photosynthetic pathways and
ecosystems. In these studies PRI was well correlated with the
epoxidation state of xanthophylls and LUE (Penuelas et al., 1995;
Sims & Gamon, 2002; Stylinski et al., 2002; Weng et al., 2006). A
strong relationship between PRI and LUE could also be shown for
plants suffering from environmental stress affecting energy dissipa-
tion pathways, namely nitrogen limitation (Gamon et al., 1992), high
ozone concentrations (Meroni et al., 2008), water limitation (Suarez
et al., 2008), or flooding (Naumann et al., 2008). Several studies tested
the performance of PRI as an indicator of LUE at ecosystem scale. The
test was successful for boreal ecosystems, although in these studies
LUE was based on incident PAR rather then aPAR (Nichol et al., 2000;
Nichol et al., 2002). In predominantly water limited ecosystems the
applicability of PRI as LUE proxy might be limited to vegetation types
that are not subject to strong changes in canopy structure (Filella et al.,
2004; Sims et al., 2006).

Only few studies have attempted an investigation of the PRI–LUE
relationship with satellite data so far. Limiting factors are probably the
number of space-borne sensors with the necessary narrow spectral
bands and the pre-processing required for PRI calculation (correction
for atmospheric disturbances and BRDF effects). Up to now, some
studies on boreal, temperate, and Mediterranean type ecosystems
have successfully tested MODIS-derived PRI as a proxy for ecosystem
LUE (Drolet et al., 2005; Drolet et al., 2008; Garbulsky et al., 2008;
Rahman, 2004). MODIS seems to be the most appropriate sensor
currently available to test space-borne PRI because one of its 10 nm
wide “ocean bands” is centred at 531 nm. The not too narrow spectral
bands might actually be an advantage, given that Gamon et al. (1992,
1993) found that the optimum wavelength for LUE tracking varies in
between species and canopy types. The temporal resolution of MODIS
data is comparatively high. Since both the Terra and the Aqua satellites
have a roughly identical MODIS sensor aboard, two or more data
acquisitions can take place under cloud free conditions. The MODIS
observation footprint for the required bands is about 1 km2 if the
sensor view zenith angle is limited to no more than 40° (Wolfe et al.,
1998). This is in the same order of magnitude as the footprint of eddy
covariance towers, although the fetch of eddy covariance systems
depends on measurement height, the surface roughness, and the
characteristics of the boundary layer as well as the atmospheric
stability (Rebmann et al., 2005). We can assume comparable condi-
tions in the remotely sensed area and the flux tower source areawhen
restricting the analysis to towers located in a large enough homo-
geneous area. Hence, for some carefully selected eddy covariance sites
a comparison to ground based estimates of light use efficiency is
possible. At a homogeneous site the results will not be compromised if
some of the 1 km MODIS pixel are not properly centred on the eddy
covariance tower and do only partially coincide with the flux-tower
footprint area.

The quality flags associated with every MODIS pixel allow for
screening according to cloud cover and the general usefulness of the
data. Given an ideally homogeneous study site the following issues
need to be taken into account when interpreting PRI values in 1 km
MODIS pixels. The sensor lacks a spectral band at 570 nm (c.f. Table 1),
hence another reference band needs to be chosen. A modelling study
by Barton and North (2001) indicates that differences in viewing and
illumination geometry are likely to influence PRI. A stringent atmo-
spheric correction should be performed in order to avoid variations
simply due to differences in atmospheric composition (Grace et al.,
2007). In addition to these difficulties, studies at a regional scale (or
larger) would ultimately need to deal with sub-pixel heterogeneity.

Hardly any space-borne LUE estimation has been undertaken so far
for more water limited ecosystems. Garbulsky et al. (2008) estimated
LUE for an evergreenMediterranean oak forest in Castelporziano, Italy.
However, the trees there do have access to groundwater (Reichstein
et al., 2002), thus water limitation is not severe. It is important to
bridge this gap because the area affected by drought is about to
increase: According to Christensen et al. (2007), it is likely that annual
precipitation will decrease in several regions, among them Central
Europe, the Mediterranean, the south-western US, Central America
and Southern Australia. For the Mediterranean this goes along with
an increased risk of summer drought (Giorgi, 2006). It is crucial to
improve the performance of diagnostic models with respect to
drought events. Upgraded data-oriented models can then serve as
benchmarks to improve current process models.

Changes of LUE in drought-tolerant evergreen species are often not
paralleled by changes in NDVI or canopy structure (Gamon et al., 1992;
Running & Nemani, 1988). Thus sclerophyll dominated ecosystems
seem to be a good starting point for testing the performance of
satellite-based PRI as LUE proxy. In this study we therefore concen-
trate on a Mediterranean Quercus ilex forest. Special emphasis will be
placed on the capability of MODIS-based PRI to estimate LUE during
drought events because this is where current diagnostic models of
GPP have deficiencies. Specifically, we will assess which reference
band is most suitable for this application and test the influence of
different methods of atmospheric correction on the PRI–LUE relation-
ship. Though, for reasons detailed above, we do not expect a relation-
ship between LUE and NDVI or Enhanced Vegetation Index (EVI)
for this ecosystem, we include these indices in this analysis as
benchmarks.

2. Methods

2.1. Study site and data

For this study, we focused on a flux tower site in the Puéchabon
state forest (43.7414° N, 3.5958° E) in southern France, 35 km north-
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west of Montpellier. The Quercus ilex forest has been managed as a
coppice for centuries, the last cut occurred in 1942. Allard et al. (2008)
give a detailed site description, but we cite the most relevant charac-
teristics here. The average tree height is about 5 m, the overstorey
leaf area index (LAI) stated as 2.8±0.4). The main species in the
shrubby, sparse understorey (b2 m) are Buxus sempervirens, Phyllirea
latifolia, Pistacia terebinthus, and Juniperus oxycedrus. The climate is of
Mediterranean type, with an annual precipitation of ca. 900 mm
(ranging from 550–1550 mm for 1984–2006) of which 80% occur
between September and April. A reason to chose the Puéchabon site
for this analysis is the role of Quercus ilex as one of the dominant
species in Mediterranean type ecosystems (Terradas, 1999), covering
about 6.55×104 km2 (Quézel & Médail, 2003). Our analysis of the
entropy, a quantity describing data homogeneity (Clausi, 2002), of a
Landsat scene subset including the flux tower indicates that the site is
homogeneous at the MODIS spatial resolution (Fig. 1, similar entropy
levels in ca. 1 km distance from flux tower). The variations in sur-
face properties observable within ca. 1 km around the flux tower are
characteristic for the whole area covered by Quercus ilex growing on
hard karstic limestones (ca. 4000 km2) (Lacaze et al., 1994). Moreover,
the flux tower footprint reliably represents the targeted land cover
type (Goeckede et al., 2008). Comparability of remote sensing data
and in-situ measurements is therefore granted.

In this studywe look at the years 2002–2005 because satellite data as
well as flux and meteorology data were available for this time span.
Processing of the flux data has beenperformed according to the standard
CarboEurope methods (Papale et al., 2006; Reichstein et al., 2005).
Together with micro-meteorological data they were extracted from the
LaThuile database (http://www.fluxdata.org/DataInfo/Dataset 20Doc
20Lib 20DR1/DataSetInfoDR1.aspx). The half-hourly GPP values were
quality-checked with the flags included in the LaThuile data set. As a
result of the standardised partitioning of the net CO2 flux (GPP=−net
ecosystem exchange+ecosystem respiration) GPP observations can
become negative. When the true value is close to zero, the statistical
random error might induce negative GPP values. Only 0.46% of the
night time GPP values (with photosynthetic photon flux density
b100 μmol m2 s−1) are lower than zero and were excluded from the
analysis. Furthermore we used half-hourly incident photosynthetically
active radiation (included in LaThuile data set) and below canopy photo-
synthetically active radiation data (bcPAR, available from principal
investigator, i.e. Serge Rambal). BcPAR is calculated as an average of 14
upward looking PAR sensors installed at different places below the
Fig. 1. Entropy calculated for the red band of a Landsat ETM+ scene (13. Aug. 2001). The
location of the Puéchabon flux tower is indicated by a cross. The circle marks the
relatively uniform area in which a MODIS pixel containing the tower will be positioned
(radius 1 km+300 m uncertainty). Light tone: high entropy, dark tone: low entropy.
canopy. Incident PAR was measured with an upward looking PAR sensor
mounted on the eddy covariance tower. We filtered the PAR values for
measurement errors (i.e. reject PAR b0 and standard deviation
(bcPAR) N600 μmol m−2 s−1). As faPAR values we used estimates
derived from half-hourly incPAR and below canopy PAR as well as the
operational MODIS faPAR data.

We used soil moisture data to identify periods of water stress. The
daily time course of soil water storage (mm)was simulated with a soil
water balance model (Rambal, 1993) and further compared with
monthly profiles of soil water content measured with a neutron probe
and integrated over the rooting depth (c.a. 4.5 m). The relationships
between simulated and observed values showed very close agreement
(r 2=0.87).

2.2. Benchmark ecosystem light use efficiency

In this study, the light use efficiency (LUE) of an ecosystem is defined
as the overall production of photosynthates per unit of absorbed
photosynthetically active radiation. After Monteith (1972) this can be
expressed as

GPP = LUE ⁎ faPAR ⁎ incPAR = LUE ⁎ aPAR ð2Þ

where GPP is gross primary productivity, PAR is incident photo-
synthetically active radiation, aPAR is the absorbed PAR, and faPAR is
the fraction of PAR absorbed by the vegetation. LUE can either be seen
as the ratio of GPP and aPAR or as the slope of a—possibly non-linear—
function relating GPP to aPAR. To see whether differences arise from
these two concepts, we used both as benchmarks to test the perfor-
mance of several vegetation indices. The GPP values used in this
context stem from the half-hourly eddy covariance data.

2.2.1. Light use efficiency solely based on site data
At the half-hourly scale, the fraction of absorbed photosyntheti-

cally active radiation (faPAR) was calculated as

faPAR = 1− bcPAR
incPAR

ð3Þ

We decided to use the more common term faPAR for what strictly
speaking is the fraction of intercepted PAR (fIPAR) (Gower et al.,1999).
Nighttime values (with incPAR b100 μmol m−1 s−1 and outliers were
screened out. Outliers were identified within a moving window as

X b Q1 − IQR [ X N Q3 + IQR ð4Þ

where X are the data tested for outliers, Q1 and Q3 are the first and
third quartiles, and IQR is the interquartile range. The standard
deviation in below canopy PAR of the discarded observations was
three times as high as in the full data set. The filtered half-hourly
faPAR was then multiplied with the quality checked half-hourly
incident PAR to obtain absorbed photosynthetically active radiation
(aPAR). Light use efficiency was subsequently calculated as the ratio of
half-hourly GPP and half-hourly aPAR. As the LUE in this study is
calculated as μmol CO2

μmol photosynthetic photons, it is essentially a dimensionless
quantity. We also tested whether it is more meaningful to aggregate
the half-hourly data and hence minimise noise. Thus we applied
moving average filters to the half-hourly GPP, incPAR, and faPAR
values, with window sizes of 90, 150, and 210 min. LUE was calculated
both as ratio of averaged GPP and original half-hourly aPAR and as
ratio of averaged GPP and aPAR derived from averaged incPAR and
faPAR. Light use efficiencies were also calculated as a daily ratio. Daily
averages of the original quality checked GPP, incPAR, and bcPAR data
were used to calculate first a daily average faPAR and then aPAR and
LUE.

To see whether we can obtain a better grip on the diurnal
variations, we calculated LUE as the slope of half-hourly GPP and aPAR.

http://www.fluxdata.org/DataInfo/Dataset%2020Doc%2020Lib%2020DR1/DataSetInfoDR1.aspx
http://www.fluxdata.org/DataInfo/Dataset%2020Doc%2020Lib%2020DR1/DataSetInfoDR1.aspx
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This variety of LUE was defined as the slope of a linear function
fitted to the half-hourly GPP and aPAR values of each day. For 37% of
the days the goodness of fit (r2) was less than 0.6, thus fitting a linear
function to the half-hourly GPP and aPAR values of these days is
somehow arbitrary. As this occurred predominantly in low LUE
conditions we did not reject those slopes in order to avoid biasing
the data. In case of negative slopes on some summer days with low
midday GPP observations the slope was set to 0.

2.2.2. Light use efficiency based on site data and MODIS faPAR
Collection 5 MODIS faPAR (Myneni et al., 2002) was downloaded

separately for the Terra and Aqua platform as ASCII subsets from the
Oak Ridge National Laboratory DAAC website (http://www.modis.
ornl.gov/modis/index.cfm). In these data sets each faPAR value is
representative of a period of eight consecutive days. To reduce gaps
we merged the Terra and Aqua data sets. Preliminary tests with the
individual MODIS faPAR time series revealed that the MODIS product
is prone to underestimating faPAR for this site compared to bcPAR/
incPAR based estimates, especially in winter time. Thus, whenever
two MODIS faPAR estimates were available for the same period, we
kept the higher one for the combined data set. We calculated another
version of LUE through dividing average daily GPP values by the
product of the MODIS faPAR values and average daily incPAR.

2.2.3. Light use efficiency as obtained from the MODIS biome property
look-up table (BLUT)

To assess the performance of vegetation index-based LUE proxies
we also calculated the LUE in the way it is operationally used in the
MODIS GPP algorithm (Heinsch et al., 2003). In this approach, a
biome-specific maximum light use efficiency is reduced by a vapour
pressure deficit scalar and a minimum temperature scalar. These
attenuation scalars are calculated from daily VPD and Tmin based on
linear ramp functions, the parameters of which are contained in the
biome property look-up table (BPLUT). We used site measurements
instead of the 1° by 1.25° NASA Data Assimilation Office (DAO) data
routinely fed into the MODIS GPP algorithm to exclude mismatches
between DAO and site meteorology as a source of error.

2.3. Remote sensing based estimates of light use efficiency

2.3.1. Acquisition and atmospheric correction of MODIS data
To process the MODIS data for this study we modified the

procedure described by Drolet et al. (2005). Five MODIS products
were downloaded from the Level 1 and Atmosphere Archive and
Distribution System (http://ladsweb.nascom.nasa.gov) and the Earth
Observing System data gateway (http://redhook.gsfc.nasa.gov/
imswww/pub/imswelcome). Of those products, from both the Terra
and Aqua satellite, we selected all scenes containing the tower
location. The MOD/MYD021KM product comprises at-sensor cali-
brated radiances in 1 km spatial resolution. From that product we used
the spectral bands listed in Table 1. The MOD/MYD03 product has the
same spatial extent and resolution and provides the geographic
coordinates as well as the solar and sensor zenith and azimuth angles
of each pixel. These geolocation data were used to extract the spectral
information of the pixel closest to the tower location. For the same
location aerosol optical thickness was extracted from the MOD04
product and satellite-based estimates of cloud coveragewere obtained
from the MOD35 product. To account for the variation in reflectance
introduced by the way of processing, we tested 4 different modes of
atmospheric correction: With the 6S model (Vermote et al., 1997)
atmospheric correctionwas performed assuming uniform Lambertian
reflectance. Moreover, a dark object subtraction (DOS) approach has
been taken to correct the spectral data. We also included at-sensor-
reflectances in the comparison, i.e. without any correction for atmo-
spheric disturbance and geometric effects.
Prior to the atmospheric correction with 6S those acquisition
dates were discarded where the quality flags attached to the MODIS
products indicated cloud cover, saturation of a detector, or poor
estimates of atmospheric optical thickness. In addition, only scenes
with a sensor viewing angle at the tower site of nomore than 40° were
retained to ensure equal spatial resolution (Wolfe et al., 1998). From
preliminary experiments we know that the effect of BRDF correction
on PRI is small compared to the effect of atmospheric correction.
However, the impact of surface reflectance anisotropy on a MODIS-
based PRI is difficult to assess precisely. The standard MOD43 product
only contains BRDF-parameters for the “land bands”, i.e. the spectral
bands 1–7. The theoretical benefit resulting from correcting aniso-
tropy effects is eroded by the additional uncertainties caused by
unavailability of BRDF shape parameters from the same day, location,
and spectral bands as the radiance data. As considering BRDF effects is
known to improve the quality of NDVI (Bacour et al., 2006), we used
6S in the BRDF-correction mode prior to the calculation of NDVI and
EVI. The data set with no atmospheric correction applied was subject
to the same constraints as for the 6S-approach to arrive at the same
number of samples.

In the DOS-case reflectance was calculated as

ρ =
π Lsat − Lpath
� �

E0 cos Θzð ÞTz
ð5Þ

where Lsat is the at-satellite radiance, E0 is the exoatmospheric solar
constant (contained within MOD021km), and Θz is the solar zenith
angle. Tz is the atmospheric transmittance in the illumination direc-
tion, fixed at 1 in this case. The path radiance is estimated separately
for each spectral band as

Lpath = Lsat;min − 0:01 E0 cos Θzð ÞTzð Þ= π ð6Þ

The first step in retrieving Lpath consisted in selecting all
acquisition times when the pixel containing the tower is flagged as
“confident clear”, without cirrus clouds, heavy aerosol or shadows,
and where the sensor zenith angle was no more than 40°. For scenes
with flawless tower pixels the 25,000 pixels with the smallest
Euclidean distance to the tower-pixel were examined for contamina-
tion by cloud cover, shadows, aerosols or bad detectors. Lsat, min was
then defined as the average of the 500 pixels with the lowest radiance
among the good quality pixels neighbouring the tower pixel. A more
detailed description of dark object subtraction can be found in Song
et al. (2001).

TheMODIS cloud mask does not allow the detection cloud cover or
cloud shadows with absolute certainty. To rule these distortions out
we only analysed at acquisition times where the diurnal curve of
incident PAR (ground-based measurements) was near-perfect. We
refer to this approach whenever we talk about cloud-free days in this
study. The total screening left 439 acquisition times in case of the 6S
approach (and “no correction”) and 1145 acquisition times in case of
the DOS approaches for further analysis. Due to increased cloud cover
in winter the majority of usable image acquisitions occurs during the
growing season.

2.3.2. Preparation of vegetation indices
In studies using field- or airborne spectrometers with high spectral

resolution the PRI is defined as in Eq. (1). It is based on ρ531 (reflectance
at 531 nm), which is sensitive to the epoxidation state of xanthophyll
cycle pigments, and ρ570 (reflectance at 570 nm), being largely
unaffected by short-term stress (Gamon et al., 1992).

MODIS-band 11 is centred at 531 nm (cf. Table 1). As the MODIS-
sensor is not equipped with a spectral band centred at 570 nm, we
tested bands 1 (620–670 nm), 4 (545–565 nm), 12 (546–556 nm), 13
low gain (662–672 nm), and 14 low gain (673–683 nm) as potential
reference bands, in accordance with the proposition of Drolet et al.

http://www.modis.ornl.gov/modis/index.cfm
http://www.modis.ornl.gov/modis/index.cfm
http://ladsweb.nascom.nasa.gov
http://redhook.gsfc.nasa.gov/%20imswww/pub/imswelcome
http://redhook.gsfc.nasa.gov/%20imswww/pub/imswelcome


Fig. 2. Comparison of half-hourly and daily light use efficiency (LUE) for 12:00 to 12:30
at cloud free days (i.e. potential satellite acquisition days). Equally good or better
relationships are observed for the other half-hour intervals between 10 a.m. and 2 p.m.
The linear function fitted to the observations is shown by the continuous line, the
1:1 line is dashed.
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(2005, 2008). To obtain only positive PRI-values that compare better
with the traditional vegetation indices, a scaled PRI was calculated
(Rahman, 2004):

sPRI = PRI + 1ð Þ = 2 ð7Þ

A modification of sPRI has been computed for each of the 5
reference bands and each of the 3modes of atmospheric correction. To
compare the performance of the PRI as a proxy of LUE against the
capability of well known vegetation indices we calculated the
normalised difference vegetation index (NDVI) (Tucker, 1979),

NDVI =
ρNIR − ρred

ρNIR + ρred
=

ρbd2 − ρbd1

ρbd2 + ρbd1
ð8Þ

and the Enhanced Vegetation Index (EVI) (Huete et al., 1997),

EVI = 2:5 ·
ρNIR − ρred

ρNIR + 6 · ρred − 7:5 · ρblue + 1

2:5 ·
ρbd2 − ρbd1

ρbd2 + 6 · ρbd1 − 7:5 · ρbd3 + 1

ð9Þ

from reflectance data that were corrected for atmospheric and BRDF
effects.

2.4. Modelling GPP

In the end, we would like to know which approach of estimating
light use efficiency gives the best results when modelling GPP with
Eq. (2). The light use efficiency term will be approximated by (a) the
VI that correlates best with LUE and (b) the LUE derived from the
MODIS biome parameter look-up table and local temperature and VPD
measurements. For (a) we applied leave-one-out cross-validation by
fitting a linear model to all but one VI–LUE pairs. This model was then
used to calculate a LUE value from the left-over VI value. This LUE
estimate was then multiplied with the matching aPAR value:
GPP=LUE·fAPAR·PAR=(a·VI+b)·FPAR·PAR. The relative differ-
ence of this modelled GPP value to the actually measured GPP was
recorded. This procedure was repeated for every VI–LUE pair. For
(a) we run one batch with reference LUE calculated as daily slopewith
only site data, for another batch we picked the LUE version with
MODIS faPAR.With this cross-validation approachwe reduced the risk
of overfitting to the specific data available. We compared average
values, mean absolute errors, and root mean squared error (RMSE).
We used the modelling efficiency measure (ME, Janssen & Heuberger,
1995), which compares the relative improvement of the chosenmodel
over the benchmark situation ‘average of observed values’:

ME = 1−
Pn

i=1 Oi−Mið Þ2Pn
i = 1ðOi−ŌÞ2 ð10Þ

We had a closer look at dry (soil water content b100 mm) and wet
periods (soil water content N200 mm).

3. Results

3.1. Comparing LUEs at different time scales

Multiple good quality MODIS image acquisitions rarely occur on
the same day for the same location. Even if, any light use efficiency
that could be estimated from optical satellite data would still be a
snapshot. The acquisition time can theoretically influence the ability
to estimate daily LUE from satellite data. In summer time, the diurnal
curve of GPP often displays a depression at midday, or GPP simply
declines during midday and afternoon (data not shown). To check the
effect of acquisition time on the estimation of daily LUE, we compared
LUE calculated as half-hourly ratio against LUE calculated as daily ratio
for all cloud-free days of 2002–2005. The potential image acquisition
times of the Aqua and Terra satellites in the study area range from 10 a.
m. to 2 p.m. For all half-hour time steps within this interval the linear
fit between daily and half-hourly LUE yielded a correlation coefficient
of at least 0.92 (pb0.001, example for 12:00 to 12:30 shown in Fig. 2).
The linear functions relating the half-hourly and the daily LUE in each
time interval are close to the 1:1 line (slope 0.86–0.97, intercept
0.0013–0.0023).

The relative similarity of half-hourly and daily LUEs is also revealed
on an annual basis. While-naturally-some half-hourly LUEs exceed the
daily LUE, the annual means are comparable and display the same
interannual variations (Fig. 3A). The 90th percentile of daily LUE
ranges between 0.0261 (2002) and 0.0230 μmol CO2/μmol photons
(2002); this difference is equivalent to 11% of the 2002 value. The 90th
percentiles of all years exceed the maximum LUE given in the MODIS
biome property look-up table (BPLUT) for evergreen broadleaf forests
(0.021 μmol CO2/μmol photons). The LUE calculated according to the
MODIS GPP algorithm does about represent the average LUE in non-
summer months. However, during the summer months, a decline in
LUE calculated from site GPP and aPAR can be observed that is not
captured by BPLUT-based LUE (Fig. 3).

3.2. Strength of relationship between VIs and LUE, aPAR, and GPP

We then checked the correlation between 14 varieties of LUE and
the vegetation indices, i.e. the sPRI with 5 different reference wave-
length and 3 modes of atmospheric correction each, as well as the
NDVI, and EVI. For each viewing-geometry constrained subset of
observations we made sure that all VIs were available simultaneously.
Whether we look at the full data set or constrain to certain sun-sensor
geometries: the behaviour of LUE in the family of ratios at daily and
sub-daily level is very consistent. Therefore only one representative is
displayed in Fig. 4A–E. In our study, the PRI with the broad reference
band 1 yielded the best correlation with ecosystem LUE (r up to 0.78).
However, we only achieved such a good correlationwhen constraining
the dataset with respect to viewing geometry and when we did not
apply atmospheric correction. In the following we will detail the
effects of different constraints.

Looking at the whole dataset, only constrained as outlined in
Section 2 (Fig. 4A), we find that the scaled PRI with the red reference
bands (1, 13, 14) correlate best with the ground based LUE estimates
(r=0.65, pb0.001 for LUE calculated with MODIS faPAR, n=156
samples). Choosingonly observationsmade byeither Terra or Aqua does



Fig. 3. (A) Annual means and standard deviation of half-hourly and daily light use efficiency; LUE.max: maximum LUE for evergreen broadleaf forests according to MOD17 biome
property look-up table (BPLUT) (B) BPLUT-approach does not capture LUE dynamics of the site, similar pattern for all years.
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change neither the strength of the correlation nor the slope of a linear
function fitted to the LUE and PRI values (data not shown). The best
relationship between a “traditional vegetation index” and LUE is
r≤0.43, for NDVI with atmospheric (Lambertian) correction
(pb0.001). For all sPRIs analysed, none of the atmospheric correction
procedures tested does yield a significantly better correlation with LUE
compared to sPRI calculated from top-of-atmosphere reflectances.

As a next step we only look at satellite data that are subject to
backscatter conditions, that is to say where sun and sensor have ≤10°
difference in zenith angle and≤60°difference in azimuth angle. Because
of these constraints and because we made sure that we compared
vegetation indices from exactly the same observation times, only six
samples remained. For these 6 days, correlation between the remaining
sPRI and LUE values does improve a lot (data not shown because of
sample size). sPRI with reference band 14 yields the best correlation
with LUE (r=0.91, for LUEbased onMODIS faPAR, followedby sPRIwith
reference bands 13 and 1. For observations near backscatter direction
Fig. 4. (A–E) Correlation between ground based light use efficiency estimates (LUE with fa
vegetation indices. (A) Sensor zenith angle (SZA) 0–40°, (B) SZA 0–10°, (C) SZA 10–20°, (D)
and VI (F–G) constraints as for B. Black circles indicate negative correlation. The atmosphe
conditions), B (correction with 6S considering BRDF effects), U (uncorrected), and D (dark
atmospheric correction seems to be necessary to obtain a good
relationship between the different sPRIs and LUE. Due to the small
number of observations in this configuration we must be careful not to
attach too much importance to this result. Neither NDVI nor EVI have a
correlation with LUE to speak of.

Constraining the satellite data to sensor zenith angles (SZA) of
≤10°) or 30–40° increases the correlation between LUE and all
vegetation indices compared to the complete data set (Fig. 4B, E).
The sPRI with reference bands 1, 13, and 14 perform similarly well
regarding their correlation with LUE (r up to 0.79 for sPRI with
reference band 1 and LUE based on MODIS faPAR, no atmospheric
correction, pb0.001). In the subsets with 10–20° and 20–30° SZA the
correlation between vegetation indices and LUE is comparable to the
full data set, both in pattern and magnitude. For the viewing angle
restricted data sets atmospheric correction does generally not
improve the correlation. NDVI and PRI with reference band 1 at
near-nadir SZA are the only exceptions.
PAR from MODIS data and from interception measurements, c.f. Section 2) and MODIS
SZA 20–30°, and (E) SZA 30–40°. (F) Correlation of aPAR and VI. (G) Correlation of GPP
ric correction modes are abbreviated with L (correction with 6S assuming Lambertian
object subtraction).
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On the whole, PRI without atmospheric correction correlates best
with LUE. This pattern shows up again when correlating the VIs with
absorbed PAR. The uncorrected sPRIs show a strong relationship with
aPAR, this time negative (example for 0–10° SZA shown in Fig. 4F). The
correlation patterns of other LUE variations versus VIs do also
correspond to the aPAR correlation patterns, albeit at a lower
magnitude and only after selecting for narrow SZA (not all data
shown).We observe no correlation between GPP and sPRI or the other
VIs (Fig. 4G). This pattern is consistent regardless of the constraints
applied to the data set.

3.3. Ability of sPRI to track LUE over time

The sPRI with reference band 1(as well as the two narrow red
bands) and no atmospheric correction (SZA 0–10°) does well in
tracking the seasonal course of light use efficiency (Fig. 5A). Especially,
it picks up the decline in LUE during drought periods in the summer
(Fig. 5C). The best performing sPRI (reference band 1, no atmospheric
correction, SZA 0–10°) yields a somewhat higher correlation with LUE
Fig. 5. (A) Time series of LUE, best-performing PRI (reference band 1, no radiance corr
(B) Reflectances used for PRI calculation (no atmospheric correction) (A+B). Only observa
stress indicator and daily aPAR averages. (D) Sun zenith and azimuth angles during time of
than the best performing traditional vegetation index (NDVI,
reflectances corrected with 6S assuming Lambertian behaviour, SZA
0–10°), that is r=0.78, pb0.001 compared to r=0.70, pb0.001 (Fig. 4).
This relationship deteriorates when all available data in this range
of SZA are considered, not only those where all vegetation indices are
available simultaneously (Fig. 5). EVI is a far worse predictors of LUE.
The PRI (and LUE) is minimal during summer droughts. Since the
amount of incident PAR is maximum in summer, aPAR and PRI are
inversely correlated (r=−0.86, pb0.001) for sPRI with reference
band 1, no atmospheric correction, SZA 0–10° and daily aPAR; c.f.
Fig. 4). All of the potential reference bands tested in this study are
clearly influenced by the same forcing and show a distinct seasonal
cycle. The changes within the ecosystem add to the effects caused for
instance by viewing geometry and absorbed PAR and can be visualised
as normalised ratios. As band 1 integrates over the wavelength of
bands 13 and 14 it is not surprising that they show the same temporal
variation. The gaps in summertime result from saturation of the nar-
row red bands. These bands were designedwith a higher sensitivity to
monitor dark oceanic surfaces and are thus more likely to saturate
ection), and best-performing other vegetation index (NDVI with BRDF correction).
tions with near-nadir viewing angles are shown. (C) Cumulative water deficit as water
image acquisition (A+C). A=Aqua, T=Terra.



Fig. 6. Relative difference (%) between observed GPP and GPP derived from n light use efficiency models. The LUE for the two leftmost models was estimated from sPRI (reference
band 1, no atmospheric correction, SZA 0–10°), based on a regression of the other n−1 sPRI values against LUE estimates. In the right-hand model, LUE is calculated from MODIS
biome property look-up table (BPLUT) parameters and site meteorological data.
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over relatively bright terrestrial targets, especially when vegetation
cover is not dense.
3.4. Modelling GPP

The VI selected as LUE-proxy in this analysis is the sPRI with
reference band 1 and no atmospheric correction performed (con-
strained to near nadir viewing angles). PRI with reference band 1 was
chosen over the PRIs with reference bands 13 and 14 because band 1
does rarely saturate and thus yields a higher data coverage. As shown
in Section 3, the PRIs with red reference bands otherwise behave very
similar. Setting up a model with this sPRI and a site-data-only LUE
yields a relative difference between modelled and observed GPP of
40.2% (median, n=49, c.f. Fig. 6, Table 2). When the GPP estimation is
based on LUE with MODIS faPAR, the difference to the observed GPP is
50.6% (median, n=44). If GPP is modelled with the MODIS algorithm,
the difference to the observed GPP is as large as 151% (median). To
achieve comparability, we chose the same observation times as in the
first set-up (n=49). With the look-up table approach GPP is severely
overestimated during all satellite data acquisition times (near nadir
viewing angles) and even more so during times of water stress
(Table 3). In contrast, the discrepancy between observed GPP values
Table 2
Comparison of GPP-models (c.f. Section 4).

LUE from

Site data only Site GPP and MODIS faPAR BPLUT

Number of obs. 49 45 44
Avg. modelled GPP⁎ 2.126 3.860 8.747
Avg. observed GPP⁎ 3.981 4.051 4.047
Mean absolute error⁎ 2.088 1.390 4.752
RMSE⁎ 2.3208 3.389 27.345
Modelling efficiency −5.172·1032 −1.034·1030 −3.470·1032

The LUE for the two leftmost models was estimated from sPRI (reference band 1, no
atmospheric correction, sensor zenith angle 0–10°), based on a regressionof the othern−1
sPRI values against LUE estimates. In the model on the right, LUE is calculated from
MODIS biome property look-up table (BPLUT) parameters and site meteorological data.
Numbers are dimensionless or in μmol CO2 m−2 s−1 (⁎).
and PRI-based GPP estimates during dry periods is not much different
from periods with high water availability.
4. Discussion

4.1. Comparing LUEs at different time scales

We demonstrate specifically for a water-limited site that midday
LUE on cloud-free days is a good proxy for daily LUE (Fig. 2). Other
experimental evidence suggests that this relationship might be
generally applicable. Sims et al. (2005) report a good relationship
betweenmidday and daily LUE on clear days (r=0.85) for pooled data
from a wide range of vegetation types. This was indirectly confirmed
for a boreal deciduous forest where Drolet et al. (2005) found low
variability in LUE on days useful for MODIS image acquisition. In this
case, faPAR for LUE calculationwas derived from tower measurements
of NDVI. For pooled data from a Canadian boreal forest with different
plant functional types and levels of disturbance, Drolet et al. (2008)
found a strong relationship between midday and daily LUE (r=0.96)
on clear days (using MODIS faPAR). That we do not find strong
differences in the PRI–LUE relationship for different LUE aggregation
levels does fit in with this general picture.

The highest 90th percentile of daily LUE per year within the study
period amounted to 0.0261 (2002). This compares well with the
maximum LUE in other semiarid ecosystems, for instance Sims et al.
(2006) reported a maximum daily LUE of 0.02 for a relatively sparse
Californian chaparral ecosystem. The site specific maximum LUE is
subject to considerable interannual variability (Fig. 3). Within the 4
Table 3
Average difference between observed and modelled GPP (cf. Section 4, Table 2) in dry
periods, well-watered periods, and the whole time series with standard deviation (in
μmol CO2 m−2 s−1).

LUE from ΔGPPdry ΔGPPwet ΔGPPall

Site data only 1.602±1.239 (14) 1.107±1.995 (11) 1.855±1.955 (49)
Site GPP and MODIS

faPAR
−0.120±1.276 (14) −0.142±1.366 (11) 0.191±1.852 (45)

BPLUT −6.230±1.443 (14) −2.598±2.481 (10) −4.596±2.396 (44)

In parentheses: number of observations.
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years analysed, the 90th percentile varied by 11%. This indicates that
MOD17-like models might improve their performance if parameters
were optimised on an annual basis. The operational MOD17maximum
LUE for evergreen broadleaf forests was too low for the Puéchabon
forest in the study period. Moreover, the MOD17 biome property look-
up table (BPLUT) approach did not simulate the summer depression in
LUE, althoughwe used accurate on-sitemeasurements of temperature
and VPD. In principle, an optimisation of the MOD17 BPLUT para-
meters could reduce the discrepancy between modelled and actual
LUE. In any case, the error in MOD17 GPP is likely to increase when the
constraining environmental factors are extracted from global meteor-
ology datasets. Also, for this particular site the completewater balance
needs to be considered to model GPP accurately (unpublished results
by Markus Reichstein). Considering soil water content might theo-
retically improve the situation but retrieving (deep) soil moisture on
large spatial scales is not feasible. These results justify the search for
alternative LUE estimates.

4.2. Strength of relationship between VIs and LUE, aPAR, and GPP

In this study, the red MODIS spectral bands (620–670 nm, 662–
672 nm, 673–683 nm) turned out to be the most suitable reference
bands for PRI (Fig. 4). The PRI with red reference bands was shown to
be clearly more related to LUE than NDVI or EVI. This behaviour is as
expected, it has been shown before that using NDVI results in an
overestimation of productivity, especially in water limited sites
(Running & Nemani, 1988). When sampling the total set of satellite
data for acquisitions within a narrow range of viewing angles, we
found stronger relationships between all versions of PRI and LUE
compared to the complete data set. This is especially true for near-
nadir viewing angles and viewing zenith angles of 30–40°. Barton and
North (2001) showed in a simulation study that the influence of
soil background reflectance on PRI is significant for canopies with a
LAI below 3. The relatively sparse vegetation cover in the study area
(LAI just below 3) might thus give rise to a sensitivity of the PRI–LUE
relationship to differences in viewing angle. We also need to keep in
mind that the PRI, since it is observed from above, represents at best
top-of-canopy conditions, not an average over the whole canopy.
Some scatter in the LUE–PRI relationship is probably due to this
fundamental difference between any optical remote sensing data and
the eddy covariance based GPP estimates involved in the evaluation,
which integrate over the whole canopy.

For a boreal deciduous forest (Drolet et al., 2005) found a strong
linear positive relationship between LUE and PRI with reference band
13 calculated from backscatter top-of-atmosphere reflectance
(r=0.87). A weaker relationship was found when using reference
band 12 (r=0.73). They found no significant correlation for the
reference bands 1 and 4. Drolet et al. (2008) estimated ecosystem LUE
for several Canadian boreal forest sites with different plant functional
types and degrees of disturbance with MODIS bands 10, 12, 13, and 14
(488 nm, 551 nm, 667 nm, and 678 nm) as reference bands. Reference
band 14 yielded the best correlationwith LUE (r 2=0.70, pooled data).
However, in that study no significant correlation was observed for the
individual sites. In our study, PRIs formed with the narrow red bands
13 and 14 have about the same relationship to LUE as a PRI with the
broader red band 1 (c.f. Fig. 4). Red might be generally useful as a
reference band for MODIS based PRI.

Garbulsky et al. (2008) estimated LUE of an Italian Quercus ilex
forest (LAI=3.5) with a MODIS-based PRI. Using at-sensor-radiance
and band 12 for reference they found a good correlation (r=0.78) for
all cloud-free image acquisition days. The better performance of
reference band 12 and the lower sensitivity to viewing geometry
compared to the Puéchabon site might be due to the higher LAI (3.5
compared to 2.8±0.4), and maybe also due to generally better water
availability (Reichstein et al., 2002). The performance of the red bands
at this closed-canopy stand was not published. For using a satellite-
derived PRI at larger spatial scales it will be necessary to find out the
optimal reference band under different conditions. If no universally
applicable reference band can be identified, we would need to estab-
lish stratification rules.

In this study using top-of-atmosphere reflectance data for PRI
calculation yielded the highest correlation with LUE for most viewing
geometries. In the backscatter constellation, correction with 6S was
better, although based on few data. Drolet et al. (2005) reported a
similar phenomena. This suggests that the estimates of atmospheric
optical thickness provided as MODIS product and/or atmospheric
correction with 6S add uncertainty to the small PRI signal. The
sampling frequency and the range of viewing angles used to produce
the MODIS atmospheric optical thickness product might be a limiting
factor. Integrating data from other satellite missions might mitigate
this problem. The simulation study performed by Barton and North
(2001) suggests that the index is robust to variation in aerosol as the
top-of-atmosphere PRI followed the ground PRI over a range of optical
thickness. Their explanation is that the (original) bands are close in
wavelength and so unlike Rayleigh scattering the aerosol effects are
similar at both 531 and 570 nm. This reasoning is not so convincing
when using a red reference band. Currently, we do not have an
explanation why using uncorrected red bands gives nevertheless the
best results.

4.3. Ability of sPRI to track LUE over time

The MODIS-based PRI with one of the reference bands 1, 13, or 14
and no radiance correction applied is able to track the seasonal course
of LUE if the observations are constrained to narrow ranges of viewing
angles. It is the first time this has been demonstrated for a severely
water limited Mediterranean site. The constraints in viewing
geometry probably limit the effect of anisotropy in surface reflectance.
The remaining temporal variations in the PRI signal in the restricted
data sets are better linked with variations in ecosystem LUE. It is likely
that not only the xanthophyll-cycle pigment interconversions give
raise to the changes in PRI but also seasonal changes in the concen-
tration of xanthophyll cycle pigments. Xanthophyll levels, carotenoid
concentrations in general, and chlorophyll levels relate to seasonal
changes in vegetation productivity; the PRI signal has been shown to
match these variations (Sims & Gamon, 2002; Sims et al., 2006;
Stylinski et al., 2002). Filella et al. (2004) state that xanthophyll and
carotenoid levels change with environmental conditions and thus also
are indicators of photosynthetic downregulation under stress.

The NDVI did not track the decline in LUE as well as the PRI with
reference band 1 (Fig. 5). Sims et al. (2006) gave one plausible
explanation for this: compared to PRI the NDVI seasonal pattern is
more sensitive to solar elevation angle effects. The relatively good
correspondence between NDVI and LUE in the summer of 2005 com-
pared to previous summers probably results from a caterpillar attack
(Allard et al., 2008).

Gamon et al. (1992) tried different reference wavelength for
sunflower canopies, 550 nm did not work well with the water stress
experiments. Leaves of sclerophylly are less prone to wilting, hence
the fraction of soil seen from sensor does not vary (due to wilting, but
surely due to changes in viewing angle).

4.4. Modelling GPP

In this study, GPP models relying on PRI as an LUE proxy yielded
considerably more agreement with observations than the MODIS GPP
algorithm, especially during dry periods. Both approaches were tested
with site meteorological data (including incPAR) and MODIS faPAR,
hence the differences in performance are not due to the quality of
input data. Further research should address the performance of PRI
based models with a more universal parameterisation (e.g. for all
Mediterranean evergreen needleleaf forests).
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Data from optical sensors such as MODIS are often cloud con-
taminated, temporal aggregations are used to increase the spatial
coverage. Sims et al. (2005) documented that the inclusion of cloudy
days leads to a large variation of LUE within the aggregation period
and thus disturbs the relationship between midday LUE and LUE of
the aggregation period. They suggest to estimate midday LUE from
satellite data and to compute midday gross carbon fluxes from that.
Then rather robust relationships between midday gross carbon flux
and eight-day fluxes should be used to extrapolate to longer time
periods.

4.5. General considerations

Overall, the Puéchabon Quercus ilex forest seems to be a suitable
test case to study the performance of satellite based PRI in drought-
prone areas. For this evergreen forest the PRI signal is not dominated
by large seasonal variations in leaf area through senescence or strong
wilting. Other semiarid ecosystems, for instance those with brevi-
deciduous leaves and sparser canopy structure, can be less suitable for
PRI studies (Filella et al., 2004; Sims et al., 2006). But also for the
sclerophylly site studied here we can not exclude that the relationship
between PRI and LUE in years with excessive drought might differ
from years with normal droughts. Sims et al. (2006) observed such
changes for a Californian chaparral ecosystem.

5. Conclusions

We found that MODIS PRI seems to be a useful estimator of
ecosystem LUE, despite the influence of soil and other photosynthe-
tically inactive material on the reflectance signal. This statement is
valid during the whole growing season and also times of severe water
deficiency. The light use efficiency at times of satellite data acquisition
is close to the daily average of light use efficiency, thus PRI can be used
to estimate daily LUE. The PRI with either of the three tested red
reference bands is correlated best with on-site LUE. Given that the
narrow red bands 13 and 14 are prone to saturation in summer and
thus provide less useful observations, band 1 seems to be the best
reference band for the evergreen oak forest studied here. Since the
choice of reference band matters, we recommend to perform an
independent careful screening for each new study area, or to look for a
universally applicable reference band for MODIS-based PRI. NDVI and
EVI were comparatively poor proxies of LUE. The relationship between
PRI and LUE improves when the analysis is restricted to small ranges
of viewing angles. Near nadir viewing angles yield the best results. In
the end, this study also demonstrates that GPP models relying on PRI
as a LUE proxy correspond considerably better with observations than
the MODIS GPP algorithm, especially when water is scarce.
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