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Abstract

A hybrid inversion technique based on Bayesian network is proposed for estimating the biochemical and biophysical parameters of land
surface vegetation from remotely sensed data. A Bayesian network is a unified knowledge-inferring process that can incorporate information
derived from multiple sources including remote sensing and information derived from a priori knowledge. Using this inversion approach, content
of chlorophyll a and chlorophyll b (Cab) and leaf area index (LAI) of winter wheat were estimated from data derived from simulations as well as
field measurements. Estimations from the simulated data proved accurate, with root mean square errors (RMSEs) of 0.54 m2/m2 in LAI and
4.5 μg/cm2 in Cab. In validating the estimates against field measurements, it was found that prior knowledge of target parameters improved the
accuracy of estimates, in terms of RMSEs from 0.73 to 0.22 m2/m2 in LAI and 9.6 to 4.0 μg/cm2 in Cab. Bayesian inference in this hybrid
inversion scheme produces a posterior probability distribution, which can reveal such properties of the inferred results as updated information
contained in the inversion result. Using entropy, the revision of posterior information about the parameters of interest was calculated. Including
more data may allow more information to be retrieved about parameters in general. Exceptions were also observed where data from some viewing
angles slightly reduced the information on the parameters of interest. It was also found that data from these viewing angles were less sensitive to
the parameters. The method proposed here was also validated using LandSat ETM+ imagery provided by the BigFoot project. When used for
mapping LAI with ETM+ imagery, the proposed method with an RMSE of 0.70 and a correlation of 0.67 produced a slightly better result than that
from empirical regression.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Estimating such biophysical and biochemical parameters of
land surface vegetation as leaf area index (LAI) and leaf
chlorophyll content (Cab) is an important application of remote
sensing (Koetz et al., 2005; Myneni et al., 1995; Verstraete
et al., 1996). LAI, defined as half the total leaf surface area per
unit area of horizontal surface, is an important structural
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variable of vegetation and a key variable in understanding
several ecophysiological processes within the vegetation
canopy (Gong et al., 2003; Tian et al., 2003). Cab, the sum of
the contents of chlorophyll a and chlorophyll b per unit leaf
area, is intimately associated with physiological functions of
leaves (Gitelson & Merzlyak, 1997; Sims & Gamon, 2002).
Both LAI and Cab are affected when vegetation is exposed to
natural and anthropogenic stresses, and non-destructive deter-
mination of these parameters from a distance is a good method
of studying leaf function, and plant physiological state and
stress (Koetz et al., 2005).

LAI and Cab can be estimated either by empirical methods or
by inverting a radiative transfer model (Baret & Guyot, 1991;
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Verstraete et al., 1996). The empirical method involves
constructing empirical formulae that link spectral features
(e.g. vegetation index) and parameters of the earth's surface
using experimental data (Gong et al., 1992; Walthall et al.,
2004). The empirical method is simple and efficient in
estimating the parameters but has a few inherent disadvantages.
Since the relationship is derived using data at a specific time and
place, the empirical formulae are limited temporally and
spatially. An alternative is to invert a physical model, a method
that has a clear physical basis and the retrieved results can be
explained using physical models (Myneni et al., 1995).

However, physical models are often complicated and non-
linear; as a result, the inversion process is often ill-posed
(Combal et al., 2003). Many mathematical techniques have
been developed to handle such problems, such as the
regularization method (Doicu et al., 2003, 2004; Fymat, 1979)
and artificial neural network techniques (Fang & Liang, 2003).
The problem of inversion can also be solved by the knowledge
reasoning method rather than by mathematical optimization
(Kimes et al., 1991). In applying knowledge reasoning, the ill-
posed problem can be regarded as a result of insufficient
information during the process of knowledge reasoning.
Therefore, additional knowledge is used in the inversion
process (Combal et al., 2003; Li et al., 2001).

Recent research has shown that combining the empirical
method and physical model inversion into a new hybrid
inversion scheme is a promising approach to estimating surface
parameters (Fang & Liang, 2003; Liang, 2004). The scheme
uses simulated data sets to fit an empirical formula and the fitted
equation is then used for estimating land surface parameters.
Although non-linear fitting methods such as artificial neural
network (ANN) and projection pursuit regression (PPR) have
been used in earlier hybrid inversion models, and have shown
how inversion efficiency and accuracy can be improved, there is
still scope for improvement by incorporating more information
in the inversion process. In the earlier hybrid inversion schemes,
parameters of the physical model alone were included; other
parameters that may influence the parameters of interest were
not incorporated into the process of estimation. For example,
although it is known that LAI is affected by crop growth stages,
current hybrid inversion methods lack a way to introduce such
temporal information into the estimations.

This paper proposes an alternative hybrid inversion method,
which uses a Bayesian network to map the simulated reflectance
to its corresponding biophysical parameters. As a hierarchical
probability model, a Bayesian network can be used not only as a
non-parametric regression model but also to deduce information
from multi-layer parameters (Marcot et al., 2001). Kalacska
et al. (2005) used it for estimating LAI of a tropical dry forest
from ETM+ data and obtained better results than those obtained
from spectral vegetation indices or ANN. However, for the
initial network estimates the authors used data from ground
surveys combined with known forest structure, LAI, and
satellite reflectance. The method, therefore, was not free of
the disadvantages inherent in the empirical method. In our
proposed Bayesian network approach, the initial network
estimates use the data obtained by simulating a physical
model. Therefore, the approach can be used for estimating the
biophysical and biochemical parameters of a standing crop over
a wider temporal and spatial range than is possible with a
limited amount of ground measurements. In our approach, we
also focus on incorporating ancillary information extracted from
a spectral library, namely the Spectral Library on Typical Land
Surface Objects in China (SLTLSOC) (Qu et al., 2003), to
support the inversion, which differs from other non-parametric
regression methods such as ANN and PPR.

Our study sought to develop a new hybrid inversion scheme
supported by the SLTLSOC and was tested against data sets
obtained from both simulations and field measurements. The
second purpose was to study changes in the values of the
parameters of interest after sequentially adding multi-angle
observation data to the inversion process.

2. Methods

2.1. Radiative transfer model

A coupled radiative transfer model, PROSPECT+SAIL
(PROSAIL), was used to simulate the reflectance of vegetation
canopies. PROSPECT can simulate the reflectance and
transmittance of leaves using their biochemical and biophysical
parameters (Baret & Fourty, 1997; Jacquemoud & Baret, 1990).
These parameters include Cab, leaf water content (Cw), dry
matter content (Cm), and the leaf mesophyll structural
parameter (N). SAIL (Scattering by Arbitrarily Inclined Leaves)
is a physics-based radiative transfer model used for simulating
the hemispheric reflectance spectra of canopies under different
viewing directions (Verhoef, 1984). The version of SAIL used
in this study was developed by Kuusk, which included the hot-
spot effect in the original SAIL model (Kuusk, 1991). The SAIL
model needs seven input parameters: LAI, average leaf angle
(ALA), ratio of leaf length to canopy height (SL), leaf
hemispheric reflectance (LR), leaf transmittance (LT), soil
reflectance, and atmospheric visibility (VIS). LR and LT can be
simulated by PROSPECT. The coupled PROSAIL model
computes multi-spectral reflectance under different incident
and observation directions. We used the simulated BRDF
(Bidirectional Reflectance Distribution Function) data from
wavelengths of 400–900 nm at intervals of 5 nm, with the
illumination-viewing angle of 55°. Because Landsat ETM+ data
and field measurements were to be used, the response functions
of ETM+ on green (525–605 nm), red (630–690 nm), and near-
infrared (775–900 nm) bands were used to resample the
simulated reflectance from simulated narrow bands into broad
ETM+ bands 2, 3, and 4 respectively.

To reduce the number of model parameters to be retrieved,
some parameters can be fixed when simulating the canopy
reflectance. PROSPECT computes leaf reflectance and trans-
mittance based on the specific absorption coefficient (SAC), the
main factor influencing leaf reflectance, of each component in
every band (Jacquemoud & Baret, 1990). The effect of Cw and
Cm is mainly in wavelengths longer than 1300 nm and of Cab,
in approximately 400–800 nm. Since reflectance in wave-
lengths less than 900 nm is used to estimate chlorophyll content,



Fig. 1. Soil reflectance of PROSAIL model.
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Cm and Cw can be fixed values. The structural parameter N in
PROSPECT mainly influences leaf multi-scattering in the near-
infrared band, so N is fixed when retrieving Cab. The canopy
structural parameter SL in SAIL mainly affects the shape and
size of hot spots (Jacquemoud et al., 2000). VIS is employed to
calculate the diffuse part of the incoming radiation in the SAIL
model. In simulations using PROSAIL, VIS can be a constant
value. As a background, soil is assumed to be a Lambertian
medium, and determining soil reflectance is a key problem in
parameters retrieved through inverting a physical model. It is
difficult to account for variations in soil background
corresponding with the canopy reflectance (Fang & Liang,
2003). In this paper, soil reflectance was assigned a fixed value
determined by averaging field measurements on different days
(Fig. 1).

Thus, the model inputs were five fixed parameters and three
free variables, namely LAI, Cab, and ALA. We simulated
canopy reflectance from five observation angles to the solar
principal plane: −55°, −25°, 0°, 25°, and 55°. The solar zenith
and azimuth angles were fixed. These input parameters are
shown in Table 1. A total of 1300 groups of BRDF were
generated, simulating the measurements of three spectral bands
from five observation angles.

2.2. Bayesian network model integrated with prior knowledge

The Bayesian theorem describes posterior probability
distributions under specific conditions and has been widely
Table 1
Input parameters for the PROSAIL model simulation

Input parameters Unit Value range Step

LAI m2/m2 0.5–5.5 0.2
ALA Degree 35–75 10
Cab μg/cm2 14–60 5
Cw cm 0.015 –
Cm mg/cm2 0.01 –
N – 1.5 –
SL – 0.25 –
VIS km 20 –
Relative azimuth Degree 0,180 –
Sun zenith (SZA) Degree 55 –
View zenith (VZA) Degree 55, 25, 0, −25, −55 –
applied in the field of remote sensing (Yager, 2006). When
applying the Bayesian theorem to the estimation of land surface
parameters, the parameters and observed data are regarded as
random variables. The Bayesian network is a mathematical
model combining graphics and probabilities to express mutual
relationships between variables. It uses a directed acyclic graph
to describe this relationship. Each node in the network
represents a random variable, and the arc linking the nodes
represents the relationship between variables. Fig. 2 shows a
simplified Bayesian network.

In Fig. 2, the joint probability distribution (JPD) of random
variables A, B, and C can be computed using

pðC;A;BÞ ¼ pðC;AÞ⁎pðBjC;AÞ
¼ pðCÞ⁎pðAjCÞ⁎pðBjC;AÞ: ð1Þ

With the hypothesis of conditional independence in Bayesian
network, i.e. for a given A, parameters B and C are independent
(Murphy, 1998), we have

pðBjC;AÞ ¼ pðBjAÞ: ð2Þ
Eq. (1) can be rewritten as Eq. (3)

pðC;A;BÞ ¼ pðC;AÞ⁎pðBjC;AÞ
¼ pðCÞ⁎pðAjCÞ⁎pðBjAÞ: ð3Þ

Based on the principle of retrieving parameters by Bayesian
network, the posterior probability density distribution of A can
be calculated using the observed data and their ancillary
parameters. Eq. (4) can then be deduced as follows

pðAjB ¼ bi;C ¼ ckÞ ¼ pðAjC ¼ ckÞpðB ¼ bijAÞP
fajg pðA ¼ ajjC ¼ ckÞpðB ¼ bijAÞ

ð4Þ
where p(A|C=ck) represents the probability density distribution
of the parameters to be derived after obtaining the ancillary
information. The quantitative relationship between ancillary
information and parameters to be retrieved (i.e. p(A|C)) can be
obtained from SLTLSOC through a statistical method, a type of
information referred to as prior knowledge. p(B=bi|A) is used to
describe the probability density of the discrepancy between
observed data and that obtained from simulation. The
denominator has no relation with the parameters and serves
mainly as a normalization factor. By extending the Bayesian
theorem to the Bayesian network using a multi-factor deducing
Fig. 2. Conceptual figure of a Bayesian network.



Fig. 3. Bayesian network model used for estimating LAI and Cab (shaded nodes represent the observable nodes and white nodes represent free variables).
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method, prior knowledge about land surface parameters can be
extracted from accumulated data comprising field observations.
Such data sources can be thought of as objective information,
reducing the subjective influence from researchers.

2.3. Estimating the parameters

Fig. 3 is a Bayesian network design based on simulated
canopy spectral data and land surface parameters. The model in
Fig. 3 omits the fixed parameters in PROSAIL, considering the
influence only of LAI, Cab, ALA, viewing azimuth (VAzi-
muth), and viewing zenith (VZenith). The task of estimating the
parameters in a Bayesian network involves two procedures: a
forward procedure to determine the statistical relation between
land surface parameters and simulated reflectance, and an
inverse procedure to estimate the parameters through the
measured canopy reflectance data and other information (e.g.
stage of crop growth). The posterior probability distribution of
parameters can be calculated from Eq. (4) in order to estimate
the maximum posterior probability value or mean value of the
parameters. Compared to other methods (e.g. ANN) the
Bayesian network method has the advantage of being a
bidirectional inferential mechanism, i.e. it allows information
to be obtained in the form of instantiated variable states forward
or backward through nodes—the Bayesian network allows both
deduction and abductions (Kalacska et al., 2005).

The equation to calculate the posterior probability of the
parameters of interest can be derived from Fig. 3, which uses the
following abbreviations to designate the nodes of the Bayesian
network structure: T is the growth stage, A is ALA, and V1 and
V2 are the relative azimuth angle and view zenith angle,
respectively. Other variables are abbreviated to the first letter of
the corresponding node. Given the reflectance values G, R, and
N for the three bands, the posterior probability of LAI can be
calculated using Eq. (5), which is deduced from Eq. (4)

pðLjT ;V1;V2;G;R;NÞ
¼ C � pðLjTÞ

X

fCi;Ajg
pðG;R;N jL;Ci;Aj;V1;V2Þ ð5Þ
where C is a constant factor and p(L|T) is the conditional
probability distribution of LAI during a given growth stage,
derived from the spectral library as a form of discrete
distribution (Fig. 4). This type of knowledge presentation in a
discrete distribution is an extension of the traditional assump-
tion that prior knowledge must obey the rule of normal
distribution. The last factor represents the ability of the model to
fit the observed data under certain conditions. Thus, the
Bayesian method combines three sources of information: prior
distribution of parameters, the physical model of remote
sensing, and measured parameters. It can be seen from Eq. (5)
that the estimate is a probability rather than a single value. More
information about the estimated parameters can be deduced
from their probability, such as the mean value, maximum
posterior probability value, and information entropy, which can
be used to describe the information content or the degree of
uncertainty. For example, the posterior entropy can be
calculated using Eq. (6)

H ¼ �
X

i

pilogðpiÞ ð6Þ

where pi is the parameter's posterior probability on the ith state
and log() is a logarithm operator to the base of 10 or 2 (Shannon,
1948).

3. Analysis of results

3.1. Extracting prior knowledge from the spectral library

In the approach suggested by Li et al. (2001), there are a
number of ways to use prior knowledge in estimating the values
of land surface parameters. The probability density distribution
under different conditions can be regarded as one kind of prior
knowledge. In the Bayesian network, extracting prior knowl-
edge is a matter of constructing a conditional probability table
(CPT) of the network nodes. Here the conditional probabilities
are P(LAI|T) and P(Cab|T). They represent the probability
density distribution of LAI and Cab at different stages of crop
growth. Time series on LAI and Cab can be selected as the data



Fig. 4. Conditional probability distribution of LAI and Cab at different growth stages of winter wheat.
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source to calculate the above conditional probabilities. In the
SLTLSOC, we have collected time series data on biophysical
and biochemical parameters of plants, which can be used as a
data pool to calculate the CPT of LAI and Cab. As an example,
Fig. 4 shows the statistical probability distribution of LAI
during the reviving, erecting and jointing stages of winter wheat
northern part of China.

3.2. Estimating LAI and Cab using simulated data

The simulated data set was divided into two subsets, one to
train the Bayesian network and the other to test the trained
network. A subset comprising 30 groups of data was selected
from the simulated data in order to test the trained Bayesian
network. It should be noted that since the simulated data set was
used for both training and testing, information on different
stages of crop growth was not introduced.

To test the Bayesian network, the posterior probability
distributions of LAI and Cab were calculated and the values
with maximum posterior probability were selected as the
estimated values. With the values of LAI and Cab that served as
inputs to the PROSAIL model as reference values, the estimated
and true values of LAI and Cab were compared. The results are
plotted in Fig. 5, which also shows the RMSE (root mean square
error).

As can be seen from Fig. 5, the proposed method predicted
LAI and Cab accurately. The results indicate that the Bayesian
network can learn the relationship between the parameter space
and the data space, and has inference capability from the data
space to the parameter space simultaneously. It is also evident
Fig. 5. Estimated LAI and C
that greater values of both LAI (N3.5) and Cab (N45) lowered
the accuracy: as LAI and Cab increase, they were less sensitive
to bidirectional reflectance from the canopy. This result is in
agreement with other studies on validation of the PROSAIL
model (Jacquemoud et al., 1995) and also suggests that
whenever LAI and Cab exceed a given value, more information
(i.e. prior knowledge) may increase accuracy.

3.3. Estimating LAI and Cab using data from field measurements

The hybrid inversion method was also validated using data
from field measurements. Field experiments were carried out
from 26 March to 19 May 2001 in Shunyi District, Beijing,
China. To compare spectral data and some parameters under
different conditions, the experimental area was divided into
different regions based on location (the north-western district
was region NW, and so on). Each region was subdivided into
five observation plots, numbered from 1 to 5. This section refers
to plot NW4, the 4th plot in the north-western region (40°11′
40.1ʺ–40°11′51.4ʺN, 116°34′32.7ʺ–116°34′49.4ʺE), in which
measurements were carried out on 2, 12, 17, and 21 April. The
data covered three growth stages of winter wheat (reviving,
erecting, and jointing). The instrument used for measuring the
BRDF of canopies was an SE590 FieldSpec hand-held
spectrometer with a spectral response ranging from 400–
1100 nm. The field of view was fixed at 25°, and the instrument
was 1.5 m above the ground level.

Spectral information on the canopies and on biophysical
parameters of leaves, e.g. LAI, was collected on clear days. To
calculate LAI, leaf samples from an area of 0.6 m×0.6 m were
ab using simulated data.



Fig. 6. Estimated results using field measurements.
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collected and their total area (one side only) measured. The LAI
can be obtained using Eq. (7)

LAI ¼ AL

0:36
ðm2=m2Þ ð7Þ

where AL is the total single side area of all collected leaves.
The biochemical parameters (e.g. chlorophyll content) of the

leaf samples were determined in the laboratory. For Cab, a total
of 50 leaves were sampled from each of the 10 sample sites,
from each of the 5 plots in each region. From the central part of
the leaves, 5 cm lengths were cut, mixed, and ground, and the
total content of chlorophyll a (Cha) and chlorophyll b (Chb)
was determined using a spectrophotometer. Cab was calculated
as the total weight of Cha and Chb per unit leaf area.

In a Bayesian network, the value of a parameter is inferred
from the posterior distribution of the parameter at a given growth
stage and reflectance. The prior distribution is extracted from the
Bayesian network by specifying the time period—in this case,
from the beginning to the end of April. The measurement days
covered the three growth stages in our study area: 2 April
represented the reviving stage, 12 April the erecting stage, 17
April and 21 April both represented the jointing stage. Here,
prior information on LAI and Cab was extracted as a form of
probability distribution (Fig. 4). After the growth stage was
specified in the Bayesian network, spectral data on green, red,
and near-infrared bands resampled from hyper-spectral data
were taken as the input parameters to estimate LAI and Cab.

The estimated value of LAI was close to the field
measurement value (RMSE of 0.22; Fig. 6); the error in
Fig. 7. Estimated results wi
estimating Cab was equally obvious (RMSE of 4.0; Fig. 6). The
maximum error in Cab was on 17 April and 21 April, when the
absolute errors were respectively 9 μg/cm2 and 4 μg/cm2. As
found for simulated data, when Cab was higher, the results were
less reliable.

To illustrate the role of prior knowledge in estimating LAI
and Cab, values calculated without the benefit of information on
the growth stages are shown in Fig. 7. The RMSEs of LAI and
Cab were 0.73 m2/m2 and 9.6 μg/cm2, respectively. It can be
seen from Fig. 7 that prior knowledge of the stage of growth
improved the accuracy significantly. Since the introduced prior
knowledge is derived from temporal information, the proposed
method can adjust the behavior of retrieved results according to
the growth trajectory of target parameters. Other research has
revealed a similar result when temporal information (a canopy
structure dynamic model) was used to adjust the retrieved
parameters (Koetz et al., 2005).

3.4. Change in the posterior information in the inversion process

As stated in Section 2.3, the output of a Bayesian network is
not just one value but a probability distribution of the parameter
under study, which can be used to investigate changes in
posterior information. In information theory, entropy is often
employed to describe information content and its changes in a
dynamic system (Maselli et al., 1994; Wang et al., 2001). In
general, when the entropy is reduced, it indicates that the
retrieved result has incorporated more information and its
uncertainty is reduced, and vice versa. This section deals with
changes in posterior information on LAI and Cab.
thout prior knowledge.



Table 2
Configuration of input data, negative angles represent forward observations

Symbol Combination of view zenith

D1 55°
D2 55°, 25°
D3 55°, 25°, 0
D4 55°, 25°, 0, −25
D5 55°, 25°, 0°, −25°, −55°
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The posterior probability and the corresponding posterior
entropy can be calculated using Eq. (5) and the definition of
entropy in Eq. (6). It can be proved that this method of updating
the posterior probability is independent of the sequence of data
input (Chan & Darwiche, 2005). Based on this point, we studied
the change in posterior information as a result of inputting the
data on different viewing angles in sequence. The viewing
zenith of the input data is shown in Table 2.

The posterior entropy of retrieved parameters was calculated
(Fig. 8). There was a general trend toward reduction in posterior
entropy; however, the rate of reduction slowed down as more
multi-angular data were added and, occasionally, the entropy
even increased with addition of data. In the LAI inversion, the
observed data, which reduced entropy to the minimum, were all
from the backward direction. The largest slowing down was
generally near the hot spot (backward 25°). In the Cab
inversion, we found the same trend for two days (2 and 12
April). On those days, after adding data from two backward
view angles (55° and 25°), the posterior entropy was nearly at
Fig. 8. Posterior entropy of LAI (a) an

Fig. 9. Maximum posterior probabili
its minimum. With the addition of forward-looking data for LAI
and Cab, the rate of entropy reduction declined. This was more
obvious in the Cab inversion. The entropy increased on 12 April
in the case of LAI and on 2 April in the case of Cab. The
magnitude of increase was larger for LAI, but its maximum
posterior probability value remained unchanged despite the
increase in entropy (Fig. 9). The maximum posterior probability
value of Cab changed from 24 μg/cm2 to 34 μg/cm2 compared
to the measured value of 30 μg/cm2.

The abnormal behavior of the posterior information change
in the case of LAI and Cab posed a problem. The increasing
entropy showed a conflict between adding information to the
new data and adding it to the previously used data when using
multi-angle observation data in the inversion—it actually
increased the degree of uncertainty in the estimates. However,
when the posterior entropy increased, the maximum posterior
probability value simultaneously moved closer to the “true”
value. We cannot adequately explain the change in the
maximum posterior probability value with the increase in
entropy, although the current experiment allows a preliminary
conclusion. A change in entropy cannot be the only index of the
degree of uncertainty in the values of parameters and was
insufficient to express the entire information. Alternative
methods to fully describe the change in information from
inverting non-linear models used in remote sensing should be
further investigated. Earlier efforts to solve this problem
focused only on inverting linear models, which can retrieve
the parameters using analytical methods (Yang et al., 2003).
d Cab (b) updated by adding data.

ty value of LAI (a) and Cab (b).



Fig. 11. Comparison and linear regression of measured and estimated LAI
values.Fig. 10. Mapping LAI using ETM+ data.
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3.5. Mapping LAI

This section describes how the proposed method was used
for mapping LAI using satellite imagery. We used data from the
BigFoot Project (Cohen et al., 2003b), which was designed to
link parameters measured in situ and estimates of these
parameters from satellite remote sensing. The BigFoot project
collects field-based data over 5 km×5 km domains and uses
Landsat ETM+ image data and ecosystem process models to
characterize 7 km×7 km areas around each field measurement
site. We used data collected from one of the BigFoot validation
sites, KONZ, which is a tall-grass prairie in central Kansas, US.
Although the study site also includes areas under forest and
croplands, we investigated only the grassland: the reflectance
values were therefore those of grassland extracted from ETM+
imagery according to the map of the land cover. The ETM+
imagery used was as on 13 August 2001. The image had a
resolution of 25 m and covered an area 7 km×7 km (Cohen
et al., 2006).

It should be noted that although prior knowledge of the study
target was required for estimating the LAI, it was not necessary
to have such prior knowledge of every pixel covered by the
satellite imagery; prior knowledge to enable a rough estimate of
the target parameter was often adequate. So long as the land
cover in the entire study area was uniform, although LAI values
may have varied spatially, it was justifiable to assume the prior
knowledge obeyed the same probability distribution for every
cell in the ETM+ imagery. MOD15A2 is one of MODIS
products that can capture the seasonal variation in LAI at a
resolution of 1 km. In this study, prior knowledge was extracted
from the MOD15A2 trajectory. Cohen et al. (2003b) has
presented the LAI trajectory of MOD15A2 in the KONZ site,
and we used the data as prior knowledge of LAI for this site.
From the trajectory of 2001, LAI on 13 August (DOY is 225)
Table 3
Comparison of the statistical properties of the retrieved LAI map

Method RMSE R Min. Max. Mean S.D. Median

Bayesian network 0.70 0.67 1.2 4.8 2.9 0.8 2.8
RMA 0.96 0.50 0.0 9.0 2.6 1.3 2.5
had a mean value of 3.4 and standard variance of 1.2, which is
what we inputted into the Bayesian network (as in Fig. 3) as a
prior distribution before estimating the LAI of the BigFoot
measurement plots from ETM+ and canopy reflectance. After
establishing a model of the spectral data and LAI, we inputted
the reflectance pixel-by-pixel to map the LAI (Fig. 10). The
statistical properties of inferred LAI are given in Table 3. The
statistic values of LAI retrieved from the Bigfoot Project
(Cohen et al., 2006), which uses an orthogonal regression
method called reduced major axis (Cohen et al., 2003a) also are
presented in Table 3.

The results from both methods (Fig. 10, Table 3) were in
reasonable agreement; the differences between mean and
median were less than 0.4 m2/m2. However, in the result
derived from the proposed method, the LAI value of grass at the
KONZ site was spatially stable across the entire extent with a
mean value of 2.93 and standard variance of 0.80.

Field measurements of LAI values from 82 plots were used
to test the mapping accuracy of LAI (Fig. 11). In this study, the
RMSE between the measured and the estimated LAI was 0.70
and the correlation between the measured and estimated LAI
values was 0.67.

In general, the proposed method may have produced a better
result; it improved the correlation coefficient from 0.50 to 0.67
and reduced RMSE from 0.96 to 0.70. However, where the LAI
measured in the field was b2.0, the Bayesian network method
often overestimated the value. When LAI was low, it is likely
that the canopy reflectance value was more derived from the
background soil than from the leaves. It is also possible that the
PROSAIL model used did not differentiate between vegetation
and vegetation mixed with soil. The BigFoot result takes into
account the brightness, wetness, and greenness extracted from
ETM+ data to establish a regression equation between the
optical index and the LAI from field measurements. This type of
empirical regression method may produce a better result than
that of a model-based method in this case.

4. Discussion and conclusions

Based on a Bayesian network, a hybrid inversion scheme
integrating observed data and new information into a unified



621Y. Qu et al. / Remote Sensing of Environment 112 (2008) 613–622
knowledge-inferring framework was proposed. This new
scheme can incorporate information, in addition to physical
model parameters, into the inversion process to estimate
biophysical and biochemical parameters. Information for the
inversion model may come from accumulated historical data,
thus, the process of extracting knowledge from historical
databases and using it for retrieving information from remotely
sensed data is the accumulation of prior knowledge.

The Bayesian network was used to estimate the Cab and
calculate LAI. The proposed method was tested against data from
simulations, field measurements, and remote sensing. From
experimental results, the following conclusions can be drawn.

(1) By training a Bayesian network using simulated data from
the PROSAIL model, the mapping relationship between the
parameter space and the data space can be established,which
demonstrates the learning ability of the Bayesian network.

(2) The difference between the Bayesian network method and
traditional Bayesian or ANN methods is that the former
can consider the input parameters of physical models as
well as other parameters not included in the model. In our
approach, the prior knowledge can be statistically
extracted from historical data and incorporated into the
inversion process. This provides a possible way to
introduce more parameters, such as crop growth stages, to
assist in estimating different parameters of the land surface.

(3) Using simulated data, the inversion process estimates LAI
and Cab more accurately, as seen from the RMSEs of
0.54 m2/m2 for LAI and 4.5 μg/cm2 for Cab. Validation
using data from field measurements shows that prior
knowledge improved the estimates, especially as the
parameters were less sensitive to canopy reflectance. The
proposed method, when used for mapping LAI using
ETM+ imagery, produced a slightly more accurate result
than the empirical regression method, with an RMSE of
0.70 and a correlation of 0.67.

(4) In calculating the posterior probability of parameters, the
entropy of parameters decreased as progressively more
prior knowledge from new data was incorporated. There-
fore, generally, as posterior information accumulated, the
degree of uncertainty decreased in parameter estimations.

(5) Unlike the existing iterative algorithms based on optimi-
zation theory, the proposed method did not need initial
parameter values. Prior information could be determined
from the remote sensing database from the conditional
probability distribution of the Bayesian network.

However, the proposed hybrid inversion method to calculate
LAI and Cab considered the growth stage alone, assuming a
certain relationship between the growth stage and LAI or Cab.
In practice, however, such factors as planting conditions, soil
conditions, water, and application of fertilizers also influence
the growth stages of crops. Thus, integrating more agricultural
knowledge into the estimation of land surface parameters may
be essential for further remote sensing research.

The accuracy of inversion was influenced by sensitivity of
the parameter. For example, if Cab value was sufficiently large,
the parameter became less sensitive, making them less reliable.
Improving the accuracy of the inversion process when the
parameters are less sensitive is an area for future studies.
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