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ABSTRACT 

Monitoring of vegetation structure and functioning is critical to modeling terrestrial 

material and energy cycles, ecosystem productivity and land use/land cover dynamics 

within the general context of climate change. Satellite remote sensing is ideally suited for 

vegetation monitoring as it provides multi-decadal observations at a range of spatio-

temporal scales. Consequently, there is now a pressing need to develop methodologies for 

generating consistent Earth System Data Records (ESDRs) from multiple satellite 

sensors. 

Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) 

are sensor-independent measurable characteristics of vegetation. Multi-decadal global 

data sets of these variables generated with a physically based algorithm and of known 

accuracy are currently not available, although several short term research quality data sets 

exist. Therefore, the objective of this research was to formulate and demonstrate the 

performance of a synergistic approach for the retrieval of LAI/FPAR fields from 

measurements by multiple sensors. 
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An algorithm to generate consistent LAI values from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) and the Advanced Very High Resolution 

Radiometers (AVHRR) was developed. The approach is based on the radiative transfer 

theory of spectral invariants. The scale-dependent single scattering albedo and input data 

uncertainties govern the constrains to consistent retrievals of LAI from data of multiple 

sensors. A global monthly AVHRR LAI data set was generated from the corresponding 

Normalized Difference Vegetation Index (NDVI) fields for the period July 1981 to 

December 2006 using this algorithm. 

An evaluation of generated data set through direct comparison to ground data and 

inter-comparison with other LAI and surrogate data indicates good agreement both in 

terms of absolute values and temporal variations. The utility of the derived data set is 

demonstrated with a case study on characterizing climate and land use impacts on 

vegetation in the semi-arid tropics. It was found that large portions of the densely 

populated, tropical dry lands of the eastern hemisphere have experienced marked positive 

trends in vegetation greenness over the period 1981-2006. 

The results presented in this dissertation imbue confidence in the utility of this 

seamless, consistent satellite data product for large scale terrestrial-biosphere modeling 

and monitoring of global vegetation dynamics. 
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Chapter 1 

1. Introduction 

1.1 Background 

 Vegetation covers almost 75% of the Earth’s land surface. Its character, structure 

and functioning is critical to modeling material and energy cycles in our climate system. 

Therefore, long-term monitoring of vegetation is a topical theme in light of present 

concerns about changing climate. Satellite remote sensing provides the ideal data for 

monitoring changes in land surface characteristics at a range of scales with sufficient 

spatial and temporal resolution. The advances in remote sensing, both in theory and 

instrumentation, have paved the way for better understanding the partitioning of radiative 

energy between the Earth’s surface and atmosphere (Tucker, 1986; Diner et al., 1999; 

Justice et al., 1998). Consequently, studies on the retrieval of biophysical variables that 

act as a proxy to the amount of vegetation on the land surface have gained momentum in 

recent decades.  

1.1.1 Climate-vegetation interaction 

 Numerous terrestrial-biosphere models use land surface properties such as land 

cover type, leaf area index (LAI), fraction of photosynthetically active radiation (0.4-

0.7mm) absorbed by vegetation (FPAR), roughness length, albedo, etc. as key inputs for 

simulation of land surface processes. Such processes are important components of the 
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climate system and their impact on climate variability has been documented in a number 

of sensitivity studies (Mintz 1984; Dickinson 1986; Sellers et al., 1986; Bonan, 1998). 

These and other studies have shown that successful modeling of mass and energy 

exchange between the terrestrial biosphere and the atmosphere requires an accurate 

description of the ecological state coupled with appropriate biogeochemical controls. 

Vegetation and climate interact at time scales from seconds to hundreds of years (Sellers 

et al., 1995; Pielke et al., 1998). The impact of vegetation on climate as well as its 

response to climate perturbations at short to longer time scales is well documented in 

literature.   

1.1.1.1 Vegetation impact on climate 

 The impact/feedback of vegetation on climate through exchanges of energy, water, 

momentum, CO2, and other important atmospheric gases is progressively becoming a 

vital component in the realm of climate-vegetation interactions. The IPCC (IPCC 2007) 

has identified changes in ecosystem and vegetated land cover as a potentially important 

climate feedback. Changes in species composition and ecosystem structure alter albedo, 

surface roughness, stomatal conductance, rooting depth, and nutrient availability, which 

in turn alter land surface energy fluxes and hydrological and biogeochemical cycles 

(Panel on Climate Change Feedbacks, 2003). 

a) Stomata feedback: Stomatal conductance and the amount of leaf area play an 

important role in the partitioning of net radiation into sensible and latent heat fluxes, 

constituting a major component in vegetation feedback to climate. Stomata provide the 

pathway to facilitate the exchange of mass and energy between the atmosphere and the 
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cellular tissues inside the leaf. Stomatal conductance usually decreases with elevated 

levels of CO2, while photosynthesis increases. Several climate model simulations 

incorporating elevated CO2 levels and decreased stomatal conductance show a decreased 

latent heat flux, increased sensible heat and surface warming over large vegetated areas 

(Sellers et al., 1996). Considering the direct response of stomata to changes in 

environmental CO2 levels, it is difficult to quantify this feedback at a global scale and 

assess the magnitude of it relative to other climate feedbacks. This is mostly due to the 

uncertainties related to the physiological processes operating at the scale of a leaf as 

compared to those operating at the canopy or landscape level. In addition, most studies 

incorporate short term response of plants to CO2 as opposed to long term acclimation to 

higher CO2. This is also directly related to the amount of leaf area, as changing the leaf 

area will most certainly alter the physiological response of stomata (canopy conductance) 

and the allocation of carbon, further altering the net exchange of heat and moisture 

between the atmosphere and plants. 

b) Leaf area feedback: The leaf area feedback, alongside the stomatal response to 

factors like increased CO2 and moisture content, also plays a significant role in altering 

the land surface climate, including temperature and transpiration by changing the albedo 

and sensible and latent heat fluxes (Schwartz et al., 1999; Fitzjarrald et al., 2001; Cleland 

et al., 2007). This feedback has been predominantly characterized by the seasonal 

dynamics or phenology of leaves (onset and senescence of leaves). Observations over the 

broadleaf deciduous trees of eastern United States show that the springtime air 

temperatures are distinctly different (for a period of less than a few weeks) after the onset 
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of leaves, and is directly related to increased rates of transpiration upon leaf emergence 

that cools and moistens the air (Schwartz and Karl, 1990; Schwartz, 1992, 1996). A 

similar pattern was also observed in the deciduous trees of west central Canada (Hogg et 

al., 2000). Leaf area and phenology are critical in regulating surface climate and are 

incorporated in various climate models. Buermann et al., (2001) showed that higher leaf 

over vegetated regions in summer increased the evaporative demand (provided there is 

adequate soil water), thus resulting in the cooling of surface temperatures and 

precipitation increases. Incorporating the seasonality of leaf area in the NCAR CCM3 

climate model, Dickinson et al., (1998) demonstrated that the midsummer precipitation is 

significantly reduced and surface temperatures are increased over the extratropical 

continents in the Northern Hemisphere due to lower leaf area.  

c) Albedo feedback: The albedo over vegetated land surfaces can vary from very 

low values (10-15% over humid tropical forests) to somewhat larger values (15-20% over 

herbaceous vegetation) (Hartmann, 1994). The vegetation albedo is a function of plant 

structural and optical properties and the leaf area index (Dickinson, 1983). As the amount 

of leaf area increases, light absorption increases inside a canopy and the reflection from 

background soil decreases. This results in an overall decrease in surface albedo. A similar 

situation is observed in the case of snow in tree-covered landscapes. Land surface with 

fully covered snow has high values of surface albedo (~0.8). The high albedo is masked 

in the presence of trees and can reach significantly lower values (~0.2-0.4) depending on 

vegetation cover type. Several climate model studies have found that the presence of 

boreal forests warm climate as compared to the tundra, thus contributing to a significant 
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positive vegetation feedback (Bonan et al., 1992; Douville and Royer, 1996). This 

phenomena is further manifested in the fact that both the forest and tundra ecosystems 

significantly differ in net radiation partitioning (sensible and latent heat fluxes). The 

classic study by Charney, (1975) showed that in the sub-tropical desert-margin regions, 

heat loss due to high albedos from decreased vegetation leads to a horizontal temperature 

gradient and induces an atmospheric circulation which maintains the sinking motion of 

dry air masses. As a result, there is a further reduction in precipitation and henceforth 

creates a positive feedback that possibly explains recurrence of droughts and 

desertification.  

d) Surface roughness feedback: The roughness of a canopy surface determines the 

degree of coupling between plants and the atmosphere, and in principal influences the 

partitioning of sensible and latent heat fluxes between the land surface and the overlying 

air (Lambers et al., 2000). An increase in vegetation height and leaf area augment the 

transfer of sensible and latent heat away from the surface, while exerting a larger drag 

force on the atmospheric boundary layer (Sellers et al., 1997). Similarly, the height of 

vegetation cover affects the convergence of water vapor transport and rainfall 

distribution, thus altering the near-surface climate (Sud et al., 1988).     

 1.1.1.2 Vegetation response to climate 

The global dynamics of vegetation is primarily controlled by the prevailing climatic 

constraints, in addition to other factors like edaphic conditions (nutrient availability and 

soil texture) and anthropogenic disturbances. The response of vegetation to changes in 

climate is evident across different spatial/temporal scales and climatic factors like 
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temperature, radiation and precipitation impose a varsity of complex limitations to plant 

growth in different parts of the world (Churkina et al., 1998; Nemani et al., 2003). Some 

of the more prominent research on studies of vegetation response to climate are: 

a) Recent reports indicate seasonal swings in green leaf area of about 25% in a 

majority of the Amazon rainforests, with the seasonal cycle timed to the seasonality of 

solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of 

net leaf flushing during the early to mid part of the light rich dry season and net leaf 

abscission during the cloudy wet season (Huete et al., 2006; Myneni et al., 2007). 

b) The spatial patterns of the dominant modes of interannual co-variability in 

Northern Hemisphere vegetation greenness, surface temperature and precipitation were 

reported by Buermann et al., (2003) to be strongly linked to large scale circulation 

anomalies such as the El Niño Southern Oscillation and the Arctic Oscillation. 

c) Several researchers have reported on a progressively greening trend and longer 

growing seasons in the northern hemisphere (Myneni et al., 1997; Zhou et al., 2001; 

Slayback et al., 2003) and relaxation of climatic constraints to plant growth during the 

1980s and 1990s that resulted in anomalous vegetation productivity (Nemani et al., 

2003). Most recent studies have also reported a decreasing trend in growing season 

vegetation activity in the boreal forests of Southern Alaska, Canada and in the interior 

forests of Russia (Angert et al., 2005; Goetz et al., 2005);  

d) The availability of water critically limits plant growth in the semi-arid tropical 

regions of the world, especially in grasslands where precipitation received in the wet 

months is the primary driver of plant growth (Hickler et al., 2005; Prince et al., 2007). 
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Several recent studies on greening and increased precipitation have been reported in the 

Sahelian region (Herrmann et al., 2005; Seaquist et al., 2006). The productivity of crops 

and pastures in most of semi-arid and arid regions of Africa is predictably associated with 

the El Niño Southern Oscillation and the North Atlantic Oscillation (Stige et al., 2006). 

Their results suggest reduced food production in Africa if the global climate changes 

toward more El Niño-like conditions, as most climate models predict. An extensive study 

over the African savannas also show that the maximum woody cover in savannas 

receiving a mean annual precipitation (MAP) of less than ~650 mm is inhibited by, and 

increases linearly, with MAP (Sankaran et al., 2005). 

e) Scholze et al., (2006) quantify the risks of climate-induced changes in key 

ecosystem processes during the 21st century by forcing a dynamic global vegetation 

model (DGVM) with multiple scenarios from 16 climate models. Their results show high 

risk of forest loss in Eurasia, eastern China, Canada, Central America, and Amazonia, 

with forest extensions into the Arctic and semiarid savannas. Malhi et al., (2008) 

discusses the recent trends and fate of the Amazonian rainforests to projected risks of a 

drying and changing climate. 

These and other studies emphasize the fact that climate-vegetation interactions are a 

vital component in defining the present as well as future needs of quantifying global land 

cover change and terrestrial productivity in the context of climate change. 
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1.1.2 Long-term vegetation monitoring with satellite data 

The Advanced Very High Resolution Radiometers (AVHRR) onboard the NOAA 

series satellite platforms 7 to 16 provided the first long term global time series of data 

suitable for vegetation sensing (Tucker et al., 2005). The NASA Moderate Resolution 

Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer 

(MISR) onboard Terra and Aqua platforms started delivering higher quality spectral and 

angular measurements since February 2000 (Justice et al., 2002). These records are 

expected to be extended by the planned Visible/Infrared Imager Radiometer Suite 

(VIIRS) instrument on the NPOESS Preparatory Project (NPP) (Murphy et al., 2006). 

Other long-term sources of data for vegetation monitoring include the Sea-viewing Wide 

Field-of-view (SeaWiFS), Systeme Pour ‘Observation de la Terre (SPOT) 

VEGETATION, and Environmental Satellite (ENVISAT) Medium Resolution Imaging 

Spectrometers (MERIS).  

A meaningful monitoring of vegetation requires a seamless consistent long-term 

vegetation record obtained from multiple instruments but this is challenging because of 

sensor differences and methodological issues (Van Leeuwen et al., 2006; Vermote and 

Saleous, 2006; Brown et al., 2006). The scientific challenges include modeling the highly 

variable radiative properties of global vegetation, scaling, and atmospheric correction of 

data. The sensor related issues pertain to differences in sensor spectral characteristics, 

spatial resolution, calibration, measurement geometry and data information content. The 

consistency among biophysical variables derived from different sensors is thus a critical 
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issue in establishing the proper consensus for vegetation monitoring over a period of 

several decades.  

Among the aforesaid biophysical variables, LAI and FPAR are recognized as two of 

the most important variables representative of vegetation structure and functioning that 

are commonly derived from satellite data (Running et al., 1986). The availability of data 

from multiple sensors in the recent decade allows for rich spectral and angular sampling 

of the radiation field reflected by vegetation canopies, thus increasing the potential for 

obtaining accurate estimates of these biophysical variables. Long-term records of LAI 

and FPAR are required by various terrestrial biosphere models, like the Terrestrial 

Ecosystem Model (TEM) (Melillo et al., 1993), Biome-BGC (Running and Gower, 

1991), Simple Biospheric Model (SiB) (Sellers et al., 1986), Integrated Biosphere 

Simulated Model (IBIS) (Foley et al., 1996), Lund-Potsdam-Jena (LPJ) dynamic global 

vegetation model in Land Surface Model (LSM) (Bonan et al., 2003) and the 

Atmospheric-Vegetation Interactive Model (AVIM) (Jinjun et al., 1995), to investigate 

the response of ecosystems to changes in climate, carbon cycle, land cover and land use.   

1.2 LAI/FPAR algorithm and products 

1.2.1 Definition of LAI and FPAR 

 Leaf area index (LAI) is defined as the one-sided green leaf area per unit ground 

area in broadleaf canopies and as half the total needle surface area per unit ground area in 

coniferous canopies. LAI characterizes the functioning surface area of a vegetation 
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canopy (Myneni et al., 2002). The interactions between the vegetation surface and the 

atmosphere, for example., radiation exchange, transpiration rates, precipitation 

interception, momentum and gas exchange, is predominantly determined by the total leaf 

area (Monteith and Unsworth, 1990). An increase in leaf area, for example, increases the 

uptake of CO2 from the atmosphere due to greater sunlight absorption and hence results 

in increased canopy conductance and transpiration rates (Field and Mooney, 1983; cf. 

Section 1.1.1.1 on leaf area feedback). Field measurements of LAI include hemispherical 

photography and optical instruments like TRAC, LAI-2000 or LI-COR (Chen et al., 

1997). Satellite remote sensing enables derivation of LAI globally at desired spatial 

resolution and temporal frequency with algorithms based on the physics of radiative 

transfer.  

Another parameter that characterizes the energy absorption capacity of a vegetation 

canopy is FPAR, defined as the fraction of photosynthetically active radiation (0.4 - 

0.7μm) absorbed by the vegetation canopy. FPAR depends on the incident radiation field, 

architecture and optics of the canopy, and the reflectance of the soil background. FPAR is 

well related to NDVI and usually increases with ground cover and plant leaf area 

(Myneni and Williams, 1994). It is one of the fundamental parameters used to estimate 

net primary production and for modeling of terrestrial carbon processes (Seller et al., 

1986; Pitman, 2003; Knorr et al., 2005). Similar to LAI, FPAR has also been identified as 

one of the fundamental terrestrial state variables in the context of global change studies 

(GCOS 2nd Adequacy report).  
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1.2.2 LAI/FPAR algorithms 

 There is considerable literature on the estimation of LAI from vegetation indices 

like the Normalized Difference Vegetation Index (NDVI) and simple ratio (Asrar et al., 

1984; Chen and Cihlar, 1996). In particular, Sellers et al., (1996) introduced an empirical 

algorithm that calculated FPAR as a function of the simple ratio. Lu and Shuttleworth 

(2002) used this definition of FPAR and approximated the relationship between LAI and 

FPAR to be exponential (Monteith and Unsworth, 1990) for evenly distributed 

vegetation. Strong positive correlations were found between LAI and NDVI for various 

vegetation types (Myneni et al., 1997), as well as with simple ratio in coniferous forests 

(Chen and Cihlar, 1996). Site-specific NDVI-LAI empirical relationships have been used 

in various ecosystems (Fassnacht et al., 1997; Colombo et al., 2003), but with limited 

success when applied across sites and vegetation classes.  

The sensitivity of NDVI to LAI is controlled by the relationship between NDVI and 

fractional vegetation cover when LAI is in the range of about 2 to 4 (Carlson and Ripley, 

1997). Steltzer and Welker (2006) incorporated fractional cover of photosynthetic 

vegetation for multiple species into the exponential NDVI-LAI model for a regional scale 

analysis, and suggested that species composition affects the NDVI-LAI relationship 

through leaf-level properties (leaf optics, leaf structure and orientation) and canopy-level 

structural properties that influence the vertical and horizontal distribution of leaf area 

within a canopy. It is thus clear that NDVI-LAI empirical relationships do vary across 

different species and are sensitive to canopy structure and fractional ground cover. These 

empirical relationships can also vary both seasonally and inter-annually with respect to 
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phenological development of the vegetation. Thus, a relationship established between 

LAI and NDVI in a particular year may not be applicable in other years (Wang et al., 

2004). Consequently, the empirical relationships will be site-, time-, and species-specific, 

and, therefore, poorly suited for large-scale operational use (Barot and Guyot, 1991; 

Houborg et al., 2007). 

 An alternate approach is to use physically based models that describe the interaction 

of radiation inside a canopy based on physical principles and provide an explicit 

connection between biophysical variables and canopy reflectance (Weiss et al., 2002; 

Combal et al., 2002). The physical models of radiation transfer and interaction in 

vegetation canopies are usually categorized into four broad types: (1) radiative transfer 

models (Myneni et al., 1989; Knyazikhin et al., 1998a), (2) geometrical optical models 

(Li and Strahler, 1986; 1992), (3) hybrid models that incorporate both radiative transfer 

as well geometric optics (Welles and Norman, 1991), and (4) Monte-Carlo simulation 

models (Ross et al., 1988; Lewis, 1999). For a physically based algorithm, which 

involves the inverse problem of estimating LAI and FPAR, a Look-Up-Table (LUT) is 

employed, where the simulated reflectances are pre-calculated for a range of conditions 

with the model of choice and stored in LUTs. The remotely sensed satellite 

measurements are then compared with the LUT entries to find a solution set of LAI. In 

the MODIS and MISR approach to LAI retrievals, the algorithm generates a set of 

acceptable solutions, i.e., all values of LAI and soil reflectance for which modeled and 

observed Spectral Surface Reflectance (SSR) differ by an amount equivalent or less than 

the combined uncertainty in model and observations (Fig. 1.1).  
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1.2.3 LAI and FPAR products from different sensors 

 The first global data set of LAI and other biophysical products derived from 

satellite data is the FASIR data set (Fourier Adjusted, Solar zenith angle corrected, 

Interpolation of missing data, and Reconstruction of data classified as tropical evergreen 

broadleaf forests). This data set is a 1 by 1 degree monthly composite based on AVHRR 

data from 1982 to 1990. A limitation of this data set is that it is based on a LAI-NDVI 

empirical relationship without considering the sensitivity of this relation to vegetation 

type and background effects. Similarly, other long-term LAI/FPAR data sets were 

derived from  improved versions of the AVHRR NDVI data (PAL and GIMMS NDVI) 

(Myneni et al., 1997; Buermann et al., 2002).  

With the launch of several moderate and coarse spatial resolution satellite sensors, 

such as MODIS, MISR, MERIS, POLDER, VEGETATION, etc., there has been a 

significant effort to produce global as well as regional data sets of LAI and FPAR 

(Knyazikhin et al., 1998a; Gobron et al., 1999; Chen et al., 2002; Baret et al., 2007; 

Plummer et al., 2006). Some of these LAI/FPAR products are given in Table 1 of Weiss 

et al., (2007). The earliest of these records (Chen et al., 2002) starts from 1993 to the 

present. The MODIS LAI/FPAR product is based on a radiative transfer algorithm and is 

the first global scale operational LAI/FPAR product, spanning the period March 2000 to 

the present. The Canadian Centre for Remote Sensing is similarly generating a Canada-

wide time series of LAI and FPAR from AVHRR and VEGETATION at 1 km resolution 

as 10-day composites using empirical algorithms (Chen et al., 2002). Likewise, the Joint 

Research Center is developing time series of FPAR (2002-present) from SeaWiFS, 

 



14 

MERIS, and VEGETATION (Gobron et al., 2006). The CYCLOPES (version 3.1) LAI 

product (1998-2003) is a new data set derived  from the SPOT/VEGETATION sensor at 

10-day frequency over a 1/112o plate-carrée spatial grid (Baret et al., 2007).  

1.3 Objectives and structure of this dissertation 

 The monitoring and modeling of the terrestrial biosphere within the larger context 

of climate variability and change studies requires multi-decadal time series of key 

biophysical variables characteristic of vegetation structure and functioning (NRC 

Decadal Survey, 2007; GCOS 2nd Adequacy Report, 2007). Consequently, there is now a 

pressing need to develop methodologies for generating continuous long-term Earth 

System Data Records (ESDRs) from remote sensing data collected with different sensors 

over the past three decades. LAI and FPAR are well defined and measurable 

characteristics of vegetation and are independent of the properties of satellite sensors. 

Therefore, one should obtain true values of LAI and FPAR irrespective of the sensor used 

(AVHRR or MODIS). A key step in assembling these long-term data sets is establishing 

a link between data from earlier sensors (e.g. AVHRR) and present/future sensors (e.g. 

MODIS TERRA, NPOESS) such that the derived products are independent of sensor 

characteristics and represent the reality on the ground both in absolute values and 

variations in time and space (Van Leeuwen et al., 2006). Multi-decadal global data sets of 

LAI and FPAR of known accuracy and produced with a physically based algorithm are 

currently not available, although several recent attempts have resulted in shorter term 

research quality data sets from medium resolution sensor data (Knyazikhin et al., 1998a; 
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Gobron et al., 199; Chen et al., 2002; Yang et al., 2006a; Plummer et al., 2006; Baret et 

al., 2007). Thus the motivation for this research was to formulate and demonstrate the 

performance of a synergistic approach for LAI and FPAR Earth System Data Record 

(ESDR) retrievals from measurements of multiple satellite sensors. To test the robustness 

and validity of the physical retrieval algorithm, it is crucial to validate the long-term 

vegetation data record directly with field measurements and indirectly with data records 

from present sensors. The scarcity of field measurements during the 1980s and 90s 

represent a more challenging problem, and hence evaluation of the data record should 

also be performed by correlating anomalies in the long-term vegetation data record with 

different climate surrogates like temperature and precipitation, thus reproducing well 

documented trends in vegetation growth vis-à-vis changes in climate. Therefore, the 

objectives of this research are: 

(a) Development of a theoretical formulation and its implementation as an algorithm that 

will generate true values of LAI and FPAR independent of sensor characteristics; 

(b) Production, evaluation and validation of a long-term LAI data set from AVHRR 

NDVI for the period July 1981 till December 2006;   

(c) A case study to assess vegetation response to changes in precipitation and land use in 

the semi-arid regions for the period 1981 to 2006, utilizing the long-term LAI data 

record. 
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1.3.1 Theoretical formulation for generating LAI and FPAR  

 In Chapter 2, a physically based methodology based on the radiative transfer theory 

of spectral invariants is developed to derive LAI from AVHRR GIMMS NDVI data. 

Achieving consistency in the generated LAI and FPAR fields is of utmost importance due 

to differences in spatial and spectral resolution of sensors, uncertainties due to calibration 

and atmospheric effects, and input information content. First, a physical basis to account 

for adjustments due to differences in sensor spatial resolution and spectral bandwidths is 

formulated. Second, the requirements for consistency due to differences in input 

information content (spectral surface reflectance from MODIS and NDVI from AVHRR) 

are specified. The generic mode of the algorithm ingests NDVI from AVHRR data and 

generates a solution set of LAI, whose mean value should correspond to MODIS LAI. 

The agreement between mean values and corresponding dispersions satisfies the 

consistency requirements. Thirdly, the algorithm is implemented for different vegetation 

types through parameterization in order to retrieve consistent LAI fields. The accuracy 

and dispersion of the generated LAI is also an important aspect of this research, and are 

addressed in both Chapters 2 (implementation phase) and 3 (production phase).     

1.3.2 Global LAI from AVHRR NDVI: production, evaluation and validation 

 The evaluation of a new global monthly AVHRR LAI data set for the period July 

1981 to December 2006 is presented in Chapter 3. The implementation of the algorithm 

for retrieving LAI from AVHRR NDVI and production of the global data set is first 

detailed. The evaluation of the data set is done both through direct comparisons to ground 
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data and indirectly through inter-comparisons with other similar data sets. The indirect 

validation included comparisons with existing LAI products (MODIS and CYCLOPES 

LAI products for the 2000-2003 period of overlap), at a range of spatial scales, and 

correlations with key climate variables in areas where temperature and precipitation limit 

plant growth. Indirect validation with climate variables is an important part of the study 

as long-term field measurements of LAI are few. One alternate approach to evaluation of  

the LAI data set for the earlier time frame (1981-1999) is to assess the magnitudes and 

inter-annual variations in the LAI fields with respect to known trends in climate 

variables. Finally, in a direct validation approach, the comparison of the LAI dataset with 

field measurements of LAI and high resolution field LAI maps obtained via the ORNL 

DAAC Mercury system is performed.  

1.3.3 Vegetation changes versus climate/land use change in the semi-arid tropics 

 The availability of a long-term consistent LAI data set permits investigation of 

changes in vegetation activity. The semi-arid tropics, stretching across a large number of 

developing countries with rapidly increasing population, and characterized by low and 

highly variable precipitation, are projected to be impacted by desertification and overall 

declines in vegetation productivity by ongoing and future climate changes. In these 

regions, reductions in vegetation activity and expansion of desertification are expected to 

arise from drier conditions due to continued warming trends accompanied by the 

prediction of a reduction in precipitation (IPCC 2007) and low adaptation capacity of the 

affected communities (Parry et al., 2007). In spite of these climatic changes, which would 
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suggest that tropical dry lands are already becoming drier, satellite observations of 

vegetation greenness provide evidence that primary productivity over extensive portions 

of the semi-arid tropics has been on the rise (Tucker and Nicholson, 1999; Eklundh and 

Olsson, 2003; Hermann et al., 2005). Other driving factors, apart from climatic correlates 

like precipitation and temperature, such as changes in land cover and land use, and 

fertilization effects due to atmospheric increases in C and N, have been invoked more 

loosely to explain vegetation dynamics in these tropical dry lands. Thus, to assist in 

projecting the impacts of climate change on ecosystems and societies, it is crucial that the 

changes in the drivers of ecosystem dynamics are properly understood. With the goal of 

identifying the relative contributions and spatial distribution of climate and socio-

economic and land use change in promoting the greening of the tropical dry lands, 

changes in AVHRR LAI in conjunction with changes in climatic and land use data for the 

period 1981-2006 are analyzed (Chapter 4). This study focuses on the semi-arid tropics of 

the eastern hemisphere, where the largest contiguous dry lands are inhabited by close to 

1.7 billion people and spread across 120 countries, most of which are among the poorest 

countries in the world and with the lowest human development index. In analyzing the 

changes in vegetation greenness, special emphasis is placed in the context of changes in 

socio-economic and land use change data for India, where high resolution data are 

available at the national scale. This case study of understanding vegetation changes in 

semi-arid lands over a 26 year period highlights the utility of the derived LAI data set. 
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Figure 1.1 Flowchart of the LAI retrieval process. In the MODIS and MISR approach to 
LAI retrievals, the algorithm first generates a set of acceptable solutions, i.e., all values of 
LAI and soil reflectance for which modeled and observed Spectral Surface Reflectance 
(SSR) differ by an amount equivalent or less than the combined uncertainty in model and 
observations. FPAR is calculated for each acceptable solution. From this set, mean LAI, 
FPAR and their dispersions are calculated. The algorithm requires a sensor specific 
Look-up-Table (LUT) to rapidly model the radiative transfer process of complex 
canopy/soil models to determine the SSR and canopy absorption. The LUT includes (a) 
Canopy Architecture Radiative Transfer Product containing structural characteristics of 
the vegetation canopies and radiative transfer parameters and (b) a small set of 
configurable parameters needed to adjust the LUT for sensor characteristics, data 
resolution and uncertainties. 
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Chapter 2 

2. Generating Leaf Area Index Earth System Data Record from 

multiple sensors: Theory  

2.1 Introduction 

 The monitoring and modeling of the terrestrial biosphere within the larger context 

of climate variability and change studies requires multi-decadal time series of key 

variables characteristic of vegetation structure and functioning (NRC Decadal Survey, 

2007; GCOS 2nd Adequacy Report, 2007). Consequently, there is now a pressing need to 

develop methodologies for generating continuous long-term Earth System Data Records 

(ESDRs) from remote sensing data collected with different sensors over the past three 

decades. This study focuses on two key biophysical variables, leaf area index (LAI) and 

fraction vegetation absorbed photosynthetically active radiation (FPAR), that control the 

exchange of energy, mass (e.g. water and CO2) and momentum between the Earth surface 

and atmosphere (Dickinson et al., 1986; Potter et al., 1993; Sellers et al., 1996; Tian et 

al., 2004; Demarty et al., 2007). 

The Advanced Very High Resolution Radiometers (AVHRR) onboard NOAA 7-14 

series satellite platforms delivered the first high temporal resolution global time series of 

data suitable for vegetation sensing starting from July 1981 (Tucker et al., 2005). The 

NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle 

Imaging SpectroRadiometer (MISR) onboard Terra and Aqua platforms started providing 
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higher quality spectral and angular measurements since February 2000 (Diner et al., 

1999; Justice et al., 2002). These records are expected to be extended by the planned 

Visible/Infrared Imager Radiometer Suite (VIIRS) instrument onboard the NPOESS 

Preparatory Project (NPP) to be launched in the near future (Murphy, R. E., 2006). Other 

long-term sources of data for vegetation monitoring include the Sea-viewing Wide Field-

of-view Sensor (SeaWiFS), Systeme Pour l'Observation de la Terre (SPOT) 

VEGETATION, and ENVISAT Medium Resolution Imaging Spectrometers (MERIS). 

The challenges underlying the generation of continuous time series of land products 

from data of multiple instruments include both remote sensing science and sensor-related 

issues. The scientific challenges include modeling the highly variable radiative properties 

of global vegetation, scaling, and atmospheric correction of data. Traditionally, the 

Normalized Difference Vegetation Index (NDVI) has been used for long-term global 

vegetation monitoring (Myneni et al., 1997). Biophysical parameters (LAI and FPAR) 

have been retrieved from NDVI using empirical relationships (Sellers et al., 1996). 

However, those relationships are site-, time-, and biome-specific and their use in global 

operational production may be limited (Baret and Guyot, 1991; Wang et al., 2004). 

Scaling issues (mixture of different vegetation types) introduce an additional bias as 

vegetation classes with relatively low pixel fractional coverage are under-represented in 

coarse resolution retrievals (Tian et al., 2002; Steltzer and Welker, 2006; Shabanov et al., 

2007). Finally, the retrieval of biophysical parameters require surface reflectances, 

however, a complete atmospheric correction of satellite measurements was not performed 

in the past due to limited availability of requisite ancillary data. 
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The hardware issues include differences in sensor spectral characteristics, spatial 

resolution, calibration, measurement geometry and data information content. Differences 

in sensor spectral bands (central wavelength and bandwidth) result in differential 

sensitivity of the sensor’s spectral response functions (SRF) to the impact of Rayleigh 

scattering, ozone, aerosol optical thickness, water vapor content and reflection from the 

ground (Vermote and Saleous, 2006; Van Leeuwen et al., 2006). The variation in spatial 

resolution involves the impact of sensor-dependent point spread function (PSF), such that 

radiometric measurements for a particular pixel are partially mixed with those of adjacent 

pixels and re-sampling to the common resolution almost always results in a bias (Tan et 

al., 2006). Calibration corrections in post processing of raw data results in varying 

sensitivity of satellite image Digital Numbers (DN) to recorded radiation (Vermote and 

Saleous, 2006). The calibration issues are further complicated by orbital drift and related 

changes in illumination/observation geometry (Gutman et al., 1998). Finally, the 

information content of measurements will vary between sensors, and retrieval techniques 

should take advantage of available multi-angular, multi-spectral, high spatial or temporal 

resolution measurements. 

The two prominent NDVI time series data are the Pathfinder AVHRR Land (PAL) 

and Global Inventory Monitoring and Modeling Studies (GIMMS) (Tucker et al., 2005). 

These data sets cover nearly the entire record (July 1981 to the present) at 8-km spatial 

resolution as 15-day temporal composites (PAL is 10-day composite). The data 

processing included calibration, interpolation of missing data, and partial atmospheric 

correction with statistical techniques. Several studies reveal significant trends in NDVI 
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over the Northern high latitudes (Myneni et al., 1997; Zhou et al., 2001); however the 

accuracy of the assessment was questioned (Gutman, 1998). The Canadian Center for 

Remote Sensing is routinely generating Canada-wide time series of LAI and FPAR from 

AVHRR and VEGETATION at 1-km resolution as 10-day composites using empirical 

algorithms (Chen et al., 2002). Likewise, the Joint Research Center is currently 

developing time series of FPAR from SeaWiFS, MERIS, and VEGETATION (Gobron, 

et al., 2006).  

Multi-decadal global data sets of LAI and FPAR of known accuracy and produced 

with a physically based algorithm are currently not available. Efforts are underway to 

perform rigorous physically based calibration and atmospheric correction to achieve 

consistency with the reference MODIS NDVI records (Vermote and Saleous, 2006). 

These efforts should result in higher quality surface reflectance data ideally suited for 

producing LAI and FPAR ESDRs. Thus, the objectives of this research are to formulate 

and demonstrate the performance of a synergistic approach for LAI and FPAR ESDR 

retrievals from measurements of multiple satellite sensors. The theoretical aspects of the 

approach are presented in this study, while results from evaluation of the quality of the 

generated data series are presented in Chapter 3. This research is organized as follows. 

The criteria for ensuring consistency between retrievals from different sensors are 

formulated in Section 2.2. The next section introduces the theoretical basis of a multi-

sensor retrieval algorithm, namely, parameterization of the canopy spectral reflectance 

using the radiative transfer theory of spectral invariants. Methods for accounting 

differences in sensor spatial resolution and spectral bands are presented in Sections 2.4 
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and 2.5. The following section describes an approach to adjust the retrieval technique for 

handling variations in the information content of satellite data. Finally, the concluding 

remarks are given in Section 2.7. 

2.2 Criteria for ensuring consistency 

Generation of ESDRs from observations of multiple instruments requires deriving 

an inter-sensor consistent product which also matches well with ground truth 

measurements. A one-to-one relationship between remote observations and a land 

parameter of interest can be achieved only in the case of error-free measurements 

delivering sufficient information content. In practice, the retrieval of LAI and FPAR from 

satellite data should be treated as an ill-posed problem; that is, small variations in input 

data due to uncertainties in measurements can result in a change in the relationship, 

leading not only to non-physically high variations in the retrieved values but also to the 

loss of a true solution, since it may not satisfy the altered relationship (Wang et al., 2001; 

Combal et al., 2002; Tan et al., 2005). Input data and their uncertainties are, “in general, 

the minimal information necessary to construct approximate solution for ill-posed 

problems” (p.3, Tikhonov et al., 1995). The inclusion of more measured information 

(spectral and/or angular variation) tends to improve the relationship between satellite 

observations and the desired parameters. This however not only increases the overall data 

information content but also increases their overall uncertainty. The former enhances the 

quality of retrievals while the latter suppresses it. Therefore, the specification of an 
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optimal combination of data information content and overall uncertainty is a key task to 

achieving continuity in the multi-sensor time series of LAI and FPAR products. 

In general, the information conveyed by surface reflectances is not sufficient to 

retrieve a unique LAI value. For example, different combinations of LAI and soil types 

can result in the same value of canopy spectral reflectances; or different spectral 

reflectances can correspond to the same LAI value but for different vegetation types 

(Diner et al., 2005). A particular observation of surface reflectance is therefore associated 

with a set of canopy parameter values and are referred to as the set of acceptable 

solutions (Knyazikhin, et al., 1998a). This set of solutions depends on the properties of 

measured surface reflectances: absolute values and uncertainties, spectral characteristics, 

spatial resolution, and observation geometry. In general, a larger volume and higher 

accuracy of the measured information corresponds to a better localized set of solutions. 

The solution set “size” can, therefore, be used as a measure of the data information 

content. This concept is used to formulate the following requirements for a multi-sensor 

algorithm to generate consistent LAI and FPAR retrievals from AVHRR and MODIS 

sensors: 

(a) The algorithm should generate a set of acceptable solutions given AVHRR 

NDVI;  

(b) This set should include all acceptable solutions generated by the MODIS 

algorithm when given the corresponding AVHRR spectral reflectances; 
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(c) The algorithm should also be capable of admitting AVHRR spectral 

reflectances, in addition to NDVI, and generate the same set of acceptable 

solutions as the MODIS algorithm. 

In the above formulation, Terra MODIS LAI and FPAR products serve as the benchmark. 

2.3 Parameterization for canopy spectral reflectance  

Retrievals of the LAI/FPAR ESDR from multiple sensors require parameterization 

of the retrieval algorithm that can be adjusted for the specific features of the Bidirectional 

Reflectance Factor (BRF) measurements by a particular sensor (spatial resolution, 

bandwidth, calibration, atmospheric correction, information content, etc, cf. Section 2.1). 

The radiative transfer theory of canopy spectral invariants provides the required BRF 

parameterization via a small set of well-defined measurable variables that specify the 

relationship between the spectral response of vegetation canopy bounded below by a non-

reflecting surface to the incident radiation at the leaf and canopy scales (Huang et al., 

2007; Lewis and Disney, 2007; Smolander and Stenberg, 2005). 

2.3.1 Canopy spectral invariants 

Photons that have entered the vegetation canopy undergo several interactions with 

leaves before either being absorbed or exiting the medium through its upper or lower 

boundary (Fig. 2.1). Interacting photons can either be scattered or absorbed by a 

phytoelement. The probability of a scattering event, or leaf single scattering albedo, ωλ, 

depends on the wavelength and is a function of the leaf structural biochemical 
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constitution. If objects are large compared to the wavelength of the radiation, e.g., leaves, 

branches, etc., the photon free path between two successive interactions is independent of 

the wavelength. The interaction probabilities for photons in a vegetation media, therefore, 

are determined by the structure of the canopy rather than photon frequency or the optical 

properties of the canopy. To quantify this feature, Smolander and Stenberg (2005) 

introduced the notion of recollision probability, p, defined as the probability that a photon 

scattered by a foliage element in the canopy will interact within the canopy again. This 

spectrally invariant parameter is a function of canopy structural arrangement only (Huang 

et al., 2007; Lewis and Disney, 2007). Scattered photons can escape the vegetation 

canopy either through the upper or lower boundary. Their angular distribution at the 

upper boundary is given by the directional escape probability, ρ(Ω) (Huang et al., 2007). 

Given recollision, pm, and escape, ρm(Ω), probabilities as a function of scattering order, 

m, the bidirectional reflectance factor, BRFBS,λ(Ω), for a vegetation canopy bounded 

below by a non-reflecting surface can be expanded in a series of successive orders of 

scattering (Huang et al., 2007).  

LLL +Ω++Ω+Ω=Ω − 012101
2

201,BS )()()()()( ipppipiBRF m
m

m λλλλ ωρωρωρ .  (2.1) 

Here i0 is the probability of initial collision, or canopy interceptance, defined as the 

proportion of photons from the incident beam that are intercepted, i.e., collide with 

foliage elements for the first time. This parameter gives the proportion of shaded area on 

the ground which in turn is directly related to the proportion of the sunlit leaf area. 

Canopy interceptance does not depend on the wavelength and is a function of the 

direction of the incident beam and canopy structure.  
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In the general case, the recollision and escape probabilities vary with the scattering 

order m. For m=1, the directional escape probability coincides with the bi-directional gap 

probability. These probabilities, however, reach plateaus as the number of interactions m 

increases. Monte Carlo simulations of the radiation regime in 3D canopies suggest that 

the probabilities saturate after 2 to 3 interactions for low to moderate LAI canopies 

(Lewis and Disney, 2007) with the recollision probability exhibiting a much faster 

convergence (Huang et al., 2007). Neglecting variations in pm with m (i.e., pm≈const=p) 

and in ρm(Ω) for m>1 (i.e., ρm(Ω)≈const=ρ2(Ω) for m≥2) in Eq. (2.1), one obtains the first 

order approximation for the BRFBS,λ (Huang et al., 2007) 
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Here R1(Ω)=ρ1(Ω)i0 and R2(Ω)=ρ2(Ω)pi0 are the escape probabilities expressed relative to 

the number of incident photons. The accuracy of this first order approximation depends 

on the difference between successive approximation to p multiplied by the factor 

 (Huang et al., 2007). )1/()(max 2 pp λλλ
ωω −

Under the above assumption regarding dependence of the recollision probability on 

the scattering order, the spectral absorptance, aBS,λ of the vegetation canopy with non-

reflecting background can be expressed as (Fig. 2.1) 
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The corresponding FPAR is a weighted integral of Eq. (2.3) over the PAR spectral region 

(Knyazikhin et al., 1998a). According to Smolander and Stenberg (2005) Eq. (2.3) 
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provides an accurate estimate of canopy spectral absorptance. A detailed analysis of the 

approximations given by Eqs. (2.2) and (2.3), their accuracies as well as how the 

recollision probability and canopy interceptance can be accurately measured in the field 

are discussed in Huang et al. (2007). 

2.3.2 Canopy-ground interactions 

The three-dimensional radiative transfer problem with arbitrary boundary conditions 

can be expressed as a superposition of some basic radiative transfer sub-problems with 

purely absorbing boundaries and to which the notion of spectral invariant can be directly 

applied (Knyazikhin and Marshak, 2000). These two problems are: (1) the black soil 

problem, “BS-problem” specified by the original illumination conditions at the top of the 

canopy and a completely absorbing soil at the bottom; (2) the soil problem, “S-problem” 

specified by no input energy at the top, but Lambertian energy sources at the bottom. 

This decomposition technique was implemented in the MODIS LAI/FPAR operational 

algorithm (Knyazikhin et al., 1998a). According to this approach, the spectral BRF and 

canopy spectral absorptance are approximated as  
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The second term on the right hand side of Eqs. (2.4) and (2.5) describes the contribution 

to the BRF and absorptance from multiple interactions between the ground and 

vegetation (cf. Appendix A). Here, ρsur,λ is an effective ground reflectance, and tBS,λ is the 
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transmittance of the vegetation canopy for the BS-problem. Variables rS,λ, aS,λ, and 

JS,λ(Ω) represent solutions to the “S-problem” (cf. Appendix A). The expansion in 

successive order of scattering as given by Eq. (2.1) and illustrated in Fig. 2.1 is also 

applicable to the “S-problem” with the only difference that i0 is replaced with i0,S, the 

proportion of photons from sources below the canopy that are intercepted (i.e., those that 

collide with foliage elements for the first time). A full set of equations describing canopy-

ground interaction is given in Appendix A.  

Thus, a small set of well defined measurable variables provide an accurate 

parameterization of canopy optical and structural properties required to fully describe the 

spectral response of a vegetation canopy to incident solar radiation. This set includes 

spectrally varying soil reflectance (ρsur,λ), single-scattering albedo (ωλ), spectrally 

invariant canopy interceptances (i0 and i0,S), recollision probability (p) and the directional 

escape probability (ρ1(Ω) and ρ2(Ω)) and their hemispherically averaged values. 

2.3.3 Generation of structural parameters 

The global classification of canopy structural types utilized in the Collection 5 

MODIS LAI/FPAR algorithm was adopted in this study (Shabanov et al., 2005; Yang et 

al., 2006a). According to this classification, global vegetation is stratified into eight 

canopy architectural types or biomes: (1) grasses and cereal crops, (2) shrubs, (3) 

broadleaf crops, (4) savannas, (5) evergreen broadleaf forests, (6) deciduous broadleaf 

forests, (7) evergreen needle leaf forests and (8) deciduous needle leaf forests. The 

structural attributes of these biomes are parameterized in terms of variables that the 
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transport theory admits (Knyazikhin et al., 1998a). The stochastic radiative transfer 

equation was used to generate the Collection 5 Look-up-Tables (LUT) - a set of tabulated 

BRF values as a function of biome type, LAI, view/illumination geometry, etc. 

(Shabanov et al., 2000; Huang et al., 2008). The aim is to generate the spectrally invariant 

parameters for which the spectral BRF and absorptance coincide with values of the 

Collection 5 MODIS LUTs for all combinations of LUT entries. Given these parameters, 

the BRF and absorptance for specific wavelengths can be calculated using Eqs. (2.4)-

(2.5) and (A2 in Appendix A)-(A4 in Appendix A) with varying single scattering albedo 

which is used as the tuning parameter to adjust the LUTs for data spatial resolution and 

spectral band characteristics (cf. Sections 2.4 and 2.5).  

The canopy interceptances can be directly calculated using the stochastic radiative 

transfer equation. Figure 2.2 shows i0 and i0,S as a function of LAI for one example 

vegetation type (savannas). Isotropic diffuse sources below the canopy are used to 

specify the interceptance i0,S. Notably, i0,S is greater than i0, that is, interception is higher 

under diffuse illumination conditions (Min, 2005; Gu et al., 2002), which is captured in 

the simulations. 

The stochastic radiative transfer equation is used to simulate the solutions of the 

“BS-problem” (BRFBS, aBS and tBS) and “S-problem” (aS, rS, and tS) as a function of the 

single scattering albedo, ω, for various LAI and sun-view geometries. For given LAI and 

sun-view geometry, the spectrally invariant parameters are obtained by fitting the 

analytical approximations (cf. Eqs. (2.2)-(2.3) and Appendix A) to their simulated 

counterparts. The parameters thus obtained are functions of LAI and sun-view geometry. 
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Figure 2.3 shows the recollision probabilities calculated by fitting solutions of the “BS-

problem” and “S-problem” to their simulated values. As expected, these variables are 

close to each other (Huang et al., 2007).  

Given spectrally invariant parameters, the reflectances (rBS and rS), transmittances 

(tBS and tS), and absorptances (aBS and aS) are calculated for varying LAI and single 

scattering albedo values using the spectral invariant approximations and checked for 

validity of the energy conservation law, r+t+a=1, for both the “BS-” and “S-” problems 

(Fig. 2.4). Finally, BRFs at red and NIR spectral bands corresponding to values of single 

scattering albedo of Collection 5 MODIS LUT are calculated as a function of the 

effective ground reflectances at red and NIR wavelengths, LAI and sun-view geometry. 

The BRF values are compared with corresponding values stored in the Collection 5 

MODIS LUTs to ensure consistency (Fig. 2.5). 

2.4 Algorithm adjustment for the sensors spatial resolution 

The scaling approach in this study is based on the scale dependence of the single 

scattering albedo. This variable is defined as the probability that a photon intercepted by 

foliage elements in volume V will escape V. The volume V is associated with the scale at 

which the single scattering albedo is defined, e.g., single leaf, clump of leaves, tree 

crown, patch, or even a satellite pixel. The theory of canopy spectral invariants provides 

an accurate description of variations in the single scattering albedo with scale V 

(Smolander and Stenberg, 2005; Lewis and Disney, 2007). In the present approach, BRF 

is an explicit function of the single scattering albedo and thus this theory can be applied 
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to imbue scale dependence to the algorithm. The aim of this section is to demonstrate 

how the canopy spectral invariant relationships can be employed to adjust solutions of the 

“BS” and “S” problems for sensor resolutions.  

Consider two volumes, V0 and V, representing pixel and tree crown scales. Their 

single scattering albedos ωλ(V0) and ωλ(V) quantify the scattering properties of the pixel 

V0 and its constituent objects of volume V. The latter are distributed within V0 in a certain 

fashion. It follows from Eq. (2.3) that the pixel single scattering albedo, ωλ(V0), can be 

estimated as (Smolander and Stenberg, 2005; Lewis and Disney, 2007) 
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Here i0(V0) is the proportion of photons intercepted by the volume V0 (Fig. 2.1), and 

p(V→V0) is the recollision probability, defined as the probability that a photon scattered 

by volume V (e.g., by a tree crown) resident in the pixel V0 will hit another volume V 

(e.g., another tree crown) in the same pixel. Its value is determined by the distribution of 

volumes V (e.g., tree crowns) within V0.  

Equation (2.6) links canopy spectral behavior at the pixel and tree crown scales. 

Indeed, the canopy single scattering albedo ωλ(V0) (pixel scale) is an explicit function of 

the spectrally varying single scattering albedo ωλ(V) at the tree crown scale V and the 

spectrally invariant recollision probability p(V→V0). The latter is a scaling parameter that 

accounts for the cumulative effect of canopy structure from tree crown to pixel scales. 

Both ωλ(V) and p(V→V0) vary with scale V. For example, the single scattering albedo and 

the recollision probability associated with needle, shoot, branch, tree crown, etc., are 
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different (Smolander and Stenberg, 2003). However since the left-hand side of Eq. (2.6) 

does not depend on V, the algebraic expression on the right-hand side of this equation 

should also be independent of the leaf scale V. Based on this property, Smolander and 

Stenberg (2005) specified variation in the leaf single scattering albedo and the recollision 

probability with the scale V as follows.  

Consider the scale V (e.g., tree crown) which in turn consists of smaller objects (e.g. 

clump of leaves) distributed in V. Let V ′  and )(V ′λω  represent the scale of the object and 

its single scattering albedo. Equation (2.6) can also be applied to the volume V, i.e.,  

)()(1
)(1)()(

VVpV
VVpVV
→′′−

→′−′=
λ

λλ ω
ωω .       (2.7) 

Substitution of this equation into Eq. (2.6) results in the same equation for ωλ(V0) with 

the only difference that ωλ(V) is replaced with )(V ′λω  and p(V→V0) is replaced with a 

new recollision probability )( 0VVp →′  calculated as  

)()](1[)()( 00 VVpVVpVVpVVp →→′−+→′=→′ .     (2.8) 

One can see the probability )( 0VVp →′  that a photon scattered by a volume V ′  (e.g., 

clump of leaves) will interact within the pixel V0 again follows the Bayes’ formula. The 

recollision probability, therefore, is a scaling parameter that accounts for the cumulative 

effect of multi-level hierarchical structure in a vegetated pixel.  

Smolander and Stenberg (2003; 2005) demonstrated the validity of the scaling 

relationships for needle (V ′ =needle) and shoot (V=shoot) scales. Lewis and Disney 

(2007) found that Eqs. (2.6)-(2.8) are applicable to the within leaf (V =a within-leaf 

scattering object) and leaf (V=leaf) scales, implying that scaling equations provide a 

′
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framework through which structural information can be maintained in a consistent 

manner across multiple scales from within-leaf to canopy level scattering. Tian et al. 

(2002) used a semi-empirical approach to account for biome mixtures within a coarse 

resolution pixel (V =biome type in a patch V).  ′

The scaling properties of the scattering process underlies the following approach for 

developing scale-dependent formulation of the radiative transfer process in vegetation 

canopies.  First, one defines a base scale, V, in a canopy-radiation model, e.g., tree crown, 

patch, etc. The structure-dependent coefficients that appear in the radiative transfer 

equation are parameterized in terms of the distribution of objects in the volume V within 

the pixel V0 and thus are independent of the structure that exists within V. The concepts 

of the pair-correlation function (Huang et al., 2008) and biome mixtures (Shabanov et al., 

2007) are used to obtain these coefficients. Second, the single scattering albedo ωλ(V) of 

the object (which also appears in the equation) is calculated using Eqs. (2.7) and (2.8). 

The radiative transfer equation describes the interaction between photons and objects of 

the volume V while multiple scattering within V is accounted by the single scattering 

albedo ωλ(V).  

In the parameterization of this approach (cf. Section 2.3), canopy reflectance and 

absorptance are explicit functions of structural parameters and single scattering albedo. 

The accuracy of the approximation depends on 

; that is, the smaller the p value, the more 

accurate the approximation is (Huang et al., 2007). It follows from Eqs. (2.7) and (2.8) 

that the single scattering albedo and the recollision probability are decreasing functions of 
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V, i.e., )(Vλω ≤ )(V ′λω  and )( 0VVp → ≤ )( 0VVp →′  if VV ⊂′ . In other words, the 

smaller the base scale, the more hierarchical levels of the vegetation in a pixel are 

involved, and more accurately the contributions of scattering orders should be accounted 

to estimate canopy absorptive and reflective properties (Knyazikhin et al., 1998b). The 

base scale therefore should be chosen sufficiently large to minimize the number of 

hierarchical levels and to achieve a good accuracy in the first order approximation.  

In the present approach, the structural variables are calculated for a homogeneous 

pixel of a single vegetation type only. The base scale represents an individual plant (e.g., 

tree in a woody vegetation class) or a group of plants (e.g., in grasses). When the spatial 

resolution of the imagery decreases (i.e., the volume V0 increases), the degree of 

vegetation mixing within the pixel increases. It means that different structures can exist at 

the base scale and consequently more hierarchical levels of the canopy structure may be 

present in the imagery. This directly follows from Eq. (2.8), i.e., 

≥  if )( 0VVp →′ )( VVp →′ VV ⊃0 . Assuming  varies continuously with the 

base scale V and the resolution V

)( 0VVp →

0, an increase in the recollision probability due to 

increase in V0 can be compensated by an increase in V such that =),( 0VVp ),( 0VVp  

where VV ⊃  and 00 VV ⊃ . Thus, the structural parameters can be pre-calculated for a 

fixed base scale. The spectral BRFBS,λ (and solutions to the “S” problem) can be adjusted 

for the resolution by using the single scattering albedo )(Vλω  at a scale V . The single 

scattering albedo therefore allows us to scale up the simulated BRF to a coarser 

resolution. 

 



37 

2.5 Algorithm adjustment for the sensors spectral bandwidth 

For a given spectral band, the observed BRF is a weighted integral of the spectral 

BRF over a spectral interval, i.e., the bandwidth. The weight is the spectral response 

function that describes the sensitivity of the sensor to a particular wavelength in the 

spectral interval. Both the weight and the interval are sensor specific and vary with the 

spectral band. Figure 2.6 shows spectral response functions for red (580 nm ≤ λ ≤ 680) 

and NIR (725 nm ≤ λ ≤ 1100) spectral bands for the NOAA 16 AVHRR sensor 

(WWW1). The corresponding MODIS spectral bands, 620 nm ≤ λ ≤ 670 nm and 

841 nm ≤ λ ≤ 876, are much narrower and shapes of the response functions (WWW2) 

differ from their AVHHR counterparts (Fig. 2.6). The difference in the spectral band 

characteristics is a factor that changes spectral signatures of pixels measured by two 

sensors. In the parameterization, the structural and radiometric components of the 

measured signal are separated. This feature provides a simple way to adjust the algorithm 

for sensor band characteristics. Since the solution of the “BS-problem” is a major source 

of information about the intrinsic canopy properties, the focus is given on this component 

of the signal.  

The measured reflectance, BRFM,λ, is a weighted integral of Eq. (2.2) over a 

spectral interval α ≤ λ ≤ β, i.e.,  
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Here ∫=
β

α λλ λλωω df )(  is the mean single scattering albedo; f(λ), =1, is the 

spectral response function, and γ (p) is the ratio function defined as: 
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Note that  in the integral term of Eq. (2.10) is a convex function with 

respect to values of the single scattering albedo. It follows from the Jensen’s inequality 

(Gradshteyn and Ryzhik, 1980) for convex functions that the numerator in Eq. (2.10) is 

no less than the denominator, and thus, γ (p)≥1.  

)1/( 22
λλ ωω p−

Values of λω  and γ (p) depend on the variation of the single scattering albedo ωλ 

with wavelength. If the single scattering albedo is constant in the interval α ≤ λ ≤ β, then 

λω =ωλ and γ (p)=1 and no adjustment is needed. Such a situation is typical for NIR 

spectral bands in which the single scattering albedo is almost flat with respect to 

wavelength. The single scattering albedo exhibits much stronger variation at wavelengths 

between 580 nm and 680 nm. In this interval, ωλ is a decreasing function with a local 

minimum at about 680 nm. The averaging of ωλ over the red AVHHR spectral band 

results in a higher value of λω  than over the narrower spectral interval of the red MODIS 

band. This effect tends to increase the measured AVHRR surface reflectances at red 

compared to the corresponding MODIS values.  

The variation of ωλ causes the ratio γ (p) to deviate from unity which enhances the 

measured reflectance. Figure 2.7 shows γ (p) for red and NIR spectral bands for AVHRR 

and MODIS. The ratio is an increasing function with respect to the recollision 
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probability. For the NIR spectral band, γ (p) is very close to unity, with maximum 

deviation being less than 0.5%. For the red spectral band, values of the ratio are higher 

and can deviate from unity by 8%. However, the overall variation in the ratio does not 

exceed 2%. In this example, the ratio was calculated using a typical single scattering 

albedo of an individual leaf and thus its values correspond to the leaf scale. Recall that 

the single scattering albedo and the recollision probability are decreasing functions of the 

base scale. It follows from Eq. (2.10) that the change in the single scattering albedo by a 

factor k alters the ratio from γ (p) to γ (k⋅p). The adjustment of the reflectance for a 

coarser data resolution, therefore, lowers its variation due to decreases in both the single 

scattering albedo (k≤1) and the recollision probability.  

To summarize, the problem of accounting for differences in spectral characteristics 

between sensors can be reduced to finding band dependent values of the single scattering 

albedo that compensate for changes in λω  due to differences in the bandwidths and 

deviation of γ (p) from unity due to variation in ωλ, where the latter is dependent on the 

base scale. The single scattering albedo therefore is the basic configurable parameter to 

adjust the simulated MODIS BRF for the spatial resolution and spectral band 

composition of the AVHRR sensor. Its value can be specified by fitting the simulated 

BRF to the observed BRF values over different vegetation types during the green peak 

season (Hu et al., 2003; Shabanov et al., 2005). This technique will be demonstrated in 

Chapter 3.  
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2.6 Data information content and observation uncertainty 

The difference in information content of MODIS surface reflectance and AVHRR 

NDVI can be quantified as follows. The spectral reflectance of a surface can be depicted 

as a point in the red-NIR spectral space. The location of the point in the polar coordinate 

system is given by the polar angle, α = )  = , and the radius 

r =

RED/NIR(tan 1− )SM(tan 1−

22 REDNIR + . Here RED and NIR represent BRF values at red and NIR spectral 

bands. Pixels with the same NDVI are located on a straight line (red line in Fig. 2.8). This 

line intersects the origin of the spectral plane at an angle α. In the case of MODIS, the 

surface reflectance data provide both the angle and location on the line, while the 

AVHRR NDVI data provide the angle only.  

The MODIS LAI/FPAR algorithm exploits the location information by attributing 

each point in the spectral space to a specific physical state that is characterized by a 

background brightness and LAI. A pixel can have a background ranging from dark to 

bright soils, and the LAI can vary over a range for each specific instance of background 

brightness. In order to meet consistency requirements formulated in Section 2.2, a 

specific mode in the MODIS algorithm (“AVHRR mode”) is implemented, which accepts 

the angle, α, and a range (rmin≤ r ≤ rmax) of valid radii as inputs. This range corresponds 

to variations of r for given α as given by Collection 5 MODIS LUTs. While executing 

the algorithm in the AVHRR mode, the following situations are possible (cf. Fig. 2.8): 
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• If rmin=rmax, the set of acceptable solutions coincides with that generated by the 

operational MODIS LAI/FPAR algorithm.  

• If rmin<rmax, the set of acceptable solutions includes as subset standard MODIS 

retrievals (Fig. 2.9).  

The following merit function is used to select the set of acceptable solutions in the 

MODIS-algorithm, 

( ) ( )2 2* *
2

2 2 .
− −

Δ = +
NIR RED

NIR NIR RED RED
σ σ

      (2.11) 

Here  and *NIR *RED  denote values of measured surface reflectances, while NIR and 

RED correspond to values of simulated reflectances. The dispersions NIRσ  and  

quantify combined model and observations uncertainties at NIR and red spectral bands 

and are configurable parameters in our approach (Wang et al., 2001). The dispersions are 

represented as,  and 

REDσ

*= ⋅NIR NIR NIRσ ε *= ⋅RED RED REDσ ε , where NIRε  and REDε  are the 

corresponding relative uncertainties (Wang et al., 2001). The variable  characterizing 

the proximity of measured surface reflectances to simulated values has a chi-square 

distribution with two degrees of freedom. A value of 

2Δ

2 2Δ ≤  indicates good proximity 

between observations and simulations (Wang et al., 2001). All LAI and soil reflectance 

values satisfying this criterion constitute the set of acceptable solutions for a particular 

MODIS observation (  and *NIR *RED ). 

In the AVHRR-mode, the criteria 2 2Δ ≤  is applied to each point on the line (Fig. 

2.8), i.e., for 
2* * * 2* *cos / 1sin / 1NIR r r SM SMα= ⋅ = ⋅ + , and RED r r SMα= ⋅ = + . 
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Here,  is the input simple ratio from AVHRR, and *SM 2r RED NIR= + 2  is the radius 

obtained from the MODIS LUT. Note that the AVHRR mode does not increase 

computation time since in the MODIS mode the inequality 22 ≤Δ  is checked for all 

combinations of LAI and soil patterns.  

Figure 2.10 shows correlation between LAI retrievals using MODIS and AVHHR 

modes of the algorithm. In both modes, the algorithm generates similar mean LAI values 

given data from the same instrument. The corresponding dispersions, however, can differ 

significantly, indicating varying information content of retrievals. Recently, Hu et al. 

(2007) compared MODIS and MISR LAI seasonal profiles retrieved from data which 

have the same accuracy but different information content (Fig. 4 in the cited paper). The 

use of multi-angle and spectral information allows capturing seasonal LAI variations that 

are not detected by single-angle views. The impact of the information content on 

retrievals with respect to MODIS and AVHHR retrievals will be detailed in Chapter 3. 

2.7 Conclusions 

This research introduces a physically based approach for generating LAI and FPAR 

ESDRs and its application to developing a long time series of these products from 

MODIS and AVHRR data (Chapter 3). In general, ESDR algorithms ingesting data from 

different instruments should account for differences in spatial resolution, spectral 

characteristics, uncertainties due to atmospheric effects and calibration, information 

content, etc. The approach to this problem is based on the radiative transfer theory of 

spectral invariants. Accordingly, the canopy spectral BRF is parameterized in terms of a 
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compact set of parameters - spectrally varying soil reflectances, single-scattering albedo, 

spectrally invariant canopy interceptance, recollision probability and the directional 

escape probability. This approach ensures energy conservation and allows decoupling the 

structural and radiometric components of the BRF. According to this theory, the single 

scattering albedo accounts for the dependence of BRF on sensor’s spatial resolution and 

spectral bandwidth. The parameter characterizing data uncertainty accounts for variation 

in the information content of the remote measurements. Thus, the single scattering albedo 

and data uncertainty are two key configurable parameters in our algorithm. The algorithm 

supports two modes of operation: the MODIS mode (retrievals from BRF) and the 

AVHRR mode (retrievals from NDVI). In both cases, the algorithm simulates similar 

mean LAI values, if input data from the same instrument are used. The corresponding 

dispersions, however, differ significantly, indicating varying input information content 

and related uncertainties (MODIS BRF vs. AVHRR NDVI). Overall, the problem of 

generating LAI/FPAR is reduced to the problem of finding values of data uncertainty and 

single scattering albedo for which: a) the consistency requirements for retrievals from 

MODIS and AVHRR are met; b) the difference between MODIS and AVHRR 

LAI/FPAR is minimized; c) the probability of retrieving LAI/FPAR is maximized. The 

implementation of this algorithm and evaluation of the derived product will be detailed in 

the next chapter. 
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Figure 2.1 Schematic plot of the photon-canopy interactions. Photons incident on the 
vegetation canopy will be intercepted by phytoelements with probability i0. This 
probability of initial collision, or canopy interceptance, does not depend on wavelength 
and is a function of the direction of incident beam and canopy structure. The intercepted 
photons will be scattered by the foliage elements with probability ωλ, and, in turn, will 
either interact again or escape the canopy with probabilities p and ρ, respectively. Given 
pm and ρm as a function of scattering order m, the probability that photons from the 

incident beam will escape the vegetation after m interactions is . 

The probability of absorption after m interactions is . The 
proportion of absorbed or exiting photons is equal to the sum of corresponding 
probabilities for scattering order m.  
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Figure 2.2 Canopy interceptances i0 and i0,S as a function of LAI. The latter is the 
proportion of photons from isotropic sources below the canopy that is intercepted by the 
vegetation. Calculations were performed for a vegetation canopy consisting of identical 
cylindrical “trees” uniformly distributed in the canopy layer bounded from below by both 
a non-reflecting (black soil problem) and reflecting (soil problem) surface. The canopy 
structure is parameterized in terms of the leaf area index of an individual tree, Lo, ground 
cover, g, crown height, H, and crown diameter D. The LAI varies with the ground cover 
as LAI=gLo. The stochastic radiative transfer equation was used to derive canopy spectral 
interaction coefficient i(λ) for both  reflecting and non-reflecting surfaces. The 
interceptances i0 and i0,S are obtained by fitting the spectral invariant approximation to 
i(λ). The crown diameter, height and plant LAI are set to 1(in relative units), 2 and 10, 
respectively. The solar zenith angle and azimuth of the incident beam are 30o and 0o. The 
view zenith angle is nadir.  
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Figure 2.3 Recollision probabilities calculated by fitting equations for the black soil 
(BRFBS, aBS and tBS) and “S” (aS, rS, and tS) problems to their simulated values. Here pBS 
and pS are specified by fitting aBS and aS; pt, pJ and pS by fitting tBS, JS and tS; pr and prs 
by fitting BRFBS and rS. Calculations were performed for the 3D vegetation canopy 
described in Fig. 2.2. The crown diameter, height and plant LAI are set to 1(in relative 
units), 2 and 10, respectively. The solar zenith angle and azimuth of the incident beam are 
30o and 0o. The view zenith angle is nadir.  
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Figure 2.4 Values of the energy conservation relationships rBS+tBS+aBS as a function of 
single scattering albedo and LAI. Calculations were performed for the 3D vegetation 
canopy described in Fig. 2.2. Parameters rBS, tBS and aBS are obtained from the spectral 
invariant approximation to the reflectance, transmittance and absorption values as derived 
from the stochastic radiative transfer simulations. 
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Figure 2.5 The spectral invariant approximation to the BRF superimposed on the MODIS 
LUTs entries for the BRF. The effective ground reflectance patterns for the MODIS LUT 
are restricted to dark and intermediate brightnesses for illustration purpose, while the 
spectral invariant simulation includes backgrounds ranging from dark to bright soils. The 
red-NIR spectral space is displayed for the broadleaf forest vegetation class, 
characterized by the single scattering albedo’s at the NIR(ωnir=0.84) and red(ωred=0.14) 
bands. Calculations were performed for the 3D vegetation canopy described in Fig. 2.2. 
The solar zenith angle and azimuth of the incident beam are 30o and 0o. The view zenith 
angle is nadir. 
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Figure 2.6 Relative spectral response function in the red and NIR spectral intervals for 
the NOAA AVHRR-16 and MODIS sensors.
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Figure 2.7 The ratio γ(p) for red and NIR spectral bands for AVHRR and MODIS. 
Spectral response functions shown in Fig. 2.6 for AVHRR-16 and MODIS and a typical 
single scattering albedo of an individual leaf are used to calculate the ratio (“std” in the 
figure refers to standard deviation of γ(p)).  
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Figure 2.8 Reflectance of vegetated surface in the red-NIR spectral plane. The cross 
symbols mark the spectral space of the MODIS LAI/FPAR LUTs for a range of 
simulated LAI and soil background brightnesses. The line with circles intersects the 
origin at an angle defining the Simple Ratio (SM). This line depicts different possible 
combinations of red and near-infrared reflectances corresponding to different LAI values 
and soil spectral reflectance patterns. The ellipse represents the inequality criterion for 
which the solution set is obtained. 
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Figure 2.9 Distribution of acceptable LAI values corresponding to the full range of 
possible values of the radius (squares) and to a specific value of the radius (triangles). 
The mean LAI values and their dispersions are taken as the LAI retrievals and their 
uncertainties. The AVHHR and MODIS modes were applied to the MODIS surface 
reflectance using the MODIS LUT. 
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Figure 2.10 Correlation between LAI values retrieved using the MODIS (horizontal axis) 
and AVHHR (vertical axis) modes of the algorithm for dark (ρsur,RED=ρsur,RED=0.05), 
medium (ρsur,RED=ρsur,RED=0.16) and bright (ρsur,RED=ρsur,RED=0.26) backgrounds. Surface 
reflectances shown in Fig. 2.8 that correspond to selected backgrounds and simple ratio 
(SM) calculated from the surface reflectances were used as input. The relative 
uncertainties at red and NIR spectral bands were set to 0.3 and 0.15. 
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Chapter 3 

3. Generating Leaf Area Index Earth System Data Record from 

multiple sensors: Implementation, analysis and validation  

3.1 Introduction 

 Long-term global vegetation monitoring requires temporally and spatially 

consistent data sets of vegetation biophysical variables characteristic of vegetation 

structure and functioning like the Leaf Area Index (LAI) and Fraction of 

Photosynthetically Active Radiation (FPAR). Such data sets are useful in many 

applications ranging from ecosystem monitoring to modeling of the exchange of energy, 

mass (e.g. water and CO2), and momentum between the Earth’s surface and atmosphere 

(Dickinson et al., 1986; Sellers et al., 1996; Tian et al., 2004; Demarty et al., 2007). A 

key step in assembling these long-term data sets is establishing a link between data from 

earlier sensors (e.g. AVHRR) and present/future sensors (e.g. MODIS TERRA, 

NPOESS) such that the derived products are independent of sensor characteristics and 

represent the reality on the ground both in absolute value and variations in time and space 

(Van Leeuwen et al., 2006). Multi-decadal globally validated data sets of LAI and FPAR 

produced with a physically based algorithm and of known accuracy are currently not 

available, although several recent attempts have resulted in shorter term research quality 

data sets from medium resolution sensor data (Knyazikhin et al., 1998; Gobron et al., 

1999; Chen et al., 2002; Yang et al., 2006a; Plummer et al., 2006; Baret et al., 2007).  
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In Chapter 2, a physically based approach was presented for deriving LAI and 

FPAR products from AVHRR data that are of comparable quality to the MODIS 

products. The theoretical approach is based on the radiative transfer theory of canopy 

spectral invariants which facilitates parameterization of the canopy spectral bidirectional 

reflectance factor (BRF). The methodology permits decoupling of the structural and 

radiometric components and is applicable to any optical sensor. However, it requires a set 

of sensor-specific values of configurable parameters, namely the single scattering albedo 

and data uncertainty, in order to maintain consistency in the derived products.  

 The objective of this chapter is to present a comprehensive evaluation of a new 

global monthly LAI data set derived from the AVHRR NDVI for the period July 1981 to 

December 2006 with the algorithm presented in Chapter 2. The outline of this chapter is 

as follows. The implementation of the algorithm and production of the data set are first 

detailed. The data set was evaluated both by direct comparisons to ground data and 

indirectly through inter-comparisons with similar data sets. This indirect validation 

included comparisons with MODIS and CYCLOPES LAI products at a range of spatial 

scales, and correlations with key climate variables in areas where temperature and 

precipitation limit plant growth. The data set was also analyzed to reproduce spatio-

temporal trends and inter-annual variations in vegetation activity that have been reported 

previously in the literature. Direct validation included comparisons to field data from 

several campaigns conducted as part of the Land Product Validation Subgroup (LPV) of 

the Committee Earth Observing Satellite (CEOS) (Justice et al., 2000; Morisette et al., 
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2006). In the final section, conclusions from the production and evaluation exercises are 

presented. 

3.2 Production of the LAI dataset 

This section provides a schematic of the algorithm implementation as well as a brief 

description of the input datasets and LAI retrieval mechanism. The MODIS Collection 5 

(C5) LAI product over the period of overlap between the two sensors (2000 to 2002) is 

taken as a benchmark in this study. Descriptions related to satellite input data and land 

cover classification map are provided in section 3.2.1. A step-by-step implementation of 

the theoretical framework (Chapter 2) is given in section 3.2.2 and 3.2.3. The LAI 

product is described in section 3.2.4. 

3.2.1 Input satellite data and land cover classification map 

 The 15-day maximum value AVHRR NDVI composites (Holben, B., 1986) from 

the NASA GIMMS group for the period July 1981 to December 2006 are used as the 

input data in this study (Tucker et al., 2005). The data are at 8 km spatial resolution in a 

geographic latitude-longitude projection and have been corrected for loss of calibration, 

view and solar zenith angle variations, contamination from volcanic aerosols, and other 

effects not related to vegetation change (Tucker et al., 2005; Pinzon et al., 2005). The 

maximum value compositing diminishes the atmospheric effects such as sensitivity of the 

AVHRR wide spectral bands to the presence of water vapor, ozone, etc (Brown et al., 

2006) as well as minimizes residual atmospheric and cloud contamination (Holben, B., 
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1986). The average of the two 15-day maximum value composites was used to generate 

the monthly 8 km LAI product. 

 The latest version (Collection 5) of the MODIS LAI data set was used as a 

benchmark in the production of the AVHRR LAI data set (Shabanov et al., 2005; Yang et 

al., 2006b). Monthly 1 km MODIS data set was aggregated to 8 km spatial resolution. In 

the aggregation process, the LAI value of the 8 km pixel is calculated as the mean over 1 

km LAI values of high quality only. The high quality retrievals refer to LAI values 

generated by the C5 MODIS LAI/FPAR algorithm (Yang et al., 2006b). Further, the 

quality flag value for the 8 km pixel is evaluated as the percentage of the corresponding 

sixty four 1 km pixels of high quality. This 8 km MODIS data set was then re-projected 

to the geographic latitude-longitude projection from its native ISIN projection. For the 

inter-comparison of AVHRR and MODIS LAI (Section 3.3), only 8 km MODIS LAI 

pixels with quality flag values greater than 90% were used. Similarly, only main RT 

algorithm AVHRR retrievals (Section 3.2.3) were used when inter-comparing the data 

sets. 

 The land cover map (or biome classification map) is a key ancillary input to the LAI 

retrieval process. The Collection 5 MODIS LAI/FPAR operational algorithm references a 

1 km eight biome classification map consisting of the following classes: (1) grasses and 

cereal crops, (2) shrubs, (3) broadleaf crops, (4) savannas, (5) evergreen broadleaf 

forests, (6) deciduous broadleaf forests, (7) evergreen needleleaf forests, (8) deciduous 

needleleaf forests (Yang et al., 2006a). This map is used in the retrieval process but at 8 
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km resolution by retaining the most frequently occurring land cover amongst the sixty 

four 1 km pixels (Tian et al., 2002). 

3.2.2 Achieving consistency with the Terra MODIS LAI products 

 The AVHRR mode of the proposed algorithm accepts inputs of surface reflectances 

as projections of the simple ratio (SM = near-infrared/red reflectances) line onto the red-

NIR spectral axes, i.e., the red and NIR reflectance are proportional to cos α and sin α, 

respectively, where α =  =  (Section 2.6 in Chapter 2). 

Errors in cos α and sin α are determined by errors in the NDVI data. The consistency 

condition of the multi-sensor LAI algorithm (Section 2.2 in Chapter 2) ensures that the 

difference between mean LAI values from the AVHRR (using NDVI as input) and 

MODIS (using spectral reflectance as input) modes of the algorithm is minimized. 

Specifically, the adjustment procedure was reduced to finding values of sensor-specific 

input and model uncertainty and single scattering albedo for which  

)RED/NIR(tan 1− )SM(tan 1−

a) The consistency conditions are met; 

b) The retrieval index (RI) is maximized; 

c) The difference (RMSE) between AVHRR and MODIS LAI is minimized. 

The retrieval index is the ratio of the number of pixels for which the algorithm retrieves a 

value of LAI to the total number of processed pixels,   

.=
number of retrieved pixelsRI

total number of processed pixels
                                                         (3.1)  
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The RI is a function of uncertainties in modeled and observed reflectances (or, the simple 

ratio) and the total number of spectral bands used. In general, the RI increases with 

increasing values of uncertainties (Figs. 3.1a and 3.1b) but at the same time, higher 

values of uncertainty refer to poor quality input data, and thus, poor quality retrievals. 

 The RMSE is defined as the root mean square error between the output AVHRR 

LAI image and the corresponding MODIS LAI image, 

[ ]2

1

1( , ) ( , ; ) ( )
=

= −∑
N

AVHRR MODIS
k

RMSE LAI k LAI k
N

ε ω ε ω .          (3.2) 

Here LAIAVHRR represents LAI values generated by the AVHRR mode of the algorithm 

given the relative uncertainty ε and the single scattering albedo ω, and LAIMODIS denotes 

the aggregated MODIS LAIs.  The summation is performed over all 8 km vegetated 

pixels (k) in a given image. The RMSE is a function of the relative uncertainty, single 

scattering albedo, biome type and the image size. The following procedure was 

implemented to achieve efficient production of AVHRR LAI on a global scale.  

The configurable parameters, relative uncertainty (ε ) and single scattering albedo 

(ω) at the red, are varied to minimize RMSE and maximize RI.  Since uncertainties in the 

NIR reflectance are minimally impacted by the differences in spectral bandwidth and data 

resolution (Miura et al., 2000; Van Leeuwen et al., 2006; Section 2.5 in Chapter 2), their 

values are taken from the corresponding MODIS LUT and kept constant in the tuning 

procedure. This process is illustrated in Fig. 3.1. The RI increases with increasing values 

of REDε . A value of REDε  of 30 % generally yields a RI value of 90% or more. REDε  

values greater than 30% are usually not considered as they represent poor quality input 
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data and thus unreliable LAI retrievals. Also, for a preset value of REDε , the RMSE is 

minimum for a specific value of ωred (ωred = 0.25 in Fig. 3.1a and ωred = 0.22 in Fig. 

3.1b). Thus, for each vegetation type, AVHRR LUT can be created consisting of the 

spectral BRF values calculated with optimum values of the single scattering albedo. 

Optimal values of the relative uncertainties are then used to specify the merit function 

(see Eq. 2.11 in Chapter 2).  

An extensive analyses of the above procedure for all months of the year 2001, 

biome-by-biome, is performed in order to examine variations in the configurable 

parameters with biome type and month. The results suggest that the optimal values for 

the configurable parameters exhibit a non-negligible variation with respect to the biome 

type and a weak sensitivity to the month. For each biome type, mean values over months 

are taken as instrument specific configurable parameters and used to generate global 

AVHRR LAI time series. 

3.2.3 Global LAI production 

 Consider an input pixel from the AVHRR NDVI map representing a certain 

vegetation class. The algorithm queries the corresponding AVHRR LUT for this class 

and calculates the mean value and standard deviation (dispersion) of LAI from the 

retrieved solution set (Chapter 2). A successful retrieval is classified as a main algorithm 

retrieval. If the retrieval is unsuccessful, a backup algorithm similar to the MODIS 

approach is adopted, where the input simple ratio will be used to calculate a LAI value 
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based on NDVI-LAI empirical relations (Yang et al., 2006a). A schematic representation 

of the algorithm implementation is shown in Fig. 3.2. 

3.2.4 LAI data dissemination 

 The data set is stored as monthly LAI values together with their standard deviation 

and quality control flags at 8 km resolution in a geographic latitude-longitude projection 

for the period July 1981 to December 2006. The accuracy of the AVHRR LAI product is 

comparable to the MODIS LAI (cf. later sections), but with increased dispersion, which 

reflects the lower information content of AVHRR input (NDVI) compared to the MODIS 

input (spectral reflectances). 

3.3 Comparison with other satellite LAI products 

3.3.1 Assessment of AVHRR LAI for the tuning year 

 A global scale assessment of the AVHRR LAI data set was performed for the 

overlapping year 2001 for which MODIS LAI was used as a reference for tuning the 

AVHRR algorithm. The quality of the AVHRR product depends on the quality of input 

NDVI and land cover data. The input land cover map is the same for both MODIS and 

AVHRR, therefore the input NDVI/reflectance data determine the LAI product quality. A 

pixel data is considered reliable only if the MODIS quality flag for the corresponding 

pixel corresponds to a best quality retrieval and simultaneously has an AVHRR radiative 

transfer (RT) algorithm retrieval. For each biome, all such pixels are selected for analysis 
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over the course of a year. A month by month spatial difference, defined as delta LAI 

(δLAI) for each such pixel over a particular biome type is calculated as 

LAI b b LAI b b LAI b b(i , j , t) AVHRR (i , j , t) MODIS (i , j , t).δ = −                                   (3.3)                    

Here ib, jb are pixel coordinates for a specific biome “b” and “t” is the month. Table 3.1 

shows the accuracy ( δ  = mean value of LAI b b(i , j , t)δ ) and precision (σ = standard 

deviation of ) of AVHRR LAI with respect to MODIS LAI for different 

biomes and four different months. The last row in Table 3.1 shows 

LAI b b(i , j , t)δ

δ  calculated from 

annual maximum LAI values, which reflect the worst possible case. 

 The herbaceous biomes (grasses/cereal crops, shrubs, broadleaf crops, savannas) 

show a δ  in the range of zero to 0.25 LAI in all the four months, while the woody 

biomes (broadleaf and needleleaf forests) show a δ  from nearly zero to 0.42. AVHRR 

LAI underestimates MODIS LAI especially in the savannas and needleleaf forests. The 

accuracy of annual maximum LAI is usually within ±0.6 LAI for most of the vegetation 

classes. The precision is always within ±0.65 standard deviation units. In deciduous 

broadleaf forests, peak annual AVHRR LAI overestimates its MODIS equivalent by 

almost 0.61 LAI. This is due to uncertainty in input NDVI and differences in the time of 

the year at which the peak LAI value exists in these products. These larger differences 

suggest that LAI retrievals from NDVI (low information content) will poorly capture the 

seasonality in comparison to LAI retrievals from surface reflectances (higher information 

content). The input information content and uncertainties control whether the retrievals 

are over- or under-estimates, which in this case is not systematic as shown in Fig. 3.3. 

 



63 

Pixels with greater than ±0.6 LAI difference constitute only 3.3 % of the total global 

vegetated pixels. Overall, the difference values indicate spatio-temporal consistency 

between the AVHRR and MODIS LAI data sets as well as acceptable levels of accuracy 

and precision, suggesting that the tuning process has been successfully implemented. 

3.3.2 Comparison with MODIS C5 LAI data 

 The inter-comparison of AVHRR and MODIS data sets for a three year period 

(2000 to 2002) is presented here. The choice of these years is dictated by the availability 

of latest version of MODIS products (Collection 5, or C5). 

3.3.2.1 Global scale comparison 

 Figure 3.4a shows a comparison between the mean monthly AVHRR and MODIS 

LAI for each of the 8 vegetation classes. The AVHRR values explain 97.5% of the 

variability in MODIS values and on average will be in error in their estimation by 0.18 

LAI. This comparison indicates qualitative agreement between the two data sets; 

however, global averaging over all pixels of a particular vegetation class masks the 

underlying variability in LAI amongst those pixels. Therefore, an inter-comparison at 

regional and local scales was performed, as reported below. 

3.3.2.2 Regional scale comparison 

 Grasslands and evergreen needleleaf forests were considered for a regional scale 

inter-comparison exercise. Mean seasonal values – DJF (December to February), MAM 

(March to May), JJA (June to August), and SON (September to November) - for a 

homogeneous region of 100 by 100 evergreen needleleaf forest pixels in Western Russia 
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were calculated for the period 2000 to 2002 and shown in Fig. 3.4b. The R2 (0.895) and 

RMSE (0.25) indicate good agreement between the two data sets. The dispersion does not 

exceed 0.5 LAI. Figure 3.4c is a similar plot for three homogeneous grassland sites, 

100x100 pixels each, located in the Great Plains of the USA, the Sahel and Central Asia. 

Again, the R2 (0.84) and RMSE (0.12) indicate a satisfactory agreement between the two 

data sets. Some scatter at LAI values greater than 1.25 is seen which is within the 

accuracy limit of 0.5 LAI. 

3.3.2.3 Local scale comparison 

 The June to August mean LAI of a homogeneous patch of 50 by 50 evergreen 

needleleaf forest pixels in western Russia was used for local scale inter-comparison 

between the two data sets. Figure 3.4d shows the mean and dispersion of AVHRR LAI as 

a function of MODIS LAI. The regression relation in Fig. 3.4d has R2 of 0.94 and RMSE 

of 0.32 which indicate good correspondence between the two data sets, although some 

dispersion can be seen at LAI values greater than 3. 

3.3.3 Comparison with CYCLOPES LAI product 

 The CYCLOPES LAI product (version 3.1) was derived from data from the 

SPOT/VEGETATION sensor over a 1/112o resolution plate-carrée spatial grid and 10-

day frequency (Baret et al., 2007). CYLOPES products from a select BELMANIP 

benchmark network of sites (Baret et al., 2006) are utilized here (Table B1, Appendix B). 

The land surface type of each BELMANIP site is defined using the ECOCLIMAP 

classification (Masson et al., 2003), which classifies the land into seven main categories. 
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This inter-comparison was done for four vegetation types – needleleaf forests, grasslands, 

savannas and croplands. For each vegetation type, we chose representative sites, each 50 

x 50 km2 (about 7 x 7 AVHRR pixels) in area, and calculated the mean monthly LAI 

values for the period 2001 to 2003 using simultaneously available AVHRR and 

CYCLOPES pixels that cover the same areas (Fig. 3.5). Mean values accumulated over 

areas composed of 20 or more AVHRR pixels were used in our inter-comparison 

analyses. 

In grasslands and needleleaf forests, the AVHRR and CYCLOPES LAI values are 

close to 1:1 line – slopes are 0.85 and 0.88, respectively and corresponding offsets are 

0.17 and -0.05 (Figs. 3.5a and 3.5b). They explain 80% and 68% of the variability in 

CYCLOPES LAI and will be in error by 0.32 and 0.47 LAI on average. The correlation 

between the two products is also very strong in the case of croplands (R2=0.77) and 

savannas (R2=0.85); they differ by 0.34 LAI (croplands) and 0.24 LAI (savannas) (Figs. 

3.5c and 3.5d). The deviation of AVHRR-CYCLOPES relationships from the 1:1 line is 

larger compared to grasslands and needleleaf forests (Figs. 3.5a and 3.5b). The deviations 

can partly be explained by a narrow dynamic range of LAI values which is comparable to 

variation due to observation errors (Wang et al., 2001; Tan et al., 2005; Huang et al., 

2006). In this example, mean (standard deviation) values of CYCLOPES LAI over 

croplands and savannas are 0.87 (0.5) and 0.52 (0.5), respectively. Corresponding values 

of the AVHRR LAI are 0.73 (0.2) and 0.56 (0.32). Although there is variation in the 

comparability between the two data sets not only across vegetation types but also across 
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sites with in a vegetation class, the disagreement does not exceed the disagreement 

between AVHHR LAI and ground truth data (Section 3.5). 

3.4 Comparison with climate variables 

In the absence of long-term field LAI measurements spanning a couple of decades, 

another way to evaluate the data set is to compare temporal LAI trends with well 

documented trends in vegetation growth and their relationship to temperature and 

precipitation anomalies in areas where these climatic variables limit plant growth 

(Buermann et al., 2003). The ability of the LAI data set to track vegetation changes due 

to surface temperature variations in the northern latitudes and precipitation changes in the 

semi-arid regions is evaluated in sections 3.4.1 and 3.4.2. The well correlated modes of 

co-variability between temperature, precipitation and LAI are isolated, and the 

relationship to large-scale circulation anomalies associated with the El Niño-Southern 

Oscillation (ENSO) and Arctic Oscillation (AO) are assessed in section 3.4.3.

3.4.1 LAI variation with surface temperature in the northern latitudes 

The northern latitudes, 40o to 70o N, have witnessed a persistent increase in growing 

season vegetation greenness related to unprecedented surface warming during the period 

1981 to 1999 (Myneni et al., 1997; Zhou et al., 2001; Slayback et al., 2003). This 

greening was observed in Eurasia and less prominently in North America (Zhou et al., 

2001). In fact, a decline in greenness was observed in parts of Alaska, boreal Canada and 

northeastern Eurasia (Barber et al., 2000; Goetz et al., 2005). The slightly longer LAI 

 



67 

data set thus facilitates a re-assessment of these changes. The spatial trends (in %) in 

growing season, April to October, LAI for the region 40o to 70o N, are calculated for the 

periods 1982 to 1999 and 1982 to 2006. The greening trend (Fig. 3.6a) is evident in 

Eurasia, Northern Alaska, Canada and parts of North America, for the period 1982 to 

1999. When this analysis is extended to 2006 (Fig. 3.6b), it is found that large contiguous 

areas in North America, Northern Eurasia and Southern Alaska show a decreasing trend 

in growing season LAI. This browning trend, especially in the boreal forests of Southern 

Alaska, Canada and in the interior forests of Russia has also been reported in recent 

studies (Angert et al., 2005; Goetz et al., 2005).  

The spatial (40o-70o N) and growing season (April to October) averages of 

standardized anomalies (anomalies normalized by their standard deviation) of LAI, 

NDVI and surface temperature (Hansen et al., 1999) are shown in Fig. 3.7 for tundra and 

needleleaf forests, separately for North America and Eurasia. The anomaly of a given 

variable is defined as the difference between its growing season (April to October) mean 

at a given year and the growing season mean over the 1982 to 2006 time interval. The 

standardized anomalies of LAI and NDVI track each other very well (Table 3.2), that is, 

the long-term trends in the LAI product are not an artifact of the data set or the algorithm.  

The results indicate that vegetation activity significantly correlates with trends in 

surface temperature in the Eurasian and North American tundra over the entire period of 

the record (Table 3.2). This is consistent with reports of persistent greening in the tundra 

and evidence of shrub expansion in northern Alaska and the pan-Arctic (Goetz et al., 

2005; Tape et al., 2006).  
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A decreasing trend in vegetation greenness is observed after 1996-97 period despite 

a continuing warming trend in the North American needleleaf forests. The regression 

model of LAI vs. surface temperature and time is statistically significant at the 10% level 

for the period 1982 to 1999 but is statistically insignificant for the period 1982 to 2006 

(Table 3.2). Similar patterns are observed in the Eurasian needleleaf forests also. These 

results imply a decreasing trend in vegetation activity possibly due to warming induced 

drought stress as has been suggested previously (Barber et al., 2000; Wilmking et al., 

2004; Lapenis et al., 2005; Bunn et al., 2006). There also have been reports of declining 

growth and health of white spruce trees in Alaska, upsurge in insect disturbance in 

southern Alaska, and increase in fire frequency and severity in Alaska, Canada and 

Siberia during the past  6 to 7 years of consistent warming (Soja et al., 2007). These 

changes buttress the need for continued monitoring of vegetation activity in these 

northerly regions in the face of unprecedented climatic changes. 

3.4.2 LAI variation with precipitation in the semi-arid tropics 

The availability of water critically limits plant growth in the semi-arid tropical 

regions of the world, especially in grasslands where precipitation received in the wet 

months is the primary driver of plant growth (Nemani et al., 2003; Hickler et al., 2005; 

Prince et al., 2007). This relationship provides a basis for evaluating the LAI product by 

examining the correlation between LAI and precipitation (Mitchell et al., 2003; Huffman 

et al., 2007). NDVI is also included in this analysis to argue that correlations observed 
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between LAI and precipitation are not an artifact of the LAI algorithm if they are seen in 

the NDVI data as well. 

For the purposes of this analysis, the semi-arid regions in the tropics and subtropics 

are defined as those with peak annual NDVI values in the range 0.12 to 0.55. These 

regions approximately correspond to areas with annual total rainfall less than 700 mm. 

Four regions were selected in the Eastern hemisphere for this study - Sahel, Southern 

Africa, Southeast Asia and Australia. The Sahelian region consisted of Senegal, 

Mauritania, Mali, Burkina Faso, Niger, Nigeria, Chad and Sudan; the Southern African 

region of Botswana, South Africa and Namibia; and the Southeast Asian region of 

Afghanistan, Pakistan and India. 

A highly significant correlation between variations in standardized anomalies of 

precipitation and annual peak vegetation greenness (LAI or NDVI) is seen in Australia, 

Sahel and Southern Africa (Fig. 3.8; Table 3.3). A slightly less stronger correlation 

between these variables is observed in Southeast Asia. An increasing trend in 

precipitation and greenness is also observed in these semi-arid regions during the period 

of this study (1981 to 2006), which is in agreement with several recent reports on 

greening and increased precipitation in the Sahelian region (Herrmann et al., 2005; 

Hickler et al., 2005; Seaquist et al., 2006). The greenness increase in Southeast Asia 

(especially India) is not supported by enhanced precipitation and is therefore likely due to 

other factors such as irrigation and fertilizer use, but this needs to be further investigated. 

The strength of these correlations imbues confidence in the interannual variations 

embedded in the derived LAI product. 
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3.4.3 Canonical correlation analysis 

The correlations observed between LAI and temperature in the northerly regions 

and between LAI and precipitation in the semi-arid areas raise a question about the 

mechanistic basis for these relations. It has been reported previously that large scale 

circulation anomalies, such as the El Niño-Southern Oscillation (ENSO) and Arctic 

Oscillation (AO), explain similar correlations, but at the hemispheric scale (Buermann et 

al., 2003). The canonical correlation analysis (CCA) is ideally suited for this purpose as it 

seeks to estimate dominant and independent modes of co-variability between two sets of 

spatio-temporal variables (Barnett and Preisendorfer, 1987; Bjornsson and Venegas, 

1997). The variables are linearly transformed into two new sets of uncorrelated variables 

called canonical variates, which explain the co-variability between the two original 

variables, in a descending order. Thus, most of the co-variability is captured by the first 2 

to 3 canonical variates. 

For the canonical correlation analysis in the North, each year is denoted as a 

variable (1982 to 2006, that is, 25 variables in total) and each pixel as an observation (the 

total number of observations is the number of vegetated pixels in the latitudinal zone 45o 

N and 65o N). The two sets of variables for CCA are the spring time (March to May) LAI 

and surface temperature anomalies at 1o resolution (Buermann et al., 2003). The 

anomalies were normalized by their respective standard deviation. Each of the set of 25 

(time) variables was transformed to Principal Components (PC’s) using singular value 

decomposition. In each case, only the first six PC’s were retained as they explain a large 

fraction of the variance in the input set of variables. In CCA, each canonical variate is a 
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time-series which accounts for a certain fraction of the co-variability between the 

variables (PC’s). In this analysis, the first two canonical variates derived from each set of 

six PC’s explained about 50% of the co-variability between the two sets of variables.  

The September to November (SON) NINO3 index (WWW3) is used to represent 

ENSO because the sea surface temperature anomalies then approach peak values during 

an ENSO cycle (Dai et al., 1997). Figure 3.9a shows that the correlation between SON 

NINO3 index and first canonical variate related to LAI is very low (r = 0.1). The same is 

true for the correlation between SON NINO3 index and the first canonical variate related 

to temperature anomalies. This is in contrast to a strong correlation reported in Buermann 

et al. (2003) for the period 1982 to 1998. This decline in correlation may be due to weak 

ENSO activity and/or changes in teleconnection patterns since the 1998-2000 period 

(WWW4). The correlation between the Arctic Oscillation (AO) index and the second 

canonical variates of both LAI and temperature is reasonably strong (0.45 and 0.61, 

respectively; Fig. 3.9b), consistent with the strong correlations reported by Buermann et 

al. (2003) for the period 1982 to 1998. Thus, the AO seems to continue to be a prominent 

driver of surface temperature (Thompson and Wallace, 1998) and plant growth variability 

in the northern latitudes.  

CCA was also performed on standardized anomalies of annual maximum LAI and 

precipitation for the semi-arid regions of 40oN to 40oS latitudinal zone (cf. Section 3.4.2). 

The first two canonical variates explained about 50% of the co-variability between annual 

peak LAI and precipitation anomalies. A reasonable correlation is seen between the 

September to November NINO3 index and the first canonical variates of LAI and 
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precipitation (0.33 and 0.32, respectively; Fig. 3.9c), consistent with several previous 

reports of ENSO influence on interannual variability in tropical and sub-tropical 

precipitation (Ropelewski and Halpert, 1987; Dai and Wigley, 2000). The correlation 

between the second canonical variates and the AO index is weak (Fig. 3.9d) which is not 

surprising as the AO is not known to be a driver of precipitation and thus  plant growth 

variability in these regions.  

In summary, the strong ENSO driven linked variations between northern vegetation 

greenness and surface temperature observed during the 1980s and 90s have weakened 

since 2000. The AO influence however continues to be strong. In the tropical and sub-

tropical regions, the ENSO influence on linked variations between semi-arid vegetation 

greenness and precipitation continues to be apparent. These results further add confidence 

in the LAI data set as we are not only able to reproduce previously reported results but 

also update them. 

3.5 Validation with ground data 

 The validation of coarse resolution satellite products with ground measurements is a 

complicated task for several reasons - scaling of plot level measurements to sensor 

resolution, geo-location uncertainties, limited temporal and spatial sampling of ground 

data, field instrument calibration, sampling errors, etc. (Buermann et al., 2002; Tan et al., 

2005; Huang et al., 2006; Yang et al., 2006a ; Weiss et al., 2007). In an indirect 

validation approach, such as inter-comparison of satellite products, the effects of co-

registration and differences in spatial resolution can be minimized if the satellite products 
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are compared at a coarser resolution (Weiss et al., 2007; Tarnavsky et al., 2008). In a 

direct validation such as with field measurements, spatial re-sampling is not always 

feasible because of inadequate sampling on the ground. The MODIS experience of LAI 

validation will be used to evaluate the AVHRR LAI data set. This work was performed 

within the purview of the Land Product Validation (LPV) LAI subgroup of the 

Committee Earth Observing Satellites’ Working Group on Calibration and Validation 

(CEOS WGCV). Currently, a large number of US and international investigators 

participate in this activity by sharing field measured LAI/FPAR data as well as high 

resolution maps though the ORNL DAAC Mercury system (Justice et al., 2000; Morisette 

et al., 2006). This large and growing data base provides the most up-to-date and 

comprehensive information needed for validation of LAI products. The scarcity of field 

LAI measurements during the 1980s and 90s represents a more challenging problem. 

Nevertheless, we attempted to utilize the available field data from multiple campaigns 

(Table B2, Appendix B) and high resolution LAI maps (Table 3.4) to validate the 

AVHRR LAI product.  

3.5.1 Validation with field/plot-level observations 

 Most field measurements are typically several plot level samples within a small 

homogeneous region representing a certain vegetation type. An ideal field sampling of 

LAI must adequately represent its spatial distribution and cover the natural dynamic 

range within each major land cover type at the site (Yang et al., 2006b). On the other 

hand, the satellite retrievals cover an entire region of interest, but at a coarse scale. If the 
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sampling in both cases is adequate, the LAI distributions from field measurements and 

satellite retrievals should ideally converge to the true intrinsic distribution of the 

vegetation class in a given region at a given time (Buermann et al., 2002). In this study, 

the sites were selected with adequate plot level measurements over homogeneous patches 

of a vegetation type. A pixel-by-pixel comparison between AVHRR LAI and reference 

field LAI values is not feasible for at least three reasons – first, the actual spatial location 

of the corresponding pixels in the two LAI maps may not match because of geolocation 

uncertainties and pixel-shift errors due to the point spread function (Tan et al., 2006); 

second, the AVHRR LAI algorithm generates a mean LAI value from all possible 

solutions corresponding to possible variation in input due to observation and model 

uncertainties (Knyazikhin et al., 1998a). Therefore, the retrieved LAI value for a single 8 

km pixel can differ from its measured counterpart, but the mean LAI of multiple pixels 

over a homogeneous patch may be valid (Wang et al., 2004); third, the spatial sampling 

for a particular field site can aggregate to an area which can be less than or equal to a 

single 8 x 8 km2 AVHRR LAI pixel.  

Mean LAI values from the 44 field measurements (28 sites) listed in Table B2 in 

Appendix B were used in this analysis. Monthly AVHRR LAI values from nearby pixels 

with the same vegetation type were averaged. This averaging window, centered on the 

field site, was typically about 2 by 2 or 4 by 4 pixels depending on the aerial extent of the 

field site. The results of comparison for all the six major vegetation classes indicate that 

the AVHRR product underestimates field LAI by about 7% for LAI greater than 1 (Fig. 

3.10a). Additionally, the temporal profile of LAI was compared over three sites, Konza 
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(grasslands), Mongu (savannas), and Harvard forest (broadleaf deciduous forest), for 

which there are more than one field value over the course of one or more years. Figure 

3.10b shows that the seasonal dynamics of in situ LAI over the Mongu site are well 

captured by the AVHRR LAI product, but are underestimates by 0.01-0.4 LAI. Similarly, 

the AVHRR LAI seems to capture values of in situ LAI at the other two sites (Figs. 3.10a 

and 3.10c), but here the field samples are limited to a single measurement per year. 

3.5.2 Validation with fine resolution LAI maps 

 Another approach to validation involves generation of fine resolution LAI maps 

from ground measurements and high-resolution satellite imagery such as ETM+, SPOT, 

ASTER, etc. using the so-called transfer function (Yang et al., 2006b). The transfer 

function could be empirical methods (Chen et al., 2002; Weiss et al., 2002), physical 

models (Tan et al., 2005), or hybrid approaches (Weiss et al., 2002). Currently, several 

fine resolution maps are being disseminated via the ORNL DAAC Mercury system 

(Morisette et al., 2006). Maps from ten sites representing large homogeneous patches of 

distinct land cover types were used in this analysis (Table 3.4). The typical aerial extent 

of these maps is between 50 km2 to 100 km2, except for the Canada Center for Remote 

Sensing sites (576 km2 ~ 70000 km2). Leaf area index distributions derived from blocks 

of 5 by 5 to 10 by 10 eight km AVHRR pixels were compared to LAI distributions from 

the fine resolution maps (Fig. 3.11). The AVHRR blocks were larger (30 x 30) for the 

Manitoba Black Spruce forest site at Thompson and the needleleaf forest site at Watson 

Lake.  
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Table 3.4 shows the mean values (δ) and corresponding dispersions (σ) for the 

distributions displayed in Fig. 3.11. The AVHRR LAI and fine resolution LAI 

distributions generally compare well, although there is a consistent underestimation at 

most sites possibly related to scale and land cover heterogeneity (Tian et al., 2002). The 

distributions agree remarkably well for the Canadian sites, with LAI,AVHRR LAI,fieldδ − δ  of 

0.46 LAI for the Kejimikujik conifer site and 0.14 LAI for the Manitoba Black Spruce 

forest at Thompson. The distributions also compare well for the Alpilles (grasses/cereal 

crops) and Ruokolahti (needleleaf forest) sites, with the mean values differing by about 

0.14 and 0.36 LAI, respectively. As for the Konza, Harvard forest and Larose sites, the 

mean values differ by about 0.11 to 0.5 LAI. However, the AVHRR values for the 

broadleaf site at Tapajos site in the Amazon underestimate the actual LAI values 

significantly, possibly due to poor NDVI quality as a result of persistent cloud cover and 

water vapor contamination. In general, the AVHRR LAI values compare well to field 

observations at select sites representative of grasses, crops, broadleaf forests, and 

needleleaf forests. 

3.6 Conclusions 

In this chapter, the evaluation of a new global monthly AVHRR LAI data set for the 

period July 1981 to December 2006, derived from AVHRR NDVI is presented. The 

production of long term LAI data sets involves a host of inter-sensor related issues like 

differences in spatial resolution, spectral characteristics, uncertainties due to atmospheric 

effects and calibration, information content, etc. In Chapter 2, a physically based 
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algorithm for the retrieval of LAI from AVHRR NDVI was introduced. The theoretical 

approach is based on the radiative transfer theory of spectral invariants and describes in 

detail the physical constraints as well as the conditions required to generate LAI fields of 

quality comparable to MODIS LAI products. 

 The theme of this chapter is establishing the validity and accuracy of the derived 

LAI product. The evaluation of the data set is done both through direct comparisons to 

ground data and indirectly through inter-comparisons with similar data sets. This 

included comparisons with existing LAI products (MODIS and CYCLOPES LAI 

products for the 2000 to 2003 period of overlap) at a range of spatial scales, and 

correlations with key climate variables in areas where temperature and precipitation limit 

plant growth. There is an overall qualitative agreement between the AVHRR and MODIS 

data sets at scales ranging from global to regional to pixel. At the global scale, the 

AVHRR values explain 97.5% of the variability in the MODIS product and will be in 

error in their estimation by 0.18 LAI, on average. The regional and pixel-scale inter-

comparison suggests an average error of less than 0.3 LAI. Comparison with 

CYCLOPES LAI indicates satisfactory agreement in most of the biomes with the RMSE 

below 0.5 LAI. The data set was also analyzed to reproduce well-documented spatio-

temporal trends and inter-annual variations in vegetation activity in the northern latitudes, 

where temperature limits plant growth, and semi-arid areas, where precipitation limits 

plant growth. Additionally, to assess the mechanistic basis behind the observed 

correlations between LAI and temperature in the northern latitudes and LAI and 

precipitation in the semi-arid tropics, a multivariate data-reduction technique (canonical 

 



78 

correlation analysis) was used to isolate well correlated modes of spatio-temporal 

variability between LAI and the climate variables. The isolated modes suggest El Niño-

Southern Oscillation and Arctic Oscillation as key drivers of linked interannual variations 

in vegetation greenness and precipitation in the semi-arid regions and, vegetation 

greenness and surface temperature in the northern latitudes, respectively.  

Finally, the LAI data were compared to field measurements and high-resolution 

LAI maps from a host of sites. The comparison with plot scale measurements over biome 

specific homogeneous patches indicates a 7% underestimation in the AVHRR LAI when 

all major vegetation types are considered. The error in mean values obtained from 

distributions of AVHRR LAI and high-resolution field LAI maps for different biomes is 

within 0.6 LAI with the exception of a broadleaf evergreen forest site. These validation 

exercises though limited by the amount of field data, and thus less than comprehensive, 

nevertheless indicate satisfactory comparability between the LAI product and field 

measurements. In summary, the inter-comparison with other short-term LAI data sets, 

evaluation of long-term trends with known variations in climate variables, and validation 

with field measurements together build confidence in the utility of this new 26 year LAI 

record for long-term vegetation monitoring and modeling studies. 
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(a) 

(b) 

 

Figure 3.1 The difference (RMSE) between MODIS and AVHRR LAI values (vertical 
axis on the left side and solid lines) and the Retrieval Index (vertical axis on the right side 
and dashed lines) as a function of the relative uncertainty ε=σRED/RED and single 
scattering albedo at red spectral band. Optimal values of the single scattering albedo and 
the uncertainty should minimize RMSE and maximize the retrieval index. 
Simultaneously available AVHRR NDVI and MODIS C5 LAI data sets over grasses and 
cereal crops (panel (a), MODIS tile h10v05) and broadleaf deciduous forests (panel (b), 
MODIS tile h12v04) for the year 2001 are used in this example. 
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Figure 3.3 Average annual LAI difference (AVHRR minus MODIS) for the year 2001. 
The grey areas represent changes within ± 0.6 LAI units (96.7 % of the total vegetated 
pixels). Areas with black color represent water bodies and white color denotes non-
vegetated pixels or snow. Land pixels with LAI differences greater than ± 0.6 represent 
only 3.3 % of the total vegetated pixels globally. 
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(a) (b)

(c) (d)

Figure 3.4 Panel (a) shows comparison between MODIS and AVHRR LAI for the year 
2001 (blue color) and 2002 (red color) for different vegetation classes. The LAI values 
are globally averaged values for the respective vegetation pixels. A similar comparison 
between MODIS and AVHRR LAI for years 2000-2002 but for different seasons on 
homogeneous patches of evergreen needle leaf forests in Western Russia (Panel b) and 
grasslands in the USA, Sahel and Central Asia (Panel c). Panel (d) shows a comparison 
between MODIS and AVHRR LAI values averaged from June to August, 2001, over a 
homogeneous patch of evergreen needle-leaf forests in Western Russia. For each MODIS 
LAI bin, the corresponding AVHRR LAI values were averaged (red box) to reduce 
scatter. The error bars represent the dispersion of the AVHRR LAI values within each 
bin. 
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(a) (b) 

(c) (d) 

 
 
Figure 3.5 Panels (a) to (d) shows comparison between CYCLOPES and AVHRR LAI 
values for years 2001 to 2003 and different vegetation classes over the BELMANIP site 
database. The site numbers in the legend are given in Table B1 of Appendix B. 
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(a) 

(b) 

 

Figure 3.6 Trends in AVHRR LAI for the growing season, April to October, for the 
region 40o  N to 70o N, for the periods 1982 to 1999 (panel (a)) and 1982 to 2006 (panel 
(b)). For each 8 km AVHRR LAI pixel, the April to October mean LAI was regressed on 
time (years). The slope obtained from this regression, which if statistically significant 
based on the t-statistic at or lower than 10% level, was converted to a percent trend by 
multiplying by the number of years times 100 and dividing by the mean April to October 
AVHRR LAI of 1982. 
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(a) (b)

(c) (d)

 

Figure 3.7 Standardized April to October anomalies of AVHRR LAI (green), AVHRR 
NDVI (blue), and GISS Temperature (red dashed line) for Eurasian and North American 
needleleaf forests (panels (c) and (d)) and tundra (panels (a) and (b)) from 1982 to 2006. 
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(a) (b)

(c) (d)

 

Figure 3.8 Standardized anomalies of annual peak AVHRR LAI (green line), annual peak 
AVHRR NDVI (blue line) and annual peak (three wettest month CRU+TRMM) 
precipitation (red dashed line) for the semi-arid regions (panels (a)-(d)) from 1981 to 
2006. 
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(a) (b)

(c) (d)

 

Figure 3.9 Correlation between standardized time series of the first canonical factor (CF-
1, panels (a) and (c)) and second canonical factor (CF-2, panels (b) and (d)) with NINO3 
and AO indices in the northern and tropical/subtropical regions. 
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(a) 
(b) 

(c) 

(d) 

Figure 3.10 Panel (a) shows a comparison of AVHRR LAI with field measurements for 
the six major vegetation classes. Altogether 44 field data values were used (Table B2 of 
Appendix B). The AVHRR LAI product is an underestimate by about 7%. Panels (b)-(d) 
show the temporal profile of AVHRR LAI (blue line) and corresponding field values (red 
squares) for different vegetation classes. The vertical bars (red and blue) represent the 
standard deviation associated with the data. 
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Figure 3.11 Histograms from fine resolution LAI maps (blue color) and AVHRR LAI 
(red color) over different sites. Information about the sites is given in Table 3.4 together 
with values of accuracy and precision inferred from these distributions. 
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Chapter 4 

4. Climate and Land Use Impacts on Vegetation in the Semi-arid 

Tropics: A Case Study with the LAI Data Set 

4.1 Introduction 

 The semi-arid tropics are projected to be among the most hard hit areas by ongoing 

and future climate changes (Parry et al., 2007; Adeel et el., 2007). In these regions, 

reductions in vegetation productivity and expansion of desertification are expected to 

arise from drier conditions due to continued warming trends accompanied by a reduction 

in precipitation (IPCC 2007) and low adaptation capacity of the affected communities 

(Parry et al., 2007). Over the past recent decades, tropical dry lands have shown changes 

in climate that have resulted in average temperature increases in the range of 0.2-2 oC 

(IPCC 2007) and modest but less homogeneous increases in precipitation (Gu et al., 

2007; Zhang et al., 2007), more marked over ocean than over land. 

In spite of these climatic changes, which would suggest that tropical dry lands are 

already becoming drier, satellite observations of vegetation greenness provide evidence 

that, similar to other parts of the globe, and also over extensive portions of the semi-arid 

tropics regions, primary productivity has been on the rise (Tucker and Nicholson, 1999; 

Eklundh and Olsson, 2003; Pandya et al, 2004; Hermann et al., 2005). The availability of 

globally consistent climate datasets has led to investigating quantitatively the climatic 
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correlates of the global greening trends (Myneni et al., 1997; Kawabata et al., 2001; 

Nemani et al., 2003; Cao et al., 2004). Other driving factors, such as changes in land 

cover and land use (Xiao and Moody, 2005), and fertilization effects due to atmospheric 

increases in C and N (Ichii et al., 2002), have been invoked more loosely to explain the 

remaining portion of the trend and a quantitative analysis of the influence of these factors 

on vegetation dynamics is still missing. However, to assist in projecting the impacts of 

climate change on ecosystems and societies, it is crucial that the changes in the drivers of 

ecosystem dynamics are properly understood.  

With the goal of identifying the relative contributions and spatial distribution of 

climate, socio-economic and land use change in promoting the greening of the tropical 

dry lands, changes in leaf area index (LAI) (derived from GIMMS AVHRR Normalized 

Difference Vegetation Index (NDVI)) in conjunction with changes in climatic and land 

use data for the period 1981-2006 are analyzed in this chapter. The study focuses on the 

semi-arid tropics of the eastern hemisphere, where the largest contiguous dry lands are 

inhabited by close to 1.7 billion people (Table 4.1) and spread across 120 countries, most 

of which are among the poorest countries in the world and with the lowest human 

development index. First, the greening of the semi-arid tropics is compared with changes 

in precipitation across all the countries of the eastern hemisphere semi-arid tropics. 

Second, the changes in vegetation greenness in the context of changes in socio-economic 

and land use change data with a particular focus on India are analyzed, where high-

resolution data are available at the national scale. 
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4.2 Data and methods 

4.2.1 Normalized Difference Vegetation Index  

 The maximum value AVHRR NDVI composites (Holben, B., 1986) from the 

NASA GIMMS group at the Laboratory for Terrestrial Physics for the period July 1981 

to December 2006 is used in this study (Tucker et al., 2005). The GIMMS AVHRR data 

are at 8 km spatial resolution and 15-day frequency with a geographic latitude-longitude 

projection scheme. This data has been corrected for loss of calibration, view and solar 

zenith angle variations, contamination from volcanic aerosols, and other effects not 

related to vegetation change (Tucker et al., 2005; Pinzon et al., 2005). The maximum 

value compositing usually diminishes the effect of atmospheric artifacts like sensitivity of 

the AVHRR wide spectral bands to the presence of water vapor, ozone, etc (Brown et al., 

2006) as well as minimizes differences in the spectral properties, radiometric resolution, 

residual atmospheric effects, and, most important, minimizes cloud effects (Holben et al., 

1986). The 8 km GIMMS NDVI has been shown to represent with reasonable precision 

interannual variation of photosynthetic activity in global arid and semi-arid areas (Lostch 

et al., 2003; Anyamba et al., 2005).   

4.2.2 Leaf Area Index  

The long term global leaf area index (LAI) data set described in Chapters 2 and 3 is 

used in this study. The data span the period July 1981 to December 2006 at monthly 

interval. The LAI fields were derived from the maximum NDVI value global composites 
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of the AVHRR GIMMS data set, utilizing a physically based algorithm as described in 

Chapter 2. Analysis of this LAI dataset (Chapter 3) indicates that temporal trends in the 

LAI fields correspond well with existing trends in vegetation growth vis-à-vis 

temperature anomalies in the northern latitudes and rainfall anomalies in the semi-arid 

tropics (Section 3.4.1 and Section 3.4.2 in Chapter 3). Additionally, well correlated 

modes of variability between temperature, precipitation and greenness (LAI) were 

isolated and their relationship to large-scale circulation anomalies associated with the El 

Niño-Southern Oscillation (ENSO) and the Arctic Oscillation (AO) were assessed 

(Section 3.4.3 in Chapter 3). The consistent pattern among the independently derived data 

sets further confirm the reliability of the LAI data set in tracking inter-annual vegetation 

dynamics with respect to fluctuations in climatic factors.     

4.2.3 Precipitation 

 A 26-yr data set of gridded precipitation was compiled for this study. The data 

consists of 0.5o resolution monthly Climate Research Unit (CRU 2.0) data set (Mitchell et 

al., 2003), for the period 1981-2000, and, 0.25o resolution monthly Tropical Rainfall 

Measuring Mission (TRMM-3B43 v.6) (Huffman, et al., 2007) data set, for the period 

2001-2006. The CRU data set has a spatial coverage of -180o(W) to +180o(E) longitudes 

and +90o(N) to -90o(S) latitudes. The TRMM data set has a spatial coverage of -180o(W) 

to +180o(E) longitudes and +50o(N) to -50o(S) latitudes. The TRMM data set was 

degraded to 0.5o to make it spatially compatible with the CRU data set and create a 

continuous monthly precipitation record spanning 26 years i.e. 1981-2006. 
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4.2.4 Land cover 

 The Collection 4 (C4) land cover (biome classification map) data (MOD12Q1) and 

Collection 3 (C3) Vegetation Continuous Fields (VCF) product derived from MODIS are 

utilized in this study. The 1 km land cover type 1 data layer consists of fourteen classes as 

referenced by the IGBP classification scheme (Friedl et al., 2002). This land cover map 

was re-projected to the geographic latitude-longitude projection from its native ISIN 

projection and spatially degraded to a 8 km map by retaining the most frequently 

occurring land cover amongst the sixty four 1 km pixels. 

The VCF data contains the proportional estimates for vegetation cover types 

representing woody vegetation, herbaceous vegetation, and bare ground. The VCF data 

are at 500 m spatial resolution in a geographic latitiude-longitude projection and are 

available as continental grids (Hansen et al., 2003). The continental grids were mosaicked 

to a global grid and the re-sampling to 8 km was performed in a similar manner as the 

land cover data.  

4.2.4 Ancillary data  

 National time series on crop production, fertilizer use intensity, and irrigation were 

derived from the FaoStat database (http://faostat.fao.org/). Time series on population 

growth were extracted from the World Resource Institute Earthtrends database 

(http://earthtrends.wri.org/). Sub-national data on irrigated areas for India were obtained 

from Narayanamoorthy (2002) and from the Web Based Land Use Statistics Information 
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System of the Directorate of Economics and Statistics; Ministry of Agriculture of the 

Government of India, New Delhi (http://dacnet.nic.in/lus/). 

4.2.5 Methods 

 Annual maximum NDVI climatology was calculated to define the tropical dry lands 

and mask out the remaining pixels within 40oN and 40oS latitudinal band (Fig. 4.1). 

Pixels corresponding to tropical dry lands were selected as those with annual maximum 

NDVI climatology values in the range of 0.12-0.55, which generally correspond to areas 

with climatological precipitation of 700 mm/yr. The most frequent land cover types are 

shrublands, grasslands, croplands and, to a lesser extent, savannas (Fig. 4.2a). The 

frequency of herbaceous vegetation cover is also dominant in these areas (Fig. 4.2b).  

The LAI of semi-arid vegetation tends to fluctuate during the year depending on the 

vagaries of rainfall. Long term average LAI values may be expected to be more stable, 

unless major shifts in precipitation, land use practices, or a combination of both, affect an 

ecosystem. To characterize the spatial distribution of such persistent changes in dry land 

vegetation greenness and precipitation over the data record of period, the percentage 

change in decadal means of annual maximum LAI and precipitation were calculated. 

Here, annual maximum precipitation is defined as the total precipitation of the three 

wettest months during a year.  

 For representative countries in the study area, anomalies of annual maximum LAI 

and precipitation were correlated and compared with country-wide decadal changes in 

total food production, irrigation area, fertilizer use and macroeconomic indicators. The 
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countries included in this study did not have border changes during the 26 year period, 

had a considerable portion (at least 40 %) of their surface area within the tropical dry 

lands as defined above, and comprised at least 50 half-degree pixels to perform 

meaningful comparison with the precipitation data set. Additionally, areas with increased 

NDVI and the corresponding changes in net irrigated area were correlated at the state 

level to test the hypothesis that changes in land use due to expansion in irrigated areas 

have been a major driver of vegetation greenness in India.

4.3 Results and Discussion 

4.3.1 Climate-driven increases in LAI 

 Notable increases in annual maximum LAI is observed between the decade 1981-

1990 and 1995-2006 in over 70% of the tropical dry lands of the eastern hemisphere (Fig. 

4.3), encompassing Turkey, large portions of the Middle Eastern countries, the Sahel, 

Horn of Africa and Southern African countries, most of tropical Asia and portions of 

Australia. About 29% of the area reports decline in photosynthetic activity, principally 

distributed in eastern and southern Australia, South-west China, along the Namibian 

Desert, and other portions of the coast of Western Africa up to the Iberian Peninsula.  

In general, areas that have greened up within the semi-arid tropics show increases in 

precipitation over the two decades (Fig. 4.4). Increases in decadal precipitation are 

particularly marked along the Sudano-Sahelian semi-arid tropics, the Horn of Africa, the 

Middle East and Western Australia. More modest increases are found in most other 
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regions and are consistent with findings of increases in tropical land precipitation (Gu et 

al., 2007; Zhang et al., 2007), which could be a consequence of the recent warming trends 

(Wentz et al., 2007). Reduction in precipitation during the last decade of the order of 20-

40% appear in Egypt, southern Ethiopia and northern Kenya, and especially over 

Pakistan, Afghanistan and eastern Australia. 

To investigate whether the observed increases in photosynthetic capacity of the 

tropical dry lands of the Eastern Hemisphere are connected with local changes in 

precipitation amounts, detrended anomalies of annual maximum LAI were correlated 

with detrended anomalies of precipitation for the three wettest months in each major 

country included in the study area (Fig. 4.5, Table 4.1). For the countries of the Sahel, 

Sudan, Somalia, South Africa, Botswana and Australia, significant (p<0.05) positive 

linear correlations between the two variables are observed, supporting the hypothesis that 

changes in climate that brought increased rainfall especially since the early 1990’s over 

most of the subtropical semi-arid countries have helped promoting plant growth in these 

dryland regions. Trends in the Palmer Drought Severity Index (Dai et al., 2004), which 

integrates the atmospheric moisture with the evaporative demand of the vegetation, also 

point to an increased moisture availability of the tropical dry lands, and therefore 

enhanced vegetation growth. A recovery of total annual precipitation to the pre-1960’s 

levels and consequent greening trends over the Sahel have been particularly well 

described by Tucker and Nicholson (1999) and Eklundh and Olsson (2003). Precipitation 

in Turkey, Saudi Arabia and India has been modestly on the rise; however, it does not 

correlate with the greening. Finally, LAI has markedly increased even in countries 
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(Afghanistan, Egypt, Oman, Pakistan) where precipitation has declined in the recent 

decades, suggesting that land use change has been more important than climate in 

promoting vegetation growth in these regions. 

4.3.2 Land use change-driven increases in LAI  

 All of the major countries in the study area, with the exception of Somalia, reported 

an increase in total food production over the two decades of our study period (FAOstat, 

2007), indicating that land management and land use changes may have contributed to 

the observed greening, especially where this is not supported by the changes in 

precipitation. Along with increased precipitation, changes in land use such as transition 

from rainfed to irrigated agriculture and increases in consumption of mineral fertilizers, 

and probably other, less widely documented, improvements in agricultural practices and 

natural resource management (Tappan and McGahuey, 2007; Reij et al., 2005; Niemejer 

and Mazzucato, 2002) also likely to have contributed to the increases in photosynthetic 

activity recorded by the satellite data. 

 The role of land use changes, helped by even modest changes in climate, in 

promoting large scale increases in plant growth is particularly evident in India, where 

52% of the country’s land area is devoted to croplands (FAOStat 2007). While monthly 

average temperatures have been on the rise in India, monthly precipitation trends point to 

a modest redistribution of the monsoonal precipitation (Fig. 4.6) and no significant 

increasing trend in total precipitation has been detected (Goswami et al., 2006; Fig. 4.5). 

Yet, 80% of the semi-arid dry lands of India display significant increases in decadal LAI. 
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The analysis of the 1981-2006 trend in monthly LAI (Fig. 4.7) reveals that the largest 

increases in vegetation growth have occurred during the months of January and February, 

which correspond to the peak of the rabi cropping season. The rabi cropping season 

starts at the end of the summer monsoon (November) and extends through the following 

spring (February-May). Water for the rabi crops is supplied by the less abundant north-

east (winter) monsoon, by the moisture accumulated from the south west (summer 

monsoon) during the kharif season, or, increasingly, by irrigation. Irrigation, beyond 

making possible the cultivation of non-rainfed crops during the rabi season (i.e., a second 

rice crop), also supplements crop water requirements during the kharif season, when 

monsoon rains are delayed. It is therefore suggested that land use changes have been the 

principal driver of the signal of enhanced plant growth detected from satellite over this 

predominantly water-limited country.  

 To test this hypothesis, the surface area within each major Indian state that has a 

statistically significant trend in LAI during the period 1981-2006 is regressed against the 

corresponding change in net irrigated areas reported by the Directorate Of Economics & 

Statistics of the Indian Ministry Of Agriculture (Naraynamoorthy, 2002) for the same 

period (Fig. 4.8a). The regression indicates that the remarkable expansion in irrigated 

areas that took place in the country throughout the 1980s until the mid 1990s explains 

(R2=0.32, pvalue<0.05) the enhancement in photosynthetic activity observed over large 

portions of India. Figure 4.8b includes all pixels within each major Indian state with a 

positive trend in LAI for the period 1981-2006, thus suggesting the fact that different 
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regions may not have a consistent increase in vegetation over a longer time scale, but 

may show significant changes in vegetation even for smaller time scales.  

Noteworthy are the states of Madhya Pradesh and Rajasthan where decadal scale 

changes in LAI and changes in net irrigated area have been significantly higher than other 

states (Fig. 4.8 and Fig. 4.9). Large scale increases in decadal LAI are seen in Mandsaur, 

Jhalawar, Ujjain, Shajapur, Ratlam and Kota districts (Fig. 4.9). In particular, the semi-

arid region of Mandsaur district is spread over an area of 5554 Km2 with approximately 

~1600 inhabited villages and water for irrigation is sustained through several macro-level 

watersheds that are spread over an area of around 15500 hectares across the Sitamau and 

Mandsaur blocks (http://fes.org.in/includeAll.php?pId=Mi0yNi0z). These districts are 

under the coverage of the Chambal Valley Project, which facilitates large scale 

establishment of dams for providing hydro-electric power and water for irrigation and 

agricultural practices.  

Further enhancements to vegetation productivity can be explained by the increase in 

fertilizer use intensity that accompanies the resource-demanding high yield varieties of 

crops which tend to substitute traditional cultivars once the supply of water is ensured 

through irrigation (Fig. 4.10b) (Bhattaray and Naraynamoorthy, 2003; 

http://dacnet.nic.in/ ). As displayed in Figure 4.10a, currently in most Indian States, more 

than half of the cropped area is irrigated and increasingly the water used for irrigation is 

derived from groundwater sources, representing up to 80% of all water sources used for 

irrigation in some states, such as in Punjab and Uttar Pradesh (Naraynamoorthy, 2002). 

Access to microcredit and to heavily subsidized electric power have favored the 
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expansion of private wells to irrigate fields distant from major irrigation infrastructures 

(Shah, 2005), particularly benefiting the Indian agriculture by increasing crop yields and 

total food production, and, thus contributing to alleviating rural poverty.  

These greening trends, however, are not expected to continue to be as strong over 

these regions in the future. Over India, the annual LAI has already slowed down, and it is 

reflected in a flattening of growth in total food production (FAOStat, 2007). The reasons 

for this slowdown are complex. Since the mid 1990’s, a number of basins are 

increasingly suffering from groundwater overexploitation and are at risk of salinization 

(http://cgwb.gov.in/gw_profiles) and commodity prices have been declining due to 

globalization (Narayanamoorthy, 2007), reducing the farmers potential investments in 

production. While these factors can be reversed through increased irrigation efficiency 

and proper policy, the current trends in climate, if here to stay, will further dampen the 

trends. 

4.4 Conclusions 

 Widespread portions of the tropical dry lands of the densely populated and 

developing eastern hemisphere have shown marked trends in vegetation productivity over 

the period 1981-2006 as measured by the 26 years of monthly LAI data. For most of the 

countries belonging to Africa’s dry lands and Australia, an increase in peak annual 

precipitation can be identified as the principal driver of the greening. In countries such as 

Turkey, Saudi Arabia and India, the analysis suggests that over the study period, although 

climate has been favorable to vegetation growth, the main driver of greening trend have 

 



106 

been land cover changes associated with the expansion of irrigation. However, predicting 

whether the greening trends in India and in other countries of the semi-arid tropics 

undergoing rapid socio-economic change will continue, flatten or decline will likely 

depend from a variety of climatic, land use management and policy factors. Projecting 

how future climate changes will impact the tropical dry lands is a difficult task as it will 

depend on biophysical feedbacks and on societal and economic behaviors caused by 

adaptation but also forces of globalization. Establishing what causes the changes in 

vegetation dynamics is the first step to improve our skill in such projections and 

assessments.   
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(a) 

 
 (b) 

 
 

Figure 4.1 Panel (a) shows colormap of peak annual NDVI climatology. Peak annual 
NDVI climatology was calculated by first estimating the 26-yr (1981-2006) mean of 
monthly NDVI (monthly NDVI climatology) and then selecting the maximum value (per 
pixel, from 12 monthly climatological NDVI values). A spatial mask was applied on the 
colormap based on peak annual NDVI climatology values in the range of 0.12-0.55. 
Panel (b) shows the spatial frequency distribution (number of pixels) of peak annual 
NDVI climatology values in the range 0.12-0.55. 
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(a) 

 (b) 

 
 

Figure 4.2 Percentage distribution of IGBP land cover classes (Panel (a)) and frequency 
distribution of bare (red), herbaceous (blue) and tree (black) cover from MODIS VCF 
map - expressed as percentage of total number of pixels (Panel (b)) for peak annual 
NDVI climatology range of 0.12-0.55. 
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Figure 4.3 Colormap of percentage change in mean peak annual LAI between decade 1 
(1981-1990) and decade 2 (1995-2006). For each year in a decade, the maximum/peak 
LAI was selected (per pixel from 12 LAI values). The mean peak LAI was calculated for 
each decade. Finally, the percentage change was calculated as [100*(mean peak LAI 
decade2 – mean peak LAI decade1)/(mean peak LAI decade1)]. A spatial mask was 
applied on the colormap based on peak annual NDVI climatology values in the range of 
0.12-0.55 (all values outside this range appear in gray – masked out). 
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Figure 4.4 Colormap of percentage change in mean peak annual precipitation (mm/yr) 
between decade 1 (1981-1990) and decade 2 (1995-2006). The peak precipitation for 
each year was calculated by summing the precipitation in three wettest months. The mean 
peak annual precipitation was calculated for each decade. Finally, the percentage change 
was calculated as [100*(mean peak annual precipitation decade2 – mean peak annual 
precipitation decade1)/(mean peak annual precipitation decade1)]. A spatial mask is 
applied on the colormap based on peak NDVI climatology values in the range of 0.12-
0.55 (all values outside this range appear in gray – masked out). 
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Figure 4.5 Plots of peak annual LAI anomaly and peak annual rainfall anomaly for 8 
representative countries in the study region – Australia, Botswana, India, Mali, Niger, 
Saudi Arabia, South Africa and Turkey. Peak annual LAI anomaly was calculated as  
(peak annual LAI – peak annual LAI climatology). Peak annual precipitation anomaly 
was calculated as (peak annual precipitation – peak annual precipitation climatology). 
Peak annual precipitation climatology is the 26-yr (1981-2006) mean of peak annual 
precipitation. For each country the mean of all anomaly pixels in the peak annual NDVI 
climatology range of 0.12-0.55 was calculated and plotted for each year. 
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Figure 4.6 Monthly average temperature and monthly precipitation trend for India in the 
1980’s and 1990’s.  
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Figure 4.7 Long term mean monthly LAI (red line) and percent trend in monthly LAI 
(green line) for India over the time period 1981-2006. The long term mean monthly LAI 
was calculated by averaging the maximum monthly LAI of each pixel over the time 
period 1982-2006. The spatially averaged mean monthly LAI is then plotted for each 
month. The monthly trend of LAI is calculated as the slope of a linear regression fitted 
through the spatially averaged maximum LAI of each month as a function of the time 
period 1982-2006. The percent trend is then calculated as: LAI trend (%) = [slope * 
26/1982 monthly maximum LAI]*100. Only pixels falling within the peak annual NDVI 
climatology mask of 0.12-0.55 were considered in the calculation. 
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Figure 4.8 Panel (a) shows cross plot between area with increased LAI (pixels with 
statistically significant (pvalue<0.05) positive LAI trend during the period 1981-2006) 
within each major Indian state and change in net irrigated area over the same period. 
Panel (b) is a similar plot as panel (a) but with all pixels with positive LAI trend during 
the same period.  
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Figure 4.9 Percentage change in mean peak annual LAI as in Fig. 4.3 for the semi-arid 
districts of Mandsaur (State: Madhya Pradesh), Kota (State: Rajasthan), Jhalawar (State: 
Rajasthan) and Ujjain (State: Madhya Pradesh) in India. Decadal scale change in LAI 
shows a percent increase of more than 50% in these districts. The black boundaries are 
state boundaries, while the white boundaries depict district level partition. 
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(a) 

 
 

 

(b) 

 
Figure 4.10 The percentage of cropped area that is irrigated (blue bar) and percentage of 
irrigated land utilizing groundwater (green bar) for each of the major Indian states (Panel 
(a)). Panel (b) tabulates the fertilizer consumption (kg/Ha) and fraction irrigated sown 
area (in %) for different states (year 2002-2003) and shows the corresponding regression 
relation (orange squares represents states). 
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Chapter 5 

5. Concluding remarks 

 The monitoring and modeling of the terrestrial biosphere within the larger context 

of climate variability and change studies requires multi-decadal time series of key 

biophysical variables characteristic of vegetation structure and functioning (NRC 

Decadal Survey, 2007; GCOS 2  Adequacy Report, 2007). Prior research (cf. Sections 

1.1.1.1 and 1.1.1.2) has shown the relevance of vegetation in studies of land use and 

cover change, terrestrial productivity and modeling of biogeochemical cycles and climate 

(cf. Section 1.1.2). Consequently, there is now a pressing need to develop methodologies 

for generating long-term Earth System Data Records (ESDRs) from remote sensing data 

collected with different sensors over the past three decades.  

nd

LAI and FPAR are well defined and measurable characteristics of vegetation and 

are independent of the properties of satellite sensors, although, due to differences in 

sensor characteristics and methodological issues, it is a challenging task to build a 

seamless consistent long term data record of these biophysical variables from multiple 

sensors. A key step in assembling these long-term data records is establishing a link 

between data from earlier sensors (e.g. AVHRR) and present/future sensors (e.g. MODIS 

TERRA, NPOESS) such that the derived products are independent of sensor 

characteristics and represent the reality on the ground both in absolute values and 

variations in time and space (Van Leeuwen et al., 2006). Multi-decadal global data sets of 

LAI and FPAR of known accuracy and produced with a physically based algorithm are 
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currently not available, although several recent attempts have resulted in shorter term 

research quality data sets from medium resolution sensor data (Knyazikhin et al., 1998a; 

Gobron et al., 1999; Chen et al., 2002; Yang et al., 2006a; Plummer et al., 2006; Baret et 

al., 2007). Thus the objective for this research was to formulate and demonstrate the 

performance of a synergistic approach for retrieving LAI and FPAR from measurements 

of multiple sensors.  

Three specific themes are addressed in this dissertation. The first is regarding the 

challenges underlying the generation of continuous time series of biophysical variables 

from multiple sensors, that addresses methodological issues in remote sensing science 

and differences in sensor properties. In general, ESDR (Earth System Data Record) 

algorithms ingesting data from different instruments should account for differences in 

spatial resolution, spectral characteristics, uncertainties due to atmospheric effects and 

calibration, information content, etc. The theoretical approach of our algorithm is based 

on the radiative transfer theory of spectral invariants. Accordingly, the canopy spectral 

Bidirectional Reflectance Factor (BRF) is parameterized in terms of a compact set of 

parameters – spectrally varying soil reflectances, single scattering albedo, spectrally 

invariant canopy interceptance, recollision probability and the directional escape 

probability. This approach ensures energy conservation and allows decoupling the 

structural and radiometric components of the BRF. 

According to the formulated theory, the single scattering albedo accounts for the 

dependence of BRF on sensor’s spatial resolution and spectral bandwidth. Another 

parameter that accounts for variation in the information content of the remote 
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measurements is the data uncertainty. Both single scattering albedo and data uncertainty 

are two key configurable parameters in the multi-sensor retrieval algorithm. The 

algorithm supports two modes of operation: the MODIS mode (retrievals from BRF) and 

the AVHRR mode (retrievals from NDVI). In both cases, the algorithm simulates similar 

mean LAI values with differences in corresponding dispersions indicating varying input 

information content (MODIS BRF vs. AVHRR NDVI) and related uncertainties. Overall, 

the problem of generating LAI/FPAR is reduced to the problem of finding values of data 

uncertainty and single scattering albedo for which: (a) the consistency requirements (cf. 

Section 2.2) for retrievals from MODIS and AVHRR are met; (b) the difference between 

MODIS and AVHRR LAI/FPAR values is minimized; (c) the probability of retrieving 

LAI/FPAR is minimized.  

The second theme of this dissertation is implementation of the physically based 

multi-sensor algorithm for retrieving global fields of LAI from GIMMS AVHRR NDVI 

for the period July 1981 to December 2006, and subsequent evaluation of the new global 

monthly AVHRR LAI data set for its validity and accuracy. The evaluation of the data set 

is done both through direct comparisons to ground data and indirectly through inter-

comparisons with similar data sets. This included comparisons with existing LAI 

products (MODIS and CYCLOPES LAI products for the 2000 to 2003 period of overlap) 

at a range of spatial scales, and correlations with key climate variables in areas where 

temperature and precipitation limit plant growth. Overall, there is good agreement 

between the AVHRR and MODIS data sets at scales ranging from global to regional to 

pixel. At the global scale, the AVHRR values explain 97.5% of the variability in the 
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MODIS product and will be in error in their estimation by 0.18 LAI, on average. The 

regional and pixel-scale inter-comparison suggests an average error of less than 0.3 LAI. 

Comparison with CYCLOPES LAI indicates satisfactory agreement in most of the 

biomes with RMSE values less than 0.5 LAI.  

The data set was also analyzed to reproduce well-documented spatio-temporal 

trends and interannual variations in vegetation activity in the northern latitudes where 

temperature limits plant growth, and in semi-arid areas where precipitation limits plant 

growth. Additionally, to assess the mechanistic basis underlying the observed correlations 

between LAI and temperature in the northern latitudes and LAI and precipitation in the 

semi-arid tropics, a multivariate data-reduction technique (canonical correlation analysis) 

was used to isolate well correlated modes of spatio-temporal variability between LAI and 

the climate variables. The isolated modes suggest El Niño-Southern Oscillation and 

Arctic Oscillation as key drivers of linked interannual variations in vegetation greenness 

and precipitation in the semi-arid regions and, vegetation greenness and surface 

temperature in the northern latitudes, respectively.  

The derived LAI data were compared to field measurements and high-resolution 

LAI maps from a host of field sites representative of all the major vegetation classes. The 

comparison with plot scale measurements over biome specific homogeneous patches 

indicates a 7% underestimation in the AVHRR LAI when all major vegetation types are 

considered. The error in mean values obtained from distributions of AVHRR LAI and 

high-resolution field LAI maps for different biomes is within 0.6 LAI, with the exception 

of a broadleaf evergreen forest site. These validation exercises though limited by the 
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amount of field data, and thus less than comprehensive, nevertheless indicate satisfactory 

comparability between the LAI product and field measurements. In summary, the inter-

comparison with other short-term LAI data sets, evaluation of long term trends with 

known variations in climate variables, and validation with field measurements together 

build confidence in the utility of this new 26 year LAI record for long term vegetation 

monitoring and modeling studies. 

The third and final theme of this dissertation is a case study of interpreting climate 

and land use impacts on vegetation in the semi-arid tropics utilizing the long term LAI 

data set. Results indicate that widespread portions of the tropical dry lands of the densely 

populated and developing eastern hemisphere have experienced marked trends in 

vegetation productivity over the period 1981-2006 as measured by the 26 years of 

monthly LAI data. Notable increases in annual maximum LAI are observed between the 

decade 1981-1990 and 1995-2006 in over 70% of the study area, encompassing Turkey, 

large portions of the Middle Eastern countries, the Sahel, Horn of Africa and Southern 

African countries, most of tropical Asia and portions of Australia. About 29% of the area 

shows decline in photosynthetic activity, principally distributed in eastern and southern 

Australia, along the Namibian Desert, and other portions of the coast of Western Africa 

up to the Iberian Peninsula. For most of the countries belonging to Africa’s dry lands and 

Australia, an increase in peak annual precipitation can be identified as a the principal 

driver of greening.  

In countries such as Turkey, Saudi Arabia and India, the analysis suggests that over 

the study period, although climate has been favorable for vegetation growth, the main 
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driver of greening trend has been land cover changes associated with the expansion of 

irrigation. About 80% of the semi-arid dry lands of India display significant increases in 

decadal LAI, despite no significant trend in total precipitation. The analysis of the 1981-

2006 trend in monthly LAI reveals that the largest increases in vegetation growth have 

occurred during the months of January and February, which correspond to the peak of the 

rabi cropping season (predominantly irrigation driven). Further analysis suggest that land 

use changes have been the principal driver of enhanced plant growth in this 

predominantly water-limited country. However, predicting whether the greening trends in 

India and in other countries of the semi-arid tropics undergoing rapid socio-economic 

change will continue, flatten or decline will likely depend on a variety of climatic, land 

use management and policy factors. Projecting how future changes will impact the 

tropical dry lands is a difficult task as it will depend on biophysical feedbacks and on 

societal and economic behaviors caused by adaptation but also forces of globalization. 

Establishing what causes the changes in vegetation dynamics is the first step to improve 

our skill in such projections and assessments. 

The results presented in this dissertation are the first comprehensive analysis of a 

physically derived multi-decadal global data set of LAI. They imbue confidence in 

utilizing this seamless, consistent product for large scale terrestrial-biosphere models and 

for monitoring global vegetation dynamics. Despite the robustness of the methodological 

approach and accuracy of the derived product, there are inevitably certain limitations. 

First, data measurement uncertainties from different sensors can significantly impact the 

retrieval of a biophysical product. This requires better calibration and atmospheric 
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correction algorithms, along with solar and view angle corrections for surface reflectance. 

Secondly, global retrievals of biophysical products utilize land cover classification maps 

which set the basis for identifying the spatial heterogeneity of biome distribution. 

Classification inaccuracies are a critical factor, especially for those cases where regions 

show dramatic changes in land cover dynamics (for e.g. changes from herbaceous to 

woody biomes). The validity of the LAI product during the 1980’s and 90’s represents a 

more challenging problem in terms of land cover dynamics as the present algorithm relies 

on a single land cover map for the entire period. Thirdly, the retrieval of LAI is an ill 

posed problem and an optimal combination of data information content and overall 

uncertainty is key to achieving continuity in multi-sensor times series of LAI products. 

The dispersion of the retrieved LAI solution set can be minimized provided the input data 

has more spectral information. In general, a larger volume and higher accuracy of 

measured information corresponds to a better localized set of solutions (LAI values close 

to ground truth). Finally, direct validation of coarse resolution products with ground 

measurements is a complicated task due to reasons pertaining to scaling of plot level 

measurements to sensor resolution, geo-location uncertainties, limited temporal and 

spatial sampling of ground data, field instrument calibration, sampling errors, etc 

(Buermann et al., 2002; Tan et al., 2005; Huang et al., 2006; Yang et al., 2006a ; Weiss et 

al., 2007). The accuracy of the direct validation exercise is a function of area 

homogeneity as comparing field level measurements with larger pixels of a satellite 

product is a valid exercise only if performed over regions with same land cover type.  

In the future, this research could continue along the following directions: 

 



125 

a) The proposed approach for retrieving the LAI fields can be applied to AVHRR 

surface reflectance data. Efforts are underway to perform rigorous physically based 

calibration and atmospheric correction to achieve consistency with the MODIS surface 

reflectance data (Vermote and Saleous, 2006). Once the data are available from 1981 

onwards, the algorithm can be applied to generate LAI fields with better retrieval 

accuracy and precision (higher information content; cf. Section 2.6).  

b) The scale dependency is a critical issue in retrieving LAI across multiple sensors. 

The scaling methodology described in this research can be seen as a benchmark for 

retrieving LAI fields at any given resolution for any given sensor. The single scattering 

albedo depends on the scale at which it is defined. For e.g., the single scattering albedo of 

a needle, shoot, branch, tree crown, etc., are different. The theory of canopy spectral 

invariants will thus provide a framework through which structural information can be 

maintained in a self-consistent manner across multiple scales (cf. Section 2.4). In a 

similar way, the single scattering albedo will also account for the sensitivity in the 

spectral bandwidths (cf. Section 2.5). This algorithm can thus be applied to retrieve LAI 

at finer resolutions (e.g. Landsat), thus allowing to better capture the spatial heterogeneity 

of leaf dynamics. In the future, to ensure data continuity of LAI, surface reflectances 

from VIIRS onboard NPOESS should be analyzed to maintain product consistency with 

the AVHRR and MODIS data.  

c) Discrepancies between field measurements and satellite observations also arise 

due to the scaling problem. The understanding of scale dependency from this work will 

facilitate an improved validation scheme to better compare coarse resolution retrievals 

 



126 

with field measurements (cf. Section 3.5), as well as explain the physics behind inter-

comparing data of different resolutions and from multiple sensors (cf. Section 3.3.3).  

d) The consistent long term data record of LAI and FPAR can be utilized to produce 

a long term GPP/NPP time series based on the MODIS NPP logic (Nemani et al., 2003). 

NPP is the source of most food, fiber and fuel, and changes in NPP integrate climatic, 

ecological, geochemical, and human influences on the biosphere (Nemani et al., 2003). 

NPP algorithm inputs vegetation parameters (Land cover type, LAI, FPAR) and daily 

climate data (incident solar radiation (IPAR), minimum and average air temperatures and 

humidity). NPP estimates are sensitive to uncertainties in input LAI/FPAR (e.g. 

differences in LAI from multiple sensors) and hence the product from this research will 

hopefully improve future NPP estimates.  

e) The multiyear global LAI data set will be a significant input to different climate 

models (cf. Section 1.1.2) for investigating the response of ecosystems to changes in 

climate, carbon cycle, land cover and land-use. An improvement over the long term data 

set would be to further create a consistent dynamic vegetation layer or an improved 

phenology record covering the AVHRR, MODIS and NPOESS eras. The algorithm 

proposed in this research also accounts for generating consistent surface reflectances 

across multiple sensors, thus extending the scope of this study to create consistent 

vegetation indices such as the enhanced vegetation index (EVI). EVI has improved 

sensitivity in high biomass regions and improved vegetation monitoring through a de-

coupling of the canopy background signal and a reduction in atmosphere influences 

(Huete et al., 2002). Overall, long term global data sets of leaf area index and phenology 

 



127 

with a monthly temporal resolution will be an indispensable input to coupled climate-

vegetation-land-surface models to quantify global land cover change and terrestrial 

productivity in the context of climate change, land use change and anthropogenic 

influences.  

f) Finally, following the case study in Chapter 4, research can be extended to 

develop a deterministic model for anticipating changes in crop productivity and/or 

vegetation greenness due to continued warming over the semi-arid tropical regions (as 

projected in the IPCC 2007), especially in countries like India and China and in the 

Sahel. A convincing stride would be to explore the further sustainability of the greening 

trend as observed in a developing and highly populated country like India, where the 

greening due to land use change is dominant and countries in the Sahel, where 

precipitation induced greening is significant. Due to over exploitation of groundwater for 

irrigation, changes in policies subsidizing crop inputs and subsequent projections in 

future warming trends, it will be a challenging food security scenario for a large number 

of developing countries with rapidly increasing population in the semi-arid tropics. 
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Appendices 

Appendix A: Analytical expression of the “S” problem 

 The second term on the right hand side of Eqs. (4) and (5) describes the 

contribution of multiple interactions between the ground and the canopy to the total 

canopy BRF and absorptance. Let the downward flux at the surface level be tBS,λ in the 

case of a black surface. The incoming flux after interacting with the ground will act as the 

initial source at the surface. The reflected radiation flux (tBS,λ . ρsur,λ) will interact with the 

canopy further and return to the surface (tBS,λ . ρsur,λ . rS,λ), where ρsur,λ and rS,λ  are the 

hemispherically integrated ground and canopy reflectance, respectively. Let JS,λ(Ω) be 

the radiance from the Lambertian surface for a unit radiant exitance. Taking into account 

that the radiant exitance at the first interaction is (tBS,λ . ρsur,λ), the corresponding radiance 

from the surface can be expressed as (JS,λ(Ω). tBS,λ . ρsur,λ.). The total radiance, S, can be 

expressed as the sum of successive orders of scattering, 

S= tBS,λ ρsur,λ JS,λ(Ω)+ρ2
sur,λ rS,λ tBS,λ JS,λ(Ω)+ρ3

sur,λ r2
S,λ tBS,λ JS,λ(Ω)+ …  

 … +ρn
sur,λ rn-1

S,λ tBS,λ JS,λ(Ω) 

where n is the order of scattering. The above geometric series can be rewritten in the 

closed form 
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The spectral invariant approximations for tBS,λ  and JS,λ(Ω) are 
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where, the term t0 is the zero order direct transmittance, T1(Ω)= τ1(Ω)i0 and T2(Ω)= 

τ2(Ω)pti0. τ1 and τ2 are probabilities that the scattered photons can escape the lower 

boundary of the canopy. J0, J1(Ω) and J2(Ω) are analogous to t0, T1(Ω) and T2(Ω). The 

term tBS,λ is the sum of the two components. The first is the zero order or uncollided 

transmittance, t0=1 – i0, which is defined as the probability that a photon in the incident 

flux will arrive at the bottom of canopy without suffering a collision. The second 

component represents transmittance of the diffuse radiation, i.e., the probability that a 

photon will exit the vegetation canopy through the lower boundary after one or more 

interactions. The expression for diffuse transmittance is obtained by hemispherically 

averaging Eq. (1) over downward directions. The expression for spectral reflectance, rS,λ , 

is obtained by hemispherically integrating Eq. (1), formulated for i0,S instead of i0, over 

the upper hemisphere, 
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Appendix B: Ancillary tables 

Table B1. BELMANIP sites used for CYCLOPES LAI and AVHRR LAI inter-
comparison 

 
Site name (Country) Site 

ID 
Lat Lon Biome Type 

ARM/CART Shilder (USA) 32 36.93oN 96.86oW Grasses 
Konza (USA) 36 39.08oN 96.57oW Grasses 
Larzac (France) 44 43.93oN 3.12oE Grasses 
Barrax (Spain) 35 39.07oN 2.10oW Broadleaf crops 
Alpilles (France) 43 43.80oN 4.74oE Broadleaf crops 
Plan-de Dieu (France) 45 44.20oN 4.95oE Broadleaf crops 
Fundulea (Romania) 47 44.40oN 26.58oE Broadleaf crops 
Tshane (Botswana) 7 24.00oS 21.83oE Savannas 
Okwa (Botswana) 8 22.40oS 21.71oE Savannas 
Mongu (Zambia) 11 15.44oS 23.25oE Savannas 
Burkina, Ghana (Burkina 
Faso) 

385 10.86oN 3.07oW Savannas 

Kejimikujik (Canada) 48 44.35oN 65.19oW Needle leaf forests 
Thompson, Manitoba 
(Canada) 

81 56.05oN 98.15oW Needle leaf forests 

NOBS-BOREAS NSA 
(Canada) 

82 53.66oN 105.32oW Needle leaf forests 

Jarvselja (Estonia) 85 58.30oN 27.26oE Needle leaf forests 
Ruokolahti (Finland) 88 61.52oN 28.71oE Needle leaf forests 
Hirsinkanjas (Finland) 89 62.64oN 27.01oE Needle leaf forests 
Flakaliden (Sweden) 90 64.11oN 19.47oE Needle leaf forests 
Rovaniemi (Finland) 66.45oN 25.34oE Needle leaf forests 91 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



131 

Table. B2. Summary of MODIS LAI Field Campaigns used for Validation with 
AVHRR LAI 

 
Site 

(Country) 
Lat/Lon Biome Type Date  LAI 

Bondville, 
Illinois 
(AGRO, USA) 

40.007oN/ 
88.292oW 

Broadleaf Crops Aug 2000 3.60 

Fundulea 
(Romania) 

  44.410oN/ 
26.570oE 

Broadleaf Crops (Mar, May) 2001 
Jun 2002 
(May, Jun) 2003 

1.071, 1.878 
1.309 
1.063, 1.10 

Barrax 
(Spain) 

39.060oS/ 
2.100oW 

Broadleaf Crops Jul 2003 0.965 

Alpilles 
(France) 

43.810oN/ 
4.750oE 

Grasses/ 
Cereal Crops 

Mar 2001 
Jul 2002 

0.928 
1.054 

Haouz 
(Morocco) 

31.660oN/ 
7.600oW 

Shrubs Mar 2003 1.20 

Turco 
(Bolivia) 

18.240oS/ 
68.200oW 

Shrubs Apr 2003 0.10 

Konza Prairie 
(USA) 

39.080oN/ 
96.570oW 

Grasses Jun 2000 1.96 

Dahra  
(Senegal) 

15.350oN/ 
15.480oW 

Grasses/ 
Savannas 

Aug 2001 
Aug 2002 

2.00 
0.40 

Pandamatenga 
(Botswana) 

18.650oS/ 
25.500oE 

Savannas Mar 2000 1.24 

Maun 
(Botswana) 

19.920oS/ 
23.600oE 

Savannas Mar 2000 1.52 

Mongu 
(Zambia) 

15.440oS/ 
23.253oE 

Savannas Apr 2000 
Sep 2000 

1.90 
0.80 

Tessekre 
North 
Tessekre 
South 
(Senegal) 

15.810oN/ 
15.070oW 

Shrubs 
 
Shrubs 

Aug 2002 
 
Aug 2002 

0.35 
 
0.30 

Tshane 
(Botswana) 

24.160oS/ 
21.893oE 

Savannas Mar 2000 0.78 

Okwa 
(Botswana) 

22.400oS/ 
21.713oE 

Savannas Mar 2000 1.28 

Hirsikangas 
(Finland) 

62.520oN/ 
27.030oE 

Needle Leaf 
forests  

Aug 2003 
Jun 2005 

2.548 
1.419 

Ruokolahti 
(Finland) 

61.320oN/ 
28.430oE 

Needle Leaf 
forests 

Jun 2000 2.06 

Harvard Forest 
(HARV, USA) 

42.530oN/ 
72.173oW 

Deciduous 
Broadleaf forests 

Jul 2000 
Jul 2001 

5.08 
5.50 

Wisconsin 
(USA) 

45.800oN/ 
90.080oW 

Deciduous 
Broadleaf forests 

May 2002 
Jul 2002 

1.70 
5.70 

Concepcion 37.467oS/ Evergreen Jan 2003 3.096 
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73.470oE (Chile) Broadleaf forests 
Demmin 
(Germany) 

53.892oN/ 
13.207oE 

Broadleaf Crops Jun 2004 2.632 

Jarvselja 
(Estonia) 

58.292oN/ 
27.260oE 

Needleleaf 
forests 

Jul 2000 
Jun 2001 
Jun 2002 

2.925 
2.75 
4.201 

Laprida 
(Argentina) 

36.990oS/ 
60.552oW 

Grasses Nov 2001 
Oct 2002 

4.124 
1.923 

Larose 
(Canada) 

45.380oN/ 
75.217oW 

Needleleaf 
forests 

Aug 2003 3.581 

Nezer 
(France) 

44.567oN/ 
1.038oW 

Needle Leaf 
forests 

Jul 2000 
Apr 2001 
Apr 2002 

1.443 
1.435 
1.331 

Plan-de-Dieu 
(France) 

44.198oN/ 
4.948oE 

Broadleaf Crops Jul 2004 0.469 

Rovaniemi 
(Finland) 

66.455oN/ 
25.351oE 

Needleleaf 
forests 

Jul 2004 
Jun 2005 

1.248 
1.401 

Sud_Ouest 
(France) 

43.506oN/ 
1.237oE 

Broadleaf Crops Jul 2002 1.228 

Wankama 
(Niger) 

13.644oN/ Grasses Jun 2005 0.081 
2.635oE 

 
The references regarding further description of site characteristics are provided in Table I 
of Yang et al., 2006a and Table 3.4 of Chapter 3.  
Detailed methodologies and documentation of field campaigns can be obtained from 
http://mercury.ornl.gov/ornldaac/ and http://lpvs.gsfc.nasa.gov/lai_intercomp.php.  
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