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Abstract

This paper evaluates the performances of a neural network approach to estimate LAI from CYCLOPES and MODIS nadir normalized
reflectance and LAI products. A data base was generated from these products over the BELMANIP sites during the 2001–2003 period. Data were
aggregated at 3 km×3 km, resampled at 1/16 days temporal frequency and filtered to reject outliers. VEGETATION and MODIS reflectances
show very consistent values in the red, near infrared and short wave infrared bands. Neural networks were trained over part of this data base for
each of the 6 MODIS biome classes to retrieve both MODIS and CYCLOPES LAI products.

Results show very good performances of neural networks to estimate the original LAI products with an overall root mean square error (RMSE)
around 0.5 for MODIS LAI from both MODIS and CYCLOPES normalized reflectances and a RMSE ranging between 0.12 (CYCLOPES
reflectances) and 0.29 (MODIS reflectances) for CYCLOPES LAI. A drop of 15% of performance was found by training MODIS biome
dependant algorithm by a single network over all the classes at the same time. More detailed analyses show that CYCLOPES and MODIS LAI
values are very consistent for grasses and crops. Conversely, other biomes including shrubs, savanna, needleleaf and broadleaf forests show
significant discrepancies, mainly due to differences between LAI definitions used between CYCLOPES (closer to effective LAI) and MODIS
(closer to true LAI). However, products derived from the original CYCLOPES LAI products show a better agreement with both effective and true
LAI ground measurements values. MODIS LAI products show more instability, partly because of the slightly shorter temporal resolution as
compared to CYCLOPES.

These results confirm the interest and versatility of neural networks for operational algorithms. This approach could be extended to other
products or sensors, and may constitute a step forward for the fusion of data from several sensors, hence contributing to develop ‘virtual
constellations’.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Leaf Area Index (LAI) is operationally estimated from
remotely sensed optical imagery at global scale in the context of
several international initiatives. Among those, National Aero-
nautics and Space Administration Moderate Resolution Ima-
ging Spectroradiometer (NASA/MODIS) (Knyazikhin et al.,
1998; Myneni et al., 2002) and European Union FP5 Carbon
cYcle and Change in Land Observational Products from an
Ensemble of Satellites (FP5/CYCLOPES) (Baret et al., 2007)
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LAI products are available freely to the user community. Other
products derived from different sensors are in development
and will be soon available, such as European Space Agency
GLOBal land products for CARBON model assimilation (ESA/
GLOBCARBON) (Plummer et al., 2006) or European organi-
zation for the exploration of METeorological SATellites Land
Surface Analysis Satellite Application Facilities (EUMETSAT/
LSA SAF) (García-Haro et al., 2005) LAI products.

From the application side, scientific and institutional users
need validated products that should be consistent between sen-
sors and associated with a good and known accuracy (Morisette
et al., 2006). According to Global Climate Observation System
(GCOS, 2006) the typical target accuracy required for LAI is
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Fig. 1. Temporal resolution corresponding to the several products investigated.
The temporal window is centred at day=0. MOD_16 corresponds to MODIS
normalized reflectance products. MOD_8_Comp corresponds to the composit-
ing of three consecutive original 8 days MODIS LAI product to get a closer
temporal resolution to that of MOD_16. CYC_10 is the original temporal
resolution of CYCLOPES products. CYC_10_interp corresponds to the average
temporal resolution when interpolating CYCLOPES products at MOD_16
dates.
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around 0.5. However, recent validation studies have outlined
significant discrepancies among several existing LAI products
(e.g. Abuelgasim et al., 2006; Camacho-de Coca et al., 2006;
Verger et al., 2006; Weiss et al., 2007). These results were used
by the Committee for Earth Observation Satellite to state that
none of the available LAI products are yet performing globally
within the threshold requirements (CEOS, 2006).

To fully exploit the potential of current Earth observation
programs and take advantage of the several products available,
efforts have to be directed towards improving their consistency
and accuracy. This needs validation and inter-comparison stud-
ies that are still very scarce (Baret et al., 2006). Parallel de-
velopment of new strategies for fusion of sensor measurements
and derived products is also required. Among the several ap-
proaches suited to relate sets of reflectances with the cor-
responding biophysical surface variables such as LAI, learning
machine techniques such as neural networks (NNT) appear to
be quite powerful and easy to implement operationally. They
allow adjusting a surface response even over a complex and
non-linear problem (Leshno et al., 1993; Krasnopolsky and
Chevallier, 2003; Baret and Buis, 2007). NNT could thus be the
basis of a generic ‘unified’ LAI estimation algorithm allowing
to cover operationally, with algorithm specific tuning, a large
range of sensors. NNT are increasingly used for the interpreta-
tion of remotely sensed data and the estimation of LAI (e.g.
Danson et al., 2003; Fang and Liang, 2005; Bacour et al., 2006;
Baret et al., 2007, Trombetti et al., 2008).

The objective of this paper is to evaluate the performances of
neural networks when trained with the LAI product from one
sensor and the reflectances from another. More specifically,
MODIS (collection 4) and CYCLOPES (version 3.2) normal-
ized reflectances and LAI products were considered. The four
combinations between reflectance andLAI products fromMODIS
and CYCLOPES were investigated and their performances
evaluated with regards to their consistency and accuracy as com-
pared to those of the original MODIS and CYCLOPES LAI
products.

In the first section, MODIS and CYCLOPES normalized
reflectances and LAI products are described along with issues
related to the spatial, temporal and spectral sampling. After
comparing the original MODIS and CYCLOPES products,
neural networks are described with emphasis on the learning
process and data base. Performances of the proposed approach
are then evaluated based on direct and indirect validation
according to the methodology proposed by Weiss et al. (2007)
for the validation of global LAI products. Finally, main con-
clusions and implications of findings are drawn.

2. Data and methods

2.1. CYCLOPES products

Version 3.2 of CYCLOPES products were used here. They
are derived from VEGETATION sensor aboard SPOT4 and
SPOT5 satellites (Henry, 1999). These products were down-
loaded from http://postel.mediasfrance.org. They correspond
to 1/112° resolution (about 1 km at the equator) and are pro-
jected in plate-carrée. The radiometric calibration processes of
VEGETATION data, cloud screening, atmospheric correction,
Bidirectional Reflectance Distribution Function (BRDF) model
inversion and LAI retrieval are described in Baret et al. (2007).

CYCLOPES normalized reflectances for nadir viewing are
calculated using Roujean et al. (1992) BRDF model for the
median solar zenith angle during the compositing period. Suc-
cessive inversions allow rejecting observations disturbed by
residual clouds and/or aerosols, as proposed by Hagolle et al.
(2005). The temporal sampling interval is 10 days, and the tem-
poral window over which observations are collected to adjust
the BRDF model is 30 days, with Gaussian weighing that puts
more emphasis on observations close to the centre of the window
(Fig. 1).

Nadir viewing top of canopy reflectance in red, near infrared
and middle infrared bands from VEGETATION sensors are
input to the LAI algorithm along with the sun zenith angle. LAI
values are computed by inverting the PROSPECT+SAIL radi-
ative transfer model (Jacquemoud and Baret, 1990; Verhoef,
1984) using a biome independent neural network algorithm.
CYCLOPES LAI product corresponds therefore to an effective
LAI expected to be valid across all biomes. However, clumping
at the landscape level (mixed pixels) is accounted for by as-
suming that each pixel is made of a Fraction of Vegetation
Coverage (FVC) of pure vegetation and (1-FVC) of pure bare
soil (Baret et al., 2007). Large ranges of values for canopy
structure, leaf optical properties and background reflectance
were used to generate the training data base that encompasses all
biomes.

http://lpvs.gsfc.nasa.gov
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CYCLOPES LAI product was validated byWeiss et al. (2007)
showing very good consistency with MODIS LAI seasonality,
with however differences in magnitude but a better agreement
with ground measurements.

2.2. MODIS products

MODIS collection 4 products were downloaded from http://
edcdaac.usgs.gov. They correspond to a 1 km spatial resolution
in a sinusoidal projection system.

MOD43B4 nadir BRDF-Adjusted Reflectance Product
provides atmospherically corrected, cloud-free, normalized
reflectance values for each of the MODIS land spectral bands
(1–7, centred at 648 nm, 858 nm, 470 nm, 555 nm, 1240 nm,
1640 nm, and 2130 nm, respectively) at the mean solar zenith
angle of each 16 day period (Schaaf et al., 2002). MODIS
atmospheric correction scheme is described in Vermote et al.
(1997). The Ross-Li BRDF model (Lucht et al., 2000) with
model parameters provided by MOD43B1 product is used to
compute MOD43B4 product. In addition to the spectral nadir
normalized reflectance values, the MOD43B4 product also
provides extensive quality information.

MODIS LAI product (MOD15A2) is composited every
8 days using a main retrieval algorithm based on a three di-
mensional radiative transfer model tuned for six main biome
classes (Knyazikhin et al., 1998). A Look-Up-Table (LUT) is
used to compare observed and modeled red and near infrared
daily BRFs for a suite of canopy structures, leaf optical prop-
erties and soil patterns that represent an expected range of
typical conditions for a given biome type. LAI is retrieved as the
mean value from all possible solutions within a specific level of
input satellite data and model uncertainties. If this algorithm
fails, a back-up procedure is triggered to estimate LAI from
biome specific NDVI based relationships (Myneni et al., 1997).

MODIS global land cover type 3 (MOD12) yearly products
are also used to provide the classification in six main biomes
used in MOD15A2 LAI algorithm. Classification is derived
from temporal profile features as observed during the year and
includes: shrubs, savanna, grasses and cereal crops, broadleaf
crops, needleleaf forest and broadleaf forest (Friedl et al., 2002).

Numerous validation experiments have quantified the relia-
bility of MODIS MOD43 reflectance products (e.g. Jin et al.,
2003), MOD12 land cover product (e.g. Cohen et al., 2006b) and
MODIS LAI products (e.g. Wang et al., 2004; Tan et al.; 2005;
Huemmrich et al., 2005; Cohen et al., 2006b). A summary of
published validation efforts by multiple international teams is
given in Yang et al. (2006).

2.3. Generation of a consistent data base

To properly implement the neural networks, a data base of
CYCLOPES and MODIS normalized reflectances and LAI
must be acquired over a globally representative ensemble of
sites and over a time period long enough to show seasonal and
interannual variability. The BELMANIP ensemble of sites is
used, including 397 sites aiming at providing a good sampling
of biome types and conditions over the globe (Baret et al.,
2006). A three year period was considered, starting in 2001 and
ending in 2003.

To allow NNT cross-learning and comparison between pro-
duct performances, the data base is expected to reflect high
degree of consistency over the spatial, temporal, spectral and
directional dimensions of the signal.

Considering the spatial dimension, both CYCLOPES and
MODIS products have approximately 1 km sampling interval
while their projection systems differ. To achieve a comparison
of both products over the same support area, the same
projection system has to be used that should ideally keep the
size of the sites independent from its location (Weiss et al.,
2007). The MODIS sinusoidal projection system was selected
because it ensures more consistency of the area of individual
pixels between sites. CYCLOPES products were therefore
reprojected into MODIS projection system using a bi-cubic
resampling method (Reichenbach and Geng, 2003). To get
similar spatial resolution and minimize the influence of geo-
location uncertainties and point spread function, as well as to
allow direct validation exercise, a 3 km×3 km support area was
considered for the analysis as recommended by Weiss et al.
(2007). Because of the low quality of MODIS LAI back-up
algorithm retrievals (Yang et al., 2006) mostly due to residual
clouds and poor atmospheric correction (Wang et al., 2001),
only the values retrieved with the main algorithm were selected
to build the data base. To improve the homogeneity of the area
and provide more consistent analysis per classes, we considered
only the BELMANIP sites for which at least 5 pixels in the
3 km×3 km area correspond to the dominant class, according to
yearly MOD12 product. This class was finally assigned to each
selected BELMANIP site. The median value over the
3×3 pixels area was computed when at least 5 high quality
level pixels (not necessarilly the same) were available for each
product. Using the median value instead of the average value of
LAI and reflectances allows removing most outliers inside the
3 km×3 km area. In addition, using the median makes a better
match with the ‘dominant class’ if the class is assumed to be the
main driver of variability between pixels in the 3×3 area.

For the temporal dimension, both resolution and sampling
interval differ between MODIS, CYCLOPES LAI and normal-
ized reflectance products. The lowest sampling frequency was
selected as a reference, corresponding to the 16 days of MODIS
normalized reflectance products. The 8 days original MODIS
LAI products were thus composited to get about the same
temporal resolution: the central 8 days value was averaged with
the ones from the previous and the next compositing windows,
assigning a 0.5 weight to these border observations. The central
16 days period therefore corresponds to 75% of the whole
temporal window that spans over 24 days (Fig. 1). However,
when one or two of the border observations were missing, the
product was still computed from the remaining observations.
Conversely, when the centre observation was missing, no pro-
duct was computed. The CYCLOPES LAI and normalized
reflectance products were interpolated at the central date of
MODIS 16 days products if the two closest CYCLOPES
products were within ±15 days from this date. The composit-
ing window may thus vary between 40 and 60 days. The
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contribution of the central 16 days period contributes on the
average to 61% of the whole temporal window (Fig. 1). Despite
these differences in temporal compositing, observations of LAI
temporal evolution over situations showing high rate of change
(Fig. 2, sites#2, #47 and #40) show very good consistency
between products. This demonstrates that the differences in
temporal compositing windows will have minor effects on the
seasonality of products.
Fig. 2. Temporal evolution of CYCLOPES, MODIS LAI products and NNT estimate
six MODIS biome classes.
From the 27,790 observations potentially available at 16 days
frequency for 3 years over the 397 sites, only 7572 matches i.e.
27% of the potential observations were finally considered after
the spatial and temporal resampling and filtering process.

For the directional dimension, despite the fact that two distinct
BRDFmodels are used for the normalization of CYCLOPES and
MODIS reflectances, little differences are expected since time and
geometry of observations are very close for both sensors (SPOT
s for the period 2001–2003 over six 3 km×3 km BELMANIP sites representing



Fig. 3. Spectral response function of VEGETATION and MODIS.
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Vegetation user's guide available online at http://vegetation.cnes.
fr/system/content.html#userguide; Wolfe et al., 1998). Higher
impacts are expected from the radiometric calibration, atmo-
spheric and geometric corrections (Verger et al., 2005).

For the spectral dimension, a comparison between spectral
response of both sensors for the three bands considered in this
study shows that MODIS bands are “narrower” than those of
VEGETATION, but are within the spectral range of variation of
the VEGETATION ones (Fig. 3). However, a particular simu-
lation study (not shown here for the sake of brevity) achieved at
the top of the atmosphere level and encompassing a large range
of vegetation types, atmospheric conditions and geometric con-
figuration, demonstrated that despite these spectral differences,
very good agreement without biases were expected between
homologous pairs of bands.
Fig. 4. Density plots between CYCLOPES and MODIS normalized reflectances, NDV
(n=7572). The 10% (20%) showing the largest reflectance discrepancies in the thre
Pairs of homologous CYCLOPES and MODIS products
were compared over the whole data base described previously.
Linear rectangular regression between normalized reflectances
of the two products for each of the three bands was preferred to
classical linear regression since it provides equal treatment of
the two variables. For sake of simplicity, uncertainties were not
accounted for in the regression computation because they are
not precisely known. In addition, these uncertainties should be
of the same order of magnitude for the two variables. In these
conditions, slope and offset of the regression computed with or
without taking uncertainties into account would be very similar.
Results show good agreement betweenMODIS and CYCLOPES
reflectance products (Fig. 4) although CYCLOPES is slightly,
but systematically, lower than MODIS reflectances in the three
bands. These biases differ from theoretical previously mentioned
simulation study mainly because of the combination of radio-
metric calibration uncertainties and inaccuracies of atmospheric
correction although further investigations are required to better
identify and quantify the sources of these differences.

The scatter plots for each band (Fig. 4) shows outliers prob-
ably due to unscreened clouds, residual atmospheric effects or
snow masking errors. As there are differences in compositing
window between products, this could result in a differential
weighting of such noisy effects on data. These outliers must be
eliminated to improve the consistency between products within
this data base. For each individual data (date⁎ site), the sum of
squared relative differences in the three bands between both
sensors was computed. This criterion was used to reject data
showing the largest discrepancies over the three bands. The 5%,
10%, 15% and 20% showing the largest discrepancies were
tentatively rejected, and the corresponding regression perfor-
mances were computed: when more outliers were rejected, the
consistency between CYCLOPES and MODIS products ob-
viously improves, resulting in a higher correlation, a lower root
I values and LAI products over BELMANIP sites during the 2001–2003 period
e bands are indicated with circle (square) symbols.
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Table 1
Correlation coefficient (R2), slope and offset of the rectangular linear regression

Product Rejection
level

n R2 RMSE Slope Offset

Red reflectance 0% 7572 0.956 0.021 (24%) 0.875±0.003 0.010
10% 6815 0.985 0.012 (14%) 0.922±0.002 0.008
20% 6058 0.988 0.010 (13%) 0.935±0.002 0.007

Near infrared
reflectance

0% 7572 0.923 0.044 (19%) 0.874±0.004 0.004
10% 6815 0.950 0.038 (17%) 0.907±0.004 0.009
20% 6058 0.957 0.035 (16%) 0.926±0.004 0.012

Short wave
infrared
reflectance

0% 7572 0.977 0.029 (13%) 0.936±0.002 0.003
10% 6815 0.983 0.025 (11%) 0.952±0.002 0.005
20% 6058 0.986 0.022 (10%) 0.961±0.002 0.005

LAI 0% 7572 0.897 1.287 (77%) 0.569±0.003 0.088
10% 6815 0.909 1.295 (75%) 0.574±0.003 0.071
20% 6058 0.914 1.307 (74%) 0.578±0.003 0.055

The root mean square error (RMSE) corresponds to the square root of the
average squared difference between CYCLOPES and MODIS products.
Comparison achieved over BELMANIP sites during the 2001–2003 period as
a function of the rejection level over reflectances. 0% rejection level corresponds
to the original 7572 matches and n refers to the number of samples per rejection
level.
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mean square error and a slope closer to unity (Table 1). Reflec-
tance consistency improves significantly for the first rejection
fractions (5% and 10%) as shown both in Table 1 and Fig. 4,
while minor improvements are observed for larger rejection
levels (15% and 20%). A similar percentage of data were re-
jected among the several biome classes for 5% or 10% levels,
while more differences between classes were found in the re-
maining data base when higher rejection levels were applied.

Comparison between CYCLOPES and MODIS LAI pro-
ducts shows a higher scattering as compared to reflectances
(Table 1, Fig. 4, Table 3 and graphs on the right of Fig. 5). The
systematic lower CYCLOPES LAI values as compared to
MODIS ones in dense vegetated areas can be explained partly by
the influence of clumping due to differences in product
Fig. 5. Comparison between several LAI pro
definitions. A closer inspection per biome classes (Fig. 6)
shows that good agreement is observed for “grasses and cereal
crops” and “broadleaf crops” biome classes. As a matter of fact,
they correspond to canopies with very limited leaf clumping that
were simulated with essentially 1D model in the MODIS
original algorithm. Conversely, differences between the effec-
tive CYCLOPES LAI and MODIS ‘true’ LAI definitions show
off for the other biomes, with slopes close to 0.6 on the average
between CYCLOPES and MODIS LAI values (Table 3). In
addition, some saturation of CYCLOPES LAI is observed for
broadleaf forest, for values larger than 4 (Figs. 5 and 6). These
results agree also with those of Weiss et al. (2007) who reported
an early saturation of CYCLOPES LAI product (values hardly
go beyond LAI=4).

Note that most outliers for LAI are eliminated when rejecting
data showing inconsistencies between reflectances (Fig. 4).
Filtering over LAI values to increase the consistency between
CYCLOPES and MODIS LAI products was tentatively applied.
However, results (not displayed here) show that improvement
on LAI consistency is lower than 3%.

A rejection level of 10% over reflectances was finally se-
lected because it provided a significant improvement of net-
works performances (see Table 3) while not reducing too much
the size of the data base and preserving the statistical dis-
tribution of acquisitions per classes.

3. Neural network training process

Because the type of inputs (reflectances in the red, near
infrared and short wave infrared and the sun zenith angle)
and outputs (LAI) are the same as in the case of the original
CYCLOPES LAI algorithm, similar neural networks will be
used (Baret et al., 2007). They mainly consist in back-prop-
agation networks made of one layer of five tangent-sigmoid
and one layer linear transfer functions, resulting in 26 synaptic
ducts over the whole data set (n=6815).
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and 6 biases coefficients to be adjusted. The inputs and out-
puts were scaled by their minimum and maximum values. The
Levenberg–Marquardt minimization algorithm was used in
the learning process because of its efficient convergence per-
formances (Ngia and Sjoberg, 2000). To prevent hyper-spe-
cialization during the training process and test performance of
the networks, the data base was split in two parts by randomly
selecting cases. Two thirds of the cases were used to train
the network (training data base) and the last third to test the
hyper-specialization during the training process and perform
some validation (test data base). Five networks were trained
Fig. 6. The six top figures correspond to the comparison between CYCLOPES origi
(CYCrhoMODlai) for each of the 6 biomes. The six bottom figures correspond to th
estimated from MODIS reflectances (MODrhoCYClai) for each of the 6 biomes.
in parallel, each corresponding to independent random draw-
ing of initial values of synaptic weights and bias. The one
providing the best performances over the test data base was
selected.

In the original CYCLOPES approach, radiative transfer
models were run to simulate actual VEGETATION observa-
tions from prior distribution of canopy characteristics. In the
proposed approach, actual reflectances observed by VEGETA-
TION (CYCLOPES) or MODIS are associated to the corre-
sponding CYCLOPES or MODIS LAI products in the learning
process. Four combinations of reflectances and LAI are therefore
nal products (CYC) and MODIS LAI estimated from CYCLOPES reflectances
e comparison between MODIS original products (MOD) and CYCLOPES LAI



Fig. 7. Histogram of differences in LAI estimates when networks are trained per
classes or across classes. Results computed over the test data base for CYCLOPES
(CYC) and MODIS (MOD) reflectances (rho) and LAI products.
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investigated (Table 2): CYCLOPES observed reflectance with
CYCLOPES LAI products (CYCrhoCYClai) or MODIS LAI
products (CYCrhoMODlai), or MODIS observed reflectances
with CYCLOPES LAI product (MODrhoCYClai) or MODIS
LAI products (MODrhoMODlai). These four combinations
yield specific results on the capacity of neural networks to mimic
a particular algorithm (case of MODrhoMODlai), or to cross-
learn a given LAI product from reflectance observations coming
from another sensor (cases of CYCrhoMODlai or MODrhoCY-
Clai). The case of CYCrhoCYClai yields obviously only limited
information since the CYCLOPES algorithm was already based
on a neural network. However, the distribution of vegetation
types and observational conditions and uncertainties in this
training data base may be different from the characteristics used
in the training data base of the original CYCLOPES products. In
addition, original CYCLOPES products were not biome depen-
dant, while in the present approach specific learning is applied to
each of the six classes as in the case of the MODIS original
algorithm. The same definition of the 6 biome types as in the
original MODIS products is therefore kept along this study. The
approach consisting in training a dedicated neural network for
each class is compared to the one based on learning a single
neural network across all the classes.

Results show that training networks per classes always improves
significantly (probability higher than 0.9999) LAI estimates as
compared to training across classes (Table 2). However for
CYCLOPES LAI products (CYCrhoCYClai and MODrhoCY-
Clai), improvement in performances is only marginal because the
original CYCLOPES LAI products were not dependant on classes.
The slight improvement observed may be due to a more specific
training achieved over more homogeneous learning data base.
Conversely, improvement is much larger for MODIS LAI products
(CYCrhoMODlai and MODrhoMODlai) for which the original
algorithm was biome dependent. However, the distribution of
residuals between training per class and across classes (Fig. 7)
shows that the effect is small, withmost of residuals within ±0.5m2

m−2. Note also that the input reflectance data set (CYCLOPES or
MODIS) has a second order influence on the performances,
confirming the good consistency observed previously (Fig. 4).

4. Evaluation of NNT performances

NNT performances are evaluated for the four combinations
of reflectances and LAI. Indirect validation is first achieved,
consisting in analyzing the self-consistency of products as well
Table 2
The four combinations of products investigated along with the RMSE values
evaluated over the test data set

CYCLOPES reflectances MODIS reflectances

CYCLOPES LAI CYCrhoCYClai MODrhoCYClai
0.119 (0.129) 0.297 (0.305)

MODIS LAI CYCrhoMODlai MODrhoMODlai
0.525 (0.609) 0.502 (0.558)

Numbers in parenthesis correspond to RMSE values when the learning is
achieved across all classes.
as the consistency between the several products and the original
CYCLOPES andMODIS LAI products. Then, comparison with
ground measurements (direct validation) is presented.

4.1. Consistency assessment

The temporal consistency of NNT LAI estimates as com-
pared to MODIS and CYCLOPES products is first investigated.
Then, statistical distributions of the several biome classes are
compared. Indirect validation is achieved over the BELMANIP
sites during the 2001–2003 period for the 7572 CYCLOPES
and MODIS best reflectance matches selected in Section 2.3.

4.1.1. Temporal consistency
Temporal consistency was evaluated by the smoothness level

of the temporal profiles. As a matter of fact, except in extreme
situations such as fire, flooding, or change of land use, LAI results
from incremental processes such as photosynthesis, assimilate
allocation or senescence, producing relatively slow thus smooth
variation with time. This was evaluated as proposed by Weiss
et al. (2007) using the difference δ between LAI(t) product value
at date t and the mean value between the two bracketing dates:
δ=1/2(LAI(t+Δt)+LAI(t−Δt))−LAI(t), where Δt is the tem-
poral sampling interval. Difference δ is computed only if the two
bracketing LAI values at (t−Δt) and (t+Δt) exist. The smoother
the temporal evolution, the smaller the δ difference should be.
Histograms of δ (Fig. 8) show that MODIS original products
(MOD) are the most ‘shaky’, while temporal profiles of other
products are smoother particularly when CYCLOPES reflec-
tances are used. Obviously, these results could partly be explained



Fig. 8. Histogram of the δ value for the 4 combinations of products developed
and the original CYCLOPES (CYC) and MODIS (MOD) products.
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by the actual length of the compositing window and associated
temporal resolution of the products as already pointed out in
section 2.3: MODIS original LAI products are 8 days composite,
as compared to 24 days for MODrhoMODlai and 30 days for
CYCLOPES (CYC) original products and 40–60 days for
MODrhoCYClai, CYCrhoCYClai and CYCrhoMODlai pro-
ducts. The smoothness also depends on the number of “valid”
observations used (and how “valid” are the observations). Indeed,
NNT products mainly depend on the smoothness of input
reflectance values since NNT output is a continuous function of
inputs. Although the same number of CYCLOPES and MODIS
observations was considered in the data base by eliminating
Fig. 9. Distributions of CYCLOPES, MODIS LAI products and NNT estimates for s
observations when data were missing for at least one of the
products, this number will be variable both for MODIS 16 days
and CYCLOPES reflectance products. Nevertheless, because of
similarities in the compositing algorithms used for MODIS and
CYCLOPES reflectance products, the number of observations
used should be on the average proportional to the length of the
compositing window.

To better document the temporal behaviour of each LAI
product, time courses over a selection of sites corresponding to
a range of vegetation types will be described: Turco (Bolivia)
classified as “shrubs”; Mongu a “savanna” site located in
western Zambia; Laprida (Argentina) classified as “savanna” by
MODIS land cover but corresponding actually to grassland;
Fundulea (Romania) cereal and broadleaf site classified as
“grassland and cereal crop”; Concepcion (Chile) corresponding
to a mixed forest classified as “needleleaf forest” by MODIS
land cover; and Harvard (Massachusetts, USA) mixed forest
classified as “broadleaf forest” by MODIS. For more details
about these sites, see Table 4.

A good agreement on the seasonality and its phasing is
observed between the original CYCLOPES andMODIS products
and the four combinations of NNT LAI estimates (Fig. 2).
However, LAI magnitude shows large discrepancies, except for
Fundulea agricultural site. Estimates from networks trained over
CYCLOPES LAI data (CYCrhoCYClai and MODrhoCYClai)
are very similar to CYCLOPES original products. Conversely,
LAI estimated from networks trained with MODIS LAI products
(MODrhoMODlai and CYCrhoMODlai) is closer to the original
MODIS products. The best agreement was obviously found be-
tween the original CYCLOPES (respectively MODIS) LAI pro-
ducts and NNT estimates based on CYCLOPES (respectively
MODIS) LAI and normalized reflectances.

LAI estimated from MODIS reflectance (MODrhoMODlai
and MODrhoCYClai) presents a shakier time course than LAI
ix MODIS biome classes. The number of samples per biome is listed in Table 3.



Table 3
Statistics of a per classes comparison between CYCLOPES, MODIS LAI products and NNT estimates over BELMANIP filtered data base during the period 2001–
2003 for each of the six biome types: root mean square error (RMSE), correlation coefficient (R2), slope and offset of the rectangular linear regression (y=slope x+
offset with x corresponds to the lines in the table and y to the columns)

RMSE CYC CYCrhoCYClai MODrhoCYClai MOD MODrhoMODlai CYCrhoMODlai

R2

Shrubs (n=844) CYC 0.04 0.10 0.50 0.47 0.46
CYCrhoCYClai 1.00 0.11 0.52 0.49 0.47
MODrhoCYClai 0.97 0.97 0.50 0.46 0.48
MOD 0.93 0.93 0.94 0.20 0.19
MODrhoMODlai 0.94 0.93 0.97 0.96 0.19
CYCrhoMODlai 0.96 0.96 0.95 0.97 0.96

Savanna (n=1145) CYC 0.05 0.20 0.99 0.85 0.81
CYCrhoCYClai 1.00 0.19 1.00 0.85 0.81
MODrhoCYClai 0.95 0.96 1.00 0.83 0.84
MOD 0.81 0.80 0.81 0.54 0.57
MODrhoMODlai 0.88 0.88 0.92 0.87 0.35
CYCrhoMODlai 0.94 0.94 0.91 0.85 0.93

Grasses and cereal crops (n=1539) CYC 0.13 0.21 0.43 0.32 0.32
CYCrhoCYClai 0.98 0.20 0.42 0.30 0.30
MODrhoCYClai 0.95 0.95 0.44 0.27 0.37
MOD 0.84 0.85 0.83 0.33 0.31
MODrhoMODlai 0.91 0.92 0.94 0.89 0.26
CYCrhoMODlai 0.92 0.93 0.88 0.91 0.92

Broadleaf crops (n=717) CYC 0.16 0.29 0.40 0.41 0.30
CYCrhoCYClai 0.98 0.25 0.39 0.38 0.27
MODrhoCYClai 0.92 0.94 0.37 0.29 0.32
MOD 0.84 0.84 0.85 0.29 0.30
MODrhoMODlai 0.83 0.84 0.90 0.90 0.30
CYCrhoMODlai 0.92 0.93 0.87 0.89 0.88

Needleleaf forest (n=1548) CYC 0.10 0.40 1.87 1.78 1.73
CYCrhoCYClai 1.00 0.39 1.87 1.78 1.73
MODrhoCYClai 0.92 0.92 1.86 1.73 1.77
MOD 0.83 0.84 0.86 0.72 0.76
MODrhoMODlai 0.89 0.89 0.97 0.88 0.53
CYCrhoMODlai 0.95 0.95 0.91 0.87 0.92

Broadleaf forest (n=971) CYC 0.19 0.40 2.09 2.00 1.97
CYCrhoCYClai 0.99 0.37 2.05 1.97 1.93
MODrhoCYClai 0.95 0.95 2.08 1.98 1.98
MOD 0.89 0.89 0.92 0.61 0.61
MODrhoMODlai 0.92 0.93 0.97 0.94 0.39
CYCrhoMODlai 0.94 0.95 0.95 0.94 0.97

In parenthesis the probability of slope being different from 1. Numbers in bold highlight the main features discussed in the text.
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estimated using CYCLOPES reflectances (CYCrhoCYClai and
CYCrhoMODlai), confirming the previous results about the
smoothness as a function of the size of the compositing window
(Fig. 8).

Note that for Laprida site, significant differences between
the original MODIS LAI and CYCrhoMODlai and MOD-
rhoMODlai estimates were found. This feature may be due to
MODIS LAI biome dependence and land cover misclassifica-
tion of Laprida site as it was classified as “savanna” in 2001
and 2002, and as a “broadleaf crop” in 2003 while being a
grassland site after VALERI ground information: it should
therefore be classified as “grasses and cereal crops”. Misclas-
sification impacts affect more the performance of NNT es-
timates as compared to the MODIS original product that
seems to be more temporally consistent from 2001 to 2003 in
Laprida site (Fig. 2). This can be an influence of the limited
size of the data base used for training NNT. The effect of
land cover misclassification for NNT estimates varies depend-
ing on the similarities between biomes. Since “broadleaf
crops" distributions of NNT estimates as compared to MODIS
and CYCLOPES LAI products are similar to “grasses and
cereal crops” LAI distributions (Fig. 6), a good agreement
between NNT estimates and original products was found in
2003 while higher discrepancies are found in the 2001–2002
period due to the greater differences between “savanna” and
“grasses and cereal crops” distributions (Fig. 6).

4.1.2. Statistical distributions per biome type
Histograms of LAI values (Fig. 9) show consistent dis-

tributions across all biomes between products derived from
the same original LAI products: CYC, CYCrhoCYClai and
MODrhoCYClai for CYCLOPES original LAI products, and
MOD, MODrhoMODlai and CYCrhoMODlai for the original
MODIS LAI products. While some similarities are observed



Table 3

Offset CYC CYCrhoCYClai MODrhoCYClai MOD MODrhoMODlai CYCrhoMODlai

Slope

CYC 0.01 0.01 0.03 0.05 0.06
CYCrhoCYClai 1.03(1) 0.00 0.01 0.04 0.05
MODrhoCYClai 1.03(0.99) 1.00(0.59) 0.01 0.04 0.04
MOD 0.56(1) 0.54(1) 0.54(1) 0.02 0.03
MODrhoMODlai 0.58(1) 0.56(1) 0.58(1) 1.04(1) 0.01
CYCrhoMODlai 0.59(1) 0.57(1) 0.57(1) 1.05(1) 1.00(0.65)
CYC 0.00 0.05 −0.13 0.18 0.25
CYCrhoCYClai 1.00(0.92) 0.05 −0.14 0.17 0.25
MODrhoCYClai 1.05(1) 1.05(1) −0.24 0.12 0.15
MOD 0.55(1) 0.54(1) 0.52(1) 0.22 0.27
MODrhoMODlai 0.66(1) 0.66(1) 0.64(1) 1.16(1) 0.04
CYCrhoMODlai 0.69(1) 0.69(1) 0.65(1) 1.19(1) 1.02(0.99)
CYC 0.01 0.03 0.12 0.20 0.18
CYCrhoCYClai 1.04(1) 0.02 0.10 0.18 0.16
MODrhoCYClai 1.06(1) 1.02(0.99) 0.08 0.17 0.15
MOD 0.93(1) 0.90(1) 0.88(1) 0.10 0.07
MODrhoMODlai 1.08(1) 1.04(0.99) 1.02(0.99) 1.15(1) −0.03
CYCrhoMODlai 1.03(0.99) 0.99(0.83) 0.97(0.99) 1.10(1) 0.95(1)
CYC 0.03 0.11 0.14 0.19 0.23
CYCrhoCYClai 1.03(1) 0.08 0.11 0.16 0.20
MODrhoCYClai 1.12(1) 1.08(1) 0.02 0.07 0.14
MOD 1.13(1) 1.09(1) 1.00(0.65) 0.06 0.12
MODrhoMODlai 1.25(1) 1.20(1) 1.10(1) 1.09(1) 0.06
CYCrhoMODlai 1.27(1) 1.22(1) 1.14(1) 1.13(1) 1.04(0.99)
CYC 0.01 0.20 0.16 0.73 0.83
CYCrhoCYClai 1.01(0.99) 0.18 0.14 0.71 0.81
MODrhoCYClai 1.10(1) 1.09(1) −0.16 0.53 0.49
MOD 0.60(1) 0.59(1) 0.55(1) 0.51 0.55
MODrhoMODlai 0.70(1) 0.70(1) 0.66(1) 1.15(1) 0.04
CYCrhoMODlai 0.72(1) 0.72(1) 0.65(1) 1.16(1) 1.01(0.91)
CYC 0.04 0.15 0.63 0.99 0.92
CYCrhoCYClai 1.00(0.78) 0.11 0.59 0.95 0.88
MODrhoCYClai 1.07(1) 1.07(1) 0.44 0.84 0.72
MOD 0.66(1) 0.66(1) 0.62(1) 0.36 0.25
MODrhoMODlai 0.73(1) 0.73(1) 0.69(1) 1.09(1) −0.12
CYCrhoMODlai 0.72(1) 0.72(1) 0.67(1) 1.07(1) 0.98(0.99)
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between these two families of LAI products for “shrubs",
“savanna”, “grasses and cereal crops”, and “broadleaf crops”,
larger discrepancies show off for forest canopies in agreement
with previous validation studies (Weiss et al., 2007). An early
saturation of LAI products derived from CYCLOPES (CYC,
CYCrhoCYClai and MODrhoCYClai) appears, with maximum
LAI values near 5. Products derived from MODIS LAI show a
broader distribution of values for forests with a narrow peak
around 6 for “broadleaf forests".

4.1.3. Scatter plots between the several products
Comparison between the four combinations of LAI prod-

ucts and the two original (spatially and temporally resampled)
LAI and CYCLOPES LAI products was achieved at the
16 days temporal frequency. Associated statistics including
root mean square error (RMSE computed with the 1:1 line as
a reference), correlation coefficient, slope and offset are pre-
sented in Table 3. Note that the rectangular linear regression
was selected for the same reasons as previously for reflectance
products comparison, and for the same reasons, uncertainties in
the two LAI products to be compared were not accounted for
since they were not known, but should be of the same order of
magnitude. Statistics were computed for each of the 6 biome
types.

The capacity of neural networks to replace efficiently ex-
isting algorithms is here demonstrated. Although this was ob-
viously not too difficult for CYCLOPES LAI products that were
already derived from a neural network approach, the NNTwere
able to match the CYCLOPES LAI with absolute errors ranging
from 0.12 with CYCLOPES reflectances (see top left graph of
Fig. 5) to 0.3 with MODIS reflectances (top centre of Fig. 5)
representing levels well under the 0.7 absolute error of the
CYCLOPES LAI products compared to in situ data (see
Section 4.2). That was more questionable for the MODIS LAI
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algorithm which was based on other principles, but the NNT
proved performing well with an overall absolute error of 0.5 both
with MODIS (bottom left of Fig. 5) and CYCLOPES (bottom
centre of Fig. 5) reflectances. In addition to the intrinsic
limitations of the NNT approach, the degradation of estimation
performances was mainly due to difficulties in training the neural
networks because of the limited size of the learning data base and
the loss of causality in the relationship between LAI and reflec-
tance due to the noise associated tomeasurements and algorithms,
inaccurate ancillary information (land cover) or imperfect theory
in the algorithms. Degradation of performances for MODIS as
compared to CYCLOPESLAI productsmight be due to the larger
instability observed within the original MODIS LAI products,
partly due to the smaller compositing period, but also probably
partly due to the size of the LUT and the way the solution is
selected in the original MODIS algorithm. Further, errors in
biome class assignment may also explain part of the degradation
of performances.

The capacity of neural networks to estimate LAI products
from reflectances coming from another sensor is also demon-
strated (Table 3 and centre graphs in Fig. 5): very good agree-
ment is observed when comparing the original CYCLOPES
LAI product, with LAI estimates from MODIS reflectances;
reciprocally, good agreement is observed between the original
MODIS products and NNT estimates from CYCLOPES reflec-
tances. No biases are observed over the whole range of variation
as observed in Fig. 5 and attested in Table 3 by the slopes (close
to 1.0) and the offsets (close to 0.0), except for NNTestimates of
MODIS LAI from both MODIS or CYCLOPES reflectances
over “savanna”, “broadleaf crops” and “needleleaf forests”. Note
that NNT estimates of MODIS LAI from MODIS reflectances
Fig. 10. Comparison of CYCLOPES,MODIS LAI products and NNTestimates with d
Letter markers correspond to different biome classes: shrubs (s), savanna (a), grasses a
(b). Slope and offset values were calculated with the ordinary least square linear reg
are very consistent with NNT estimates of MODIS LAI from
CYCLOPES reflectances.

However, NNTs could not obviously reconcile discrepancies
between the original CYCLOPES and MODIS LAI products as
observed by Weiss et al. (2007), Table 3 and Fig. 4.

4.2. Direct validation

Original MODIS and CYCLOPES LAI products and the
four NNT estimates were compared with direct ground mea-
surements of effective and true LAI (Fig. 10). These mea-
surements result from several international field campaigns
and are available for about 40 sites widely distributed both in
location and land cover type. The methods used to scale up
local ground measurements to the site level are described in
Morisette et al. (2006). Note that ground measurements could
be derived from several devices and interpretation techniques,
and may provide estimates of effective LAI values (assuming
the canopy as a turbid medium) or true LAI values when
leaf clumping is accounted for (Chen et al., 2006). In this
study, 18 sites (Table 4) were matching our CYCLOPES and
MODIS observations, some of the sites being sampled several
times.

Results (Fig. 10) show that LAI derived from the original
LAI CYCLOPES products perform the best both for the ef-
fective and true LAI values, scoring the lowest RMSE values.
Slight differences are observed depending on the source of input
reflectance used (differences in the overall RMSE of 5% in
CYCLOPES LAI and 10% in MODIS LAI relative to ground
measurements). LAI estimates derived from the original MODIS
LAI products show larger RMSE values both for effective LAI
irect ground measurements of effective LAI (17 points) and true LAI (19 points).
nd cereal crops (g), broadleaf crops (b), needleleaf forest (n) and broadleaf forest
ression.



Table 4
Sites used for the direct validation

Site name Meas. date Biome class Lat. (°) Long. (°) LAIeff LAItrue Source

Concepcion 23/01/2003 Broadleaf forest −37.47 −73.47 3.0 Valeri
Laprida 13/11/2002 Savanna −36.99 −60.55 1.9 2.7 Valeri
Turco 29/08/2002 Shrubs −18.24 −68.19 0.0 0.0 Valeri
Haouz 25/03/2003 Shrubs 31.66 −7.60 1.6 Valeri
Sevilleta 26/07/2002 Grasses and cereal crops 34.35 −106.69 0.1 BigFoot

22/08/2002 Grasses and cereal crops 0.3 BigFoot
09/09/2002 Grasses and cereal crops 0.4 BigFoot
15/11/2002 Grasses and cereal crops 0.3 BigFoot
23/06/2003 Grasses and cereal crops 0.6 BigFoot
28/07/2003 Grasses and cereal crops 0.5 BigFoot
15/09/2003 Grasses and cereal crops 0.5 BigFoot
21/11/2003 Grasses and cereal crops 1.0 BigFoot

Konza prairie 16/08/2001 Grasses and cereal crops 39.09 −96.57 2.9 BigFoot
Harvard forest 26/07/2001 Broadleaf Forest 42.53 −72.17 4.9 BigFoot

24/08/2002 Broadleaf Forest 4.7 BigFoot
Sud_Ouest 20/07/2002 Broadleaf crops 43.51 1.24 1.2 1.9 Valeri
Alpilles 20/07/2002 Broadleaf crops 43.81 4.74 1.0 1.7 Valeri
Larzac 12/07/2002 Savanna 43.94 3.12 0.6 0.8 Valeri
Metl Oregon 24/09/2002 Needleleaf Forest 44.45 −121.57 1.9 BigFoot
Fundulea 17/03/2001 Grasses and cereal crops 44.41 26.59 1.1 Valeri

09/06/2002 Grasses and cereal crops 1.3 1.6 Valeri
31/05/2003 Grasses and cereal crops 1.1 Valeri

Larose 19/08/2003 Needleleaf Forest 45.38 −75.22 3.5 5.6 Valeri
Thompson 15/07/2001 Needleleaf Forest 56.05 −98.16 1.6 BigFoot
NOBS-BOREAS 14/07/2001 Needleleaf Forest 55.89 −98.48 3.5 BigFoot

14/07/2002 Needleleaf Forest 3.2 BigFoot
Jarvselja 27/06/2003 Needleleaf Forest 58.30 27.26 4.2 Valeri
Hirsikangas 02/08/2003 Needleleaf Forest 62.64 27.01 2.5 Valeri
Flakaliden 20/08/2002 Needleleaf Forest 64.11 19.47 2.5 Valeri

Data sources are mainly BigFoot (Cohen et al., 2006a,b) and Valeri (http://www.avignon.inra.fr/valeri).
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as expected, but also for true LAI. Part of this feature could be
explained by the instability in the algorithm, but also some
overestimation is observed for “needleleaf forests” and in a
lesser degree for “savanna”while LAI for the other biomes show
some underestimation.

Because of the low number of data points, it is difficult to draw
firm conclusions. As a matter of fact, there are not enough sites
available for the larger LAI values, where maximum differences
betweenCYCLOPES andMODIS showoff.Additionally, ground
measurements are associated to errors and biases that are difficult
to estimate. Assuming that these groundmeasurements uncertain-
ties are normally distributed with relative error of 15% (Verger
et al., submitted for publication), and that products are associate to
an intrinsic 0.5 (absolute) error as expected by users, then, a simple
Monte Carlo simulation applied over the 18 available effective
LAI ground measurements shows that direct validation statistics
would be RMSE=0.59±0.10,R2=0.93±0.03, slope=0.97±0.12
and offset=0.05±0.19. These figures are not too far from our best
performances for LAI products.

5. Conclusion

This study demonstrates the versatility and performances of
neural networks to learn several LAI products from several
input reflectance products. NNT trained with the same LAI
products and different input reflectance products showed very
consistent results. This was also a consequence of the very good
consistency observed between reflectance products of the
two sensors considered: VEGETATION (CYCLOPES) and
MODIS. Note that the approach does not need a very accurate
absolute calibration of reflectance products: the main require-
ment here is a very high degree of spatial and temporal con-
sistency of reflectances in each band.

Comparison between MODIS original products and NNT
estimates either derived fromMODISorCYCLOPES reflectances
show that MODIS algorithm has some instability that results in
more shaky temporal profiles. Part of these instabilities may be
attributed to the shorter temporal resolution (8 days) of the original
MODIS LAI products. However, there might be some intrinsic
effects associated to the size of the LUTs, theway the solutions are
selected, or errors in biome classification. NNT training seems to
smooth out efficiently part of the instabilities in MODIS original
products. The compositing period likely resulted in lower tem-
poral variability in CYCLOPES versus MODIS reflectances and
derivedNNTLAI estimates since only 61% of the signal collected
in CYCLOPES compositing time window is contained in the
16 days MODIS compositing window for reflectance.

The main differences between LAI products considered
in this study are driven by differences between the original
MODIS and CYCLOPES LAI products. Although CYCLOPES
includes some clumping at the landscape level, its definition
is closer to an effective LAI obtained with a turbid medium
canopy assumption. Conversely, MODIS includes some
clumping at the plant level that makes its product closer to

http://www.avignon.inra.fr/valeri
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the definition of the true LAI. Note that for CYCLOPES LAI
products, training without distinction between classes does not
provide significant improvement as compared to training for
each individual biome class. Conversely, significant differ-
ences show off for MODIS for which the original LAI products
were tuned for each biome class independently. For “grasses
and cereal crops” and “broadleaf crops”, because leaf clumping
is actually very limited, MODIS and CYCLOPES LAI prod-
ucts agree very well. For the other biomes, and particularly
forests, both products still show relatively good consistency,
with however a systematic bias corresponding probably to leaf
clumping.

Direct validation showed that NNT estimates using
CYCLOPES LAI products perform the best when compared
to effective LAI measurements. Performances are close to the
targeted ones when including uncertainties in ground measure-
ments (assumed to be around 15% relative) for LAI product.
This would indicate that with small improvements in both
ground measurements and retrieval algorithms, target product
performances requirements would be soon reached at least for
the effective LAI. True LAI is much more complex, and pre-
sumably need additional information on leaf clumping which is
probably not accessible using only the spectral dimension of
remote sensing observations.

Because of constraints coming from the original products
considered, results have been obtained at a degraded spatial
resolution of 3 km×3 km. Similarly, the temporal resolution was
quite broad, from 16 to 40–60 days. However, the principles
developed in this study should also apply to better spatial and
temporal resolution products, providing that output LAI products
are consistently linked to input reflectance in the training data
base. It could be also applied to any other products providing that
a strong link exists with the input remote sensing signals. The
quality of the training data base, mainly driven by the number,
distribution and consistency of the inputs (radiometric signals)
and outputs (the products) is critical for the success of the ap-
proach. In this study, the data base was relatively limited although
large enough for a good training. However, it was not possible to
get fully independent training and evaluation processes except
in the case of the direct validation exercise. This aspect should
certainly be improved when going from demonstration (this
study) to more operational applications.

This study opens avenues for the development of consistent
multi-sensor operational products. Training networks over the
same LAI data base with input reflectances coming from several
sensors would allow easily fusing the products for improved
continuity and performances. This would provide a possible
way to build ‘virtual constellations’ from different sensors, and
exploit them in synergy. This issue will be addressed in depth in
a forthcoming study.
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