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Abstract 

Previously disturbed and regenerating forests make up a significant proportion of the North 

American land area, and therefore play an important role in the exchanges of heat and trace gases 

between the terrestrial biosphere and the atmosphere. Assessment of local to global variability in 

CO2 exchanges by forests requires a combination of CO2 measurements made by eddy covariance 

(EC), field measurements, remote sensing data, and ecosystem models. The integration of these is 

problematic because of a mis-match in scale between measurement techniques. Despite the 

importance of regenerating forests on the global carbon balance, the processes affecting the 

carbon cycle within these forests is not well understood.  

 

Airborne scanning light detection and ranging (lidar) instruments provide new opportunities to 

examine three-dimensional forest characteristics from the level of individual trees to ecosystems 

and beyond. Lidar is therefore an effective link between plot measurements, eddy covariance, and 

low resolution remote sensing pixels. This thesis dissertation presents new science on the use of 

airborne lidar for evaluating remote sensing products within heterogeneous and previously 

clearcut ecosystems. The goals of this thesis were to first understand the processes affecting CO2 

exchanges within a previously disturbed boreal jack pine chronosequence located in 

Saskatchewan, Canada and then to apply this understanding to evaluate low resolution remote 

sensing data products from the Moderate Resolution Imaging Spectroradiometer (MODIS) using 

airborne lidar. 

 

The first objective of this dissertation examined the factors that control light use efficiency (LUE) 

within the jack pine chronosequence during dry and wet years. The second objective examined 

the importance of vegetation structure and ground surface elevation on CO2 fluxes within a 
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mature jack pine forest. The third objective developed and tested a simple model of lidar 

fractional cover and related this to the fraction of photosynthetically active radiation absorbed by 

the canopy (fPAR). This was then used to evaluate the MODIS fPAR product across the lower 

part of a watershed. Finally, the fourth objective was to model gross primary production (GPP) 

from airborne lidar. Lidar estimates of GPP were then compared with those from the EC system 

at the jack pine chronosequence and with the MODIS GPP (Collection 5) product.  
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Chapter 1 

Introduction 

1.1 Background 

Forests play an important role in the global carbon cycle. The ability of forest ecosystems to use 

carbon dioxide (CO2) and water for photosynthesis in parallel with the amount released to the 

atmosphere via ecosystem respiration is strongly dependent on stand age, management practices, 

species composition, meteorological conditions, and phenology (e.g. Law et al. 2002; 

Morgenstern et al. 2004; Arain and Restrepo-Coupe, 2005). The difference between carbon 

uptake (i.e., photosynthesis) and carbon release (i.e., respiration) by ecosystems has critical 

implications for national climate change policy on an annual basis (IPCC, 2007).  

 

The variability of CO2 fluxes within young and regenerating forests is not well-understood, yet 

regenerating forests make up a significant component of the land surface. Young forests release 

CO2 into the atmosphere until a certain age is reached when more CO2 is used for photosynthesis 

than is released. The contribution of CO2 to the atmosphere by young and newly regenerating 

stands can be significant (e.g. Law et al. 2002). Cohen et al. (1995) suggest that more than 90% 

of forests within the Pacific Northwest of the United States have been replaced by young conifer 

plantations. The State of Canada�s Forests 2005-2006 (Canadian Forestry Service 

http://cfs.nrcan.gc.ca/sof/sof06/for_stat_trd_e.html) show that forests occupy approximately 46% 

of the Canadian landmass, of which, approximately 3.4% are disturbed each year by harvesting 

(0.2%), forest fires (0.5%) and insect defoliation (2.7%). Therefore, understanding and 

quantifying nutrient cycling processes, atmospheric driving mechanisms, and disturbance types 
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affecting young and regenerating stands is important, especially within the context of the national 

carbon balance.  

 

Fluxnet-Canada (2002-2007) and the Canadian Carbon Program (2007-2010) have, in part, 

focused on the effects of disturbance type and age on the carbon cycle through close examination 

of processes at regenerating and mature forest stands across Canada (e.g. Arain and Restrepo-

Coupe, 2005; Amiro et al. 2006; Giasson et al. 2006; Humphreys et al. 2006; Peichl and Arain, 

2006; Schwalm et al. 2006). Eddy covariance (EC) is often used to quantify differences in CO2 

uptake and release by measuring the concentration and direction of movement of trace gases in 

the atmosphere. Up to 400 EC systems measuring CO2, H2O and energy exchanges between 

ecosystems and the atmosphere have been deployed over the past 10 years, mostly in areas of 

fairly flat and uncomplicated terrain (http://daac.ornl.gov/FLUXNET/). The EC system measures 

detail ecosystem fluxes at temporal scales ranging from seconds to multiple years, and typically 

sample the ecosystem immediately surrounding the EC system. EC systems are also prone to 

measurement error, and its use is limited in areas of complex terrain and during low wind speeds 

(e.g. Massman and Lee, 2002; Baldocchi, 2008). 

 

Another method for measuring changes in vegetation health and above-ground biomass is through 

remote sensing. Remote sensing: a) passively measures the absorption, transmission or reflection 

of sunlight (or energy) from the earth�s surface within discrete electromagnetic wavelengths (or 

bands); or b) actively emit pulses of energy, which provide an estimate of the three-dimensional 

properties of the earth�s surface. The Moderate Resolution Imaging Spectroradiometer (MODIS) 

is an example of a passive sensor and represents the current standard for operational remote 

sensing of the global terrestrial biosphere. MODIS sensors, onboard AQUA and TERRA satellite 
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platforms provides daily coverage of the entire earth�s surface at resolutions of 250 m, 500 m, and 

1000 m within up to 36 narrow spectral bands. However, pixels are prone to various influences 

(e.g. atmospheric scattering, mixed pixels, and illumination angle) which can lead to inaccuracies 

in measured canopy structure (e.g. Sun and Ranson, 2000; Fernandes et al. 2004; Xu et al. 2004; 

Eriksson et al. 2006; Jin et al. 2007). Airborne scanning light detection and ranging (lidar) is an 

example of an active sensor used to map the three-dimensional characteristics of tree canopies 

and the ground surface using one discrete waveband at 1064 nm (near infrared) (Wehr and Lohr, 

1999). Discrete return lidar systems rapidly emit laser pulses towards the earth�s surface at rates 

between 5 kHz to 160 kHz. Laser pulses can reflect (or �return�) from canopy surfaces twice 

before reflecting from the ground. Airborne lidar provides very high resolution irregular point 

data ranging from approximately 35 cm (between returns) to 5 m. Lidar data can also be 

expensive to obtain, and therefore may only be collected once or possibly a few times per site. 

 

Understanding the average reflectance of low resolution pixels (e.g. MODIS) used to estimate 

biomass and CO2 fluxes using remote sensing, requires measurements of canopy structure for 

validation purposes. However, ground-based measurements of the canopy are difficult, time 

consuming, and expensive. Measurements are often limited to small areas and can be difficult to 

repeat within exact locations (Heinsch et al. 2006). The EC system provides some means for 

evaluating MODIS estimates of vegetation productivity (for example gross primary production 

(GPP) and net primary production (NPP)), but is limited in spatial extent. Airborne lidar may 

provide another means for evaluating MODIS products over large areas, thereby reducing the 

need for extensive ground validation. There is currently very little research on the use of lidar for 

validation of remote sensing products. 
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In this dissertation, CO2 was measured at a jack pine chronosequence of four stands located in 

Saskatchewan, Canada. These included: a) a recently clearcut site scarified in 2002; b) a site 

harvested in 1994; c) an immature site harvested in 1975; and d) a mature forest of approximately 

90 years old. The EC system was used at each site to measure CO2 fluxes from the surrounding 

ecosystem at temporal rates of 10 and 20 Hz for periods of seconds up to years. CO2 flux and 

meteorology were used to understand better the carbon cycle within a jack pine chronosequence 

during dry and wet years. CO2 flux measurements were then integrated with airborne lidar data 

for the purposes of evaluating MODIS vegetation products. Four research objectives are 

discussed in the following sections. 

1.2 Thesis Objectives 

1.2.1 Objective 1: Investigation of LUE 

1.2.1.1 Problem Statement 

The influence of meteorological driving mechanisms on the variability of CO2 uptake and 

respiration in previously disturbed forests, and during abnormally dry and wet years, is not well 

understood. Understanding these processes is critical as northern climates continue to warm. 

Light use efficiency (LUE), defined as the ability of vegetation to use absorbed light for 

photosynthesis, can be used to understand resource limitations affecting light use and CO2 uptake. 

It is not clear if within- and between-site differences in LUE are more important than inter-annual 

variability and if this varies with site age (Gu et al. 2002). There are also various ways to 

calculate LUE, which leads to incompatible results within the literature (Schwalm et al. 2006). 

This is especially important because remote sensing models use LUE to estimate regional to 

global CO2 uptake (Running et al. 1999; Running et al. 2004). Remote sensing models currently 

employ simplistic estimates of LUE, based on the idea of functional convergence of LUE 
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between ecosystems (Monteith, 1972). Numerous studies have found that LUE varies with 

changes in atmospheric driving mechanisms, depending on vegetation type, age, and structure 

(e.g. Turner et al. 2003; Schwalm et al. 2006; Leuning et al. 2005). These results indicate that 

functional convergence of LUE likely does not exist, and therefore the accuracy of remote 

sensing models that use biome-specific LUE may be in question (e.g. Turner et al. 2002; Turner 

et al. 2003; Heinsch et al. 2006). Examination of LUE, therefore, is very important, especially 

within forest stands that have been previously disturbed.  

1.2.1.2 Objectives 

Light use efficiency (LUE) (g C⋅MJ-1 of APAR), can be estimated at the ecosystem level as the 

ratio of gross primary production (GPP) (g C⋅m-2⋅d-1) to absorbed photosynthetically active 

radiation (APAR) (MJ⋅m-2 ⋅d-1). The purpose of this study was to determine how LUE varied 

within a jack pine chronosequence during different radiation conditions (cloudy, partly cloudy, 

and sunny). Up to four years have also been examined per site during dry and wet periods. The 

influences of meteorological driving mechanisms and different methods for estimating LUE, 

including those used in remote sensing-based models, were also discussed. It is well understood 

that stand age, radiation regime, and interannual variability will affect net ecosystem exchange 

(NEE) and ecosystem respiration (Re), however, the importance of these influences on LUE are 

not well understood.  

1.2.1.3 Brief Methodology: 

The period of study (2002-2005) experienced large differences in yearly cumulative precipitation, 

providing a unique opportunity to study LUE over a range of soil moisture conditions. In this 

study, meteorological driving mechanisms were related to LUE to determine their interaction at 

different sites. The varying influences of cloudy, partly sunny, and sunny days on LUE have also 



 

  6

been examined on a daily basis, per growing season to determine if different canopy structural 

characteristics and stand age impacted LUE differently during these periods. 

1.2.1.4 Contribution to Knowledge: 

In this study, canopy structure and age are shown to have significant and varying influences on 

LUE. This has implications for remote sensing-based LUE models used in the estimation of 

regional GPP. By improving the resolution of land-cover products and structural attributes, as 

well as inclusion of diffuse radiation and cloud cover, improvements to MODIS GPP and NPP 

products can be made. 

1.2.2 Objective 2: Vegetation Structure and Ground Elevation Influences on CO2 

Exchanges 

1.2.2.1 Problem Statement 

Variability in vegetation structural characteristics and ground surface elevation has an important 

influence on vegetation production and available resources (e.g. moisture and nutrient regimes). 

For example, the variability in leaf area within and between vegetated ecosystems affects 

significantly, energy exchanges and mass fluxes (e.g. Baldocchi and Meyers, 1998; Gower et al. 

1999). Increases in foliage result in increased photosynthesis, reduced energy absorbed by the soil 

surface, decreased soil warming, and decreased soil respiration (Griffis et al. 2003; Baldocchi and 

Meyers, 1998). However, few studies have examined the influence of structural and ground 

elevation heterogeneity on fluxes. This is due, in part, to our inability to map the variability of 

forest structure and elevation at high resolutions and in three dimensions. Airborne lidar provides 

the ability to develop new techniques for sampling various canopy structural attributes, including 

foliage cover, canopy height, and canopy depth variability throughout an ecosystem. 

Understanding the influences of vegetation structural and elevation heterogeneity on the 
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magnitude of CO2 fluxes is important because these: a) provide a means for assessing the 

influence of leaf area and canopy height on flux variability; b) may be important factors within 

increasingly more structurally and topographically heterogeneous ecosystems; and c) can be used 

to develop and/or evaluate ecosystem models that incorporate ground surface elevational 

influences on fluxes. 

1.2.2.2 Objectives: 

In this study, vegetation structure and elevation were characterised using lidar within the contours 

of half-hourly flux footprint maximum area probability density functions (PDFs) (approximately 

80% of the probability of flux) from Kljun et al. (2004). The objective was to quantify the 

influences of vegetation structure and elevation on CO2 concentrations measured by the EC 

system, specifically net ecosystem production (NEP) and GPP. Three growing season periods 

were examined in 2002 at a fairly homogeneous mature jack pine site in Saskatchewan, Canada.  

1.2.2.3 Brief Methodology: 

The footprint parameterization is applied operationally to average 30-minute measurements of 

CO2 fluxes. The combined influences of meteorological variables, incoming PAR, relative 

humidity, soil moisture, and soil temperature on NEP and GPP were examined using Landberg 

light response curves and a multiple linear regression. Structural vegetation characteristics and 

ground surface topography were then extracted from airborne lidar. The fraction of vegetation 

cover and elevation were combined within a second multiple regression to determine if they 

significantly affected fluxes during the three periods studied.   

1.2.2.4 Contribution to Knowledge: 

Meteorological driving variables account for a significant component of the variability in fluxes. 

Fractional cover can also influence NEP and GPP, and can be more important that some 
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meteorological driving variables at certain times during the year. This study provides new 

methodologies for extracting and understanding the sensitivity of fluxes to variations in the 

environment surrounding the EC system. It may also be used as a test to determine if the EC 

system is spatially representing the ecosystem in question. 

1.2.3 Objective 3: Using Airborne Lidar for the Assessment of MODIS fPAR 

1.2.3.1 Problem Statement 

Leaf area is particularly important, affecting energy and mass exchanges between the terrestrial 

biosphere and the atmosphere (e.g. Chen et al. 2005). Accurate spatial and temporal estimates of 

leaf area index (LAI) and the fraction of photosynthetically active radiation absorbed by the 

canopy (fPAR) are required as inputs into ecosystem/atmosphere models (e.g. Gower et al. 1999; 

Chen et al. 2007). Remote sensing can be used to estimate spatial and temporal changes in leaf 

area; however sensors are often not able to resolve the complexity of the vegetation canopy 

within averaged pixels (e.g. Xu et al. 2004; Eriksson et al. 2006; Jin et al. 2007).  Accurate spatial 

and temporal methods of collecting fPAR and LAI would therefore be beneficial and cost-

effective for scaling from radiation sensors to wider area coverage (and lower resolutions). Lidar 

data collection and availability is also wide-spread throughout North America and Europe (e.g. 

U.S. Geological Survey (via the CLICK project: http://lidar.cr.usgs.gov/)) enabling alternative 

uses, such as satellite validation, for the data. 

1.2.3.2 Objectives: 

This study introduces the concept of using airborne lidar for the validation of MODIS vegetation 

indices and land cover products. Objectives of this study are to: 

1. Provide a model to estimate spatial variability of fPAR from lidar using the return ratio of 

canopy fractional cover.  
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2. Compare model results with fPAR estimated from PAR radiation sensors and digital 

hemispherical photography (DHP);  

3. Evaluate the differences between MODIS estimates of fPAR and lidar fPAR at the 1 km 

x 1 km pixel level within a jack pine chronosequence (three sites) and over the lower part 

of the White Gull River watershed. 

The goal was to provide a simple and robust model that can be used to evaluate MODIS 

vegetation indices using airborne lidar and locally measured incoming PAR radiation.  

1.2.3.3 Brief Methodology: 

Airborne lidar is used to estimate the fraction of vegetation cover based on a ratio of the total 

number of laser pulses returned from the canopy to the total number of returns (or all returns) 

within a 1 m x 1 m x height column. Lidar fractional cover was then compared with fPAR 

estimated from DHP and PAR sensors to determine the accuracy of the lidar model. The fPAR 

model was then used to examine differences between MODIS fPAR and lidar-fPAR. These were 

determined by subtracting average 1 km resolution lidar fPAR pixels from MODIS fPAR within a 

watershed containing 99 MODIS pixels. 

1.2.3.4 Contribution to Knowledge: 

The ability to map fPAR accurately using airborne lidar has many applications. Scaling of fPAR 

from individual radiation sensors and DHP to large heterogeneous areas using lidar provides a 

direct link to MODIS vegetation products and reduces the need for expensive field validation. 

Lidar can also provide an estimate of within-pixel variability, which will enable assessment of the 

accuracy and validity of MODIS pixels within heterogeneous environments, such as those which 

have been previously disturbed. The spatial distribution of fPAR derived from lidar data may be 

used to validate MODIS fPAR, and may be especially useful for modelling GPP at high spatial 



 

  10

and temporal resolutions as explored in the final chapter. The use of lidar as a validation tool for 

lower resolution remote sensing products has not been previously examined (to the authors� 

knowledge).  

1.2.4 Objective 4: Validation of MODIS GPP using the EC system and airborne 

lidar  

1.2.4.1 Problem Statement 

The influences of within-pixel heterogeneity in canopy cover on MODIS products are also not 

well known because MODIS pixels may or may not capture localized variability (Milne and 

Cohen, 1999). Within-pixel land-cover heterogeneity plays an important role on the extrapolation 

of CO2 exchanges from the local to regional scales. Therefore, within-pixel patterns of CO2 

uptake as a result of variability in canopy structure, especially leaf area, may create further 

discrepancies within lower spatial resolution remote sensing-based modeling schemes. The ability 

to estimate GPP across a range of species types, ages, and scales using airborne lidar will aid in 

the validation of the MODIS GPP product beyond the EC system. It will also provide important 

information on the organization of within-pixel patches and their influence on individual pixels. 

Several validation schemes are currently underway. These include the Accelerated Canopy 

Chemistry Program (ACCP) (Aber, 1994); Bigfoot (e.g. Cohen and Goward, 2004; Turner et al. 

2006); Fluxnet (e.g. Heinsch et al. 2006); and the Prototype Validation Exercise (PROVE) (e.g. 

Havstad et al. 2000). However, few studies have been able to quantify the influences of mixed 

pixels on MODIS GPP. There have been no studies that have used airborne lidar to model GPP 

for the evaluation of the MODIS GPP products. 
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1.2.4.2 Objectives:  

Three objectives were examined in this study. The first objective related average plot measured 

canopy height and fractional cover to inputs used in Landsberg light response curves during the 

growing season of 2004. Inputs such as the maximum average GPP, light compensation point and 

the scaling factor were directly related to canopy height and fractional cover at these sites. 

Relationships based on canopy structure were then substituted for Landsberg inputs to predict 

daily cumulative GPP with incoming PAR during the growing season of 2005. The second 

objective was to compare cumulative eight-day observed GPP estimated from the EC system, the 

MODIS GPP product and a lidar-derived canopy structure model based on the Landsberg 

approach applied within 1 km x 1 km MODIS pixel areas. The third objective examined the 

influences of within-pixel vegetation heterogeneity on an average daily estimate of GPP at 

varying pixel resolutions.  

1.2.4.3 Brief Methodology 

Inputs used in site-specific Landsberg light response curves were compared with canopy height 

and foliage fractional cover estimated from airborne lidar and measured in the field. Relationships 

between inputs and canopy structure were used to create models of GPP on a per site basis during 

the growing season of 2004 and tested in 2005. Lidar-Landsberg models of GPP were then 

compared at the site level and with MODIS estimates of GPP. The last part of this study 

examined the influence of scaling and within-pixel heterogeneity on estimates of GPP. Individual 

MODIS pixel areas of lidar-derived GPP were aggregated from 1 m resolution to 25 m (typical of 

a Landsat pixel), 250 m, 500 m and 1000 m (typical of MODIS vegetation products). Biases were 

determined by subtracting each lower resolution product from the 1 m2 GPP from lidar. 
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1.2.4.4 Contribution to Knowledge: 

The results of this study indicate that airborne scanning lidar is an especially useful tool for 

scaling between EC measurements and lower resolution satellite products. This is the first study 

to use lidar to scale between EC system estimates of GPP and MODIS products. The ability to 

accurately estimate canopy fractional cover and leaf area from lidar within one to many MODIS 

pixels for GPP estimation has many benefits. These include continuous scaling of leaf area over 

varying pixel resolutions, significantly reduced time and costs associated with extensive LAI 

measurement within and beyond pixels, and the ability to map and discretize the three-

dimensional foliage area with depth into the canopy. 

1.3 Thesis Organisation 

Following this introduction, the thesis has been organized into a set of four chapters that follow 

the typical conventions and style required for manuscripts to be submitted to academic journals. 

Each chapter builds upon the previous chapter(s) and refers to published literature. This provides 

a consistent flow of ideas, objectives, and methodologies throughout the thesis. References cited 

are also provided at the end of each chapter. A discussion follows the research and analysis 

chapters, which ties together important results and discusses future research. The final Summary 

and Conclusions chapter briefly summarizes the thesis and discusses important conclusions. One 

appendix chapter provides a discussion on terms used in the thesis (Appendix 1). This is included 

at the end of the thesis for reference. 
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Chapter 2 

Investigating Light Use Efficiency (LUE) Across A Jack Pine 
Chronosequence during Dry and Wet Years 

 

2.1 Abstract 

Light use efficiency (LUE) is the ability in which vegetated canopies use light for photosynthesis. 

It also provides a physical basis for scaling carbon uptake processes from the stand to global 

scales using remote sensing estimates of canopy cover as well as meteorological inputs. A better 

understanding of the factors that control LUE will result in improved global estimates of carbon 

uptake from the terrestrial biosphere. Several recent studies have examined meteorological and 

species-related factors controlling LUE. However few studies have compared LUE variability 

within stands of different ages, and during normal and anomalous soil moisture conditions, which 

may become more prevalent with climate change. This study presents on LUE observations made 

at a jack pine chronosequence (4 stands: recent clearcut (age: 1-3), regenerating (age: 8-9), 

immature (age: 29-30), and mature (~90 years old)) during one normal (2002), one very dry 

(2003), and two very wet (2004, 2005) growing seasons in Saskatchewan, Canada. The objective 

of this study was to examine factors that control variability in LUE within stands of different ages 

during drought and wet conditions.  

 

Cumulative CO2 fluxes decreased significantly at all sites during the drought year of 2003, as did 

average LUE. Canopy foliage at the recently regenerating jack pine site increased by 19% 

between 2002 and 2003. Foliage growth rate was reduced by 6% between 2003 and 2004, and 

foliage decreased by 6% from 2004 to 2005. Over the four years studied, LUE was greatest at the 
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mature jack pine site and lower, but similar at the other three sites. Growing season average LUE 

varied with average soil moisture at each site, except at the newly regenerating site where soil 

moisture had little influence. Daily average vapour pressure deficit (VPD) typically had the 

greatest influence on the variability in LUE at all sites. Diffuse vs. direct radiation conditions also 

had a significant but varying affects on LUE within jack pine stands of different ages.     

2.2 Introduction 

Light use efficiency (LUE) (g C⋅MJ-1 of APAR), defined as the ratio of gross primary production 

(GPP) (g C⋅m-2⋅d-1) to absorbed photosynthetically active radiation (APAR) (MJ⋅m-2 ⋅d-1), 

describes the ability of vegetation to use light for photosynthesis. LUE varies instantly with 

changes in GPP and radiation conditions, but is typically estimated over averaging periods of 30-

minutes or individual days. Dewar et al. (1998) summarize three generalizations from the 

literature with respect to ecosystem LUE: a) LUE is constant during vegetation growth when 

water supply is non-limiting; b) the use of carbon for gross photosynthesis (carbon use efficiency 

[CUE]) is constant across species; and c) APAR is positively correlated with increased leaf 

nitrogen. These generalizations enable aggregation of LUE and vegetation productivity (for 

example, net primary production [NPP] and GPP) from local to global scales using remote 

sensing-based land-cover types and ecosystem models (Turner et al. 2002, Running et al. 2004, 

Drolet et al. 2005).  

 

The eddy-covariance (EC) method provides a direct measurement of net ecosystem exchange 

(NEE), where �NEE is equal to net ecosystem production (NEP). This can be used to estimate 

GPP and ecosystem respiration (Re) used in calculations of LUE. Numerous studies have shown 

that LUE varies both linearly and non-linearly with changes in air temperature (Tair), and/or 

vapour pressure deficit (VPD), and soil moisture (θ), depending on vegetation type, age, and 
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structure (e.g. Turner et al. 2003, Schwalm et al. 2006, Leuning et al. 2005). This indicates that 

LUE is not a simple function of meteorological driving mechanisms, or species type, and 

therefore functional convergence between many species is unlikely. Lack of functional 

convergence of LUE will affect model accuracy of vegetation productivity. Further, the use of 

varying definitions and methods for calculating LUE has led to mixed and non-comparable 

results within the literature (Gower et al. 1999, Schwalm et al. 2006).  

 

Few studies have examined controls on the variability of LUE within different ages of the same 

species or during anomalous meteorological conditions. The purpose of this study was to 

determine how LUE varied within different ages of jack pine stands, during different radiation 

conditions (cloudy, partly cloudy, and sunny) and very dry and wet periods over up to four years 

per site. The influences of meteorological driving mechanisms and different methods for 

estimating LUE, including those used in remote sensing-based models, were also discussed.  

2.3 Study Area 

A chronosequence of four jack pine (Pinus banksiana Lamb.) stands have been examined during 

the growing season (June 1st to September 30th) over a period of four years (2002 to 2005), where 

data were available. Stands include: a mature jack pine forest of ~90 years of age (OJP) 

(examined years 2002-2005); an immature jack pine forest (HJP75) (examined years 2004-2005, 

age 29-30); a rapidly regenerating young jack pine forest (HJP94) (examined years 2002-2003, 

age 8-9); and a recently clearcut and scarified site with jack pine seedlings (HJP02) (examined 

years 2003-2005, age 1-3).  The jack pine sites are located within 6 km of each other in the lower 

part of the White Gull watershed, north of Prince Albert, Saskatchewan, Canada. OJP and HJP75 

were studied extensively during the Boreal Ecosystem-Atmosphere Study (BOREAS) (e.g. 

Baldocchi et al. 1997a, Baldocchi et al. 1997b, Gower et al. 1997). In this study, all sites were 
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operating as part of Fluxnet-Canada (Barr et al. 2006, Coursolle et al. 2006), under the Boreal 

Ecosystem Research and Monitoring Sites (BERMS) project. The BERMS research project 

concentrates on species and disturbance-induced differences in carbon and water exchanges 

within the same climatic region (e.g. Kljun et al. 2006, Barr et al. 2006). Individual sites tend to 

be relatively flat, varying by less than 12 m in elevation (Chasmer et al. accepted). Soils are 

sandy, coarse-textured and well-drained (Baldocchi et al. 1997b). Each site contains extensive 

meteorological and CO2, water, and energy flux measuring equipment in accordance with 

Fluxnet-Canada protocols (www.fluxnet-canada.ca) as well as mensuration information, site 

characteristics, and temporal and high-resolution remote sensing data.  

              

Forest stand characteristics are described in Table 2.1 (OJP, HJP75, and HJP94), based on 

measured forest stand data from eight, eight, and six forest mensuration plots per site, 

respectively. At OJP, HJP75 and HJP94, forest mensuration plots were 11.3 m in radius, and were 

located 100 and 500 m from the EC flux station (OJP and HJP75), and within 250 m at HJP94. 

Foliage gap fraction estimates were made at individual plots during diffuse conditions using 

digital hemispherical photography (DHP) set to two F-stops below default exposure (Zhang et al. 

2005). Gap fraction was measured during May and August 2005 and was converted to leaf area 

index (LAI) using thresholding methods of Leblanc et al. (2005). DHP was set up at five photos 

(four each at 11.3 m distances from the centre photo) per plot. LAI was adjusted to account for 

canopy clumping, woody:total area ratios and needle:shoot area ratios for sites (Chen et al. 2006). 

LAI estimates were slightly lower than those of Chen et al. (2006) at OJP, although comparisons 

with effective LAI were almost the same, indicating possible differences in allometric 

woody:total and needle:shoot area ratios used. Differences in DHP-estimated LAI may also be 

due to instrumentation, heterogeneity in leaf area, and structural variability throughout the site. 
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Table 2.2 contains mensuration information from four 2-m-wide x 25-m-long transects of 1 m2 

plots (50 plots per transect) measured in late May, 2005 at HJP02. 

 

Table 2.1. Average vegetation characteristics at OJP, HJP75, and HJP94 for 22 plots. The values 
in parentheses represent standard deviation (stdev). 
Site Number 

of trees 
sampled 

Average 
stem 
density 
(stdev) 
(stems  m-2)  

Average 
tree height 
(stdev) (m) 

Average 
DBH* 
(stdev) (cm) 

Average 
LAI (stdev) 
(m2 ⋅m-2)  

Average 
canopy 
depth 
(stdev) (m) 

Average 
crown 
diameter 
(stdev) (m) 

Other species 

OJP 381 0.11 
(0.001) 

14.2 (3.5) 9.33 (4.55) 1.6 (0.1)** 8.3 (2.7) 
 

2.0 (1.0) Alder, 
bearberry, 
reindeer lichen, 
blueberry, 
cranberry 

HJP75 1447 0.59 (0.19) 6.3 (1.6) 5.69 (3.49) 2.8 (0.42) 3.5 (1.3) 0.9 (0.4) Grasses, 
reindeer lichen, 
bearberry 

HJP94 2081 0.86 (0.56) 1.6 (0.7) 2.31 (1.05) 1.1 (0.2) 1.6 (0.7) 0.7 (1.1) Grass, 
blueberry, alder, 
raspberry, 
bearberry, 
reindeer lichen 

* DBH refers to tree bole diameter at breast height (1.3 m above the ground). 
** LAI measurements from Chen et al. (2006) differ from LAI observed in this study.  
 

Table 2.2. Average vegetation characteristics at HJP02 for 200 1m x 1m plots along four 
transects. Average percent cover does not add up to 100% (averaged between four transects) 
because some plots have more or less amounts of individual coverage types. The values in 
parentheses represent standard deviation (stdev). 
Number of 
trees (in 
200 1m 
plots) 

Average tree 
height (stdev) 
(m) 

Average 
% tree 
cover 
(stdev) 

Average % 
grass cover 
(stdev) 

Average % 
reindeer 
lichen 
cover 
(stdev) 

Average %  
soil cover 
(stdev) 

Average % 
wood 
debris 
cover 
(stdev) 

Average % 
herb cover 
(stdev) 

Average 
estimated 
LAI  
(m2 ⋅m-2) 

37 0.19 (0.12) 9 (11) 21 (18) 23 (30) 32 (18) 26 (24) 8 (15) 0.29 

 

The period of study (2002-2005) saw large differences in yearly cumulative precipitation, 

providing a unique opportunity to study LUE over a range of soil moisture (i.e. dry to wet) 

conditions. Figure 2.1 illustrates cumulative precipitation measured at OJP from 2001 to 2005. 

The year 2001 is included because drought conditions occurred during and prior to 2001 and 

lasted until 2003, leading to significant water shortages for periods of greater than one year (e.g. 

Kljun et al. 2006). 
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Figure 2.1. Cumulative precipitation measured at OJP for 2001 to 2005 illustrating dry (i.e. 2001 
and 2003), and wet conditions (i.e. 2004 through 2005). 2002 may be considered normal because 
the cumulative precipitation approximates the 30-year normal yearly cumulative precipitation 
(~450 mm) measured by Environment Canada at a nearby weather station (Waskesiu, 
Saskatchewan). 

 

2.4 Site Instrumentation 

Site instrumentation has been discussed in Coursolle et al. (2006), Kljun et al. (2006), and Barr et 

al. (2006). Briefly, the EC method was used at all sites throughout the growing season to measure 

CO2 fluxes averaged over 30-minute periods. NEP (µmol⋅m-2⋅s-1) was measured by the EC system 

where NEP = -NEE (µmol⋅m-2⋅s-1). Positive NEP indicates that CO2 from the atmosphere was 

used for photosynthesis, whereas negative NEP indicates that the site was releasing more CO2 

into the atmosphere than it was using for photosynthesis. Each site has undergone the same 

measurement and data processing protocol whereby daily Re (µmol⋅m-2⋅s-1) was modeled using 

the relationship between nighttime Re and soil temperature (Barr et al. 2004). GPP (µmol⋅m-2⋅s-1), 

defined as the uptake of CO2 by the ecosystem through photosynthesis, was estimated from 

measured NEP and modeled Re: GPP = NEP + Re. CO2, H2O and friction velocity were 

measured using a sonic anemometer (CSAT3, Campbell Scientific Inc. Edmonton, Alberta, 

Canada at OJP and HJP02; Gill R3-50, Gill Instruments Ltd., England at HJP75; SAT-550, Kaijo 
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Co., Tokyo, Japan at HJP94) combined with a closed path infrared gas analyzer (LI 6262, LI-

COR Inc., Lincoln, NE, USA) (Barr et al. 2006). EC systems have been installed above the 

canopy at heights of approximately 28 m, 17 m, 3 m, and 2 m above the ground surface at OJP, 

HJP75, HJP94, and HJP02 respectively. The 30-minute average CO2 fluxes were determined 

from 20 Hz, 20 Hz, 10 Hz, and 20 Hz measurements at the OJP, HJP75, HJP94, and HJP02 using 

block averaging. Any gaps in the 30-minute fluxes were filled using a moving-window regression 

approach (Barr et al. 2006, Kljun et al. 2006). Despite the inherent problems with the EC 

technique (e.g. Massman and Lee, 2002), data were quality controlled using a minimal surface 

friction velocity of 0.35 m s-1. Inaccuracies in Re and GPP may exist within this analysis, but are 

beyond the scope of this study. Averaging over longer periods also minimizes the influence of 

errors within the data. Further processing of EC data are discussed in Kljun et al. (2006) and Barr 

et al. (2006).  

 

LUE was determined for daytime periods, defined as the period of time for which daytime 

incoming above-canopy shortwave radiation exceeded 1.0 W⋅m-2. Net radiation (Rn) was 

measured using a four-component net radiometer (W⋅m-2) (CNR1, Kipp and Zonen USA Inc. 

Bohemia, NY), and has been used with above canopy PAR to estimate variations in foliage 

growth at HJP94 and HJP02 (discussed below). Above- and below-canopy PAR (µmol m-2⋅s-1) 

was converted into MJ⋅ m-2 per half hour and per day using a conversion of 0.25 and adjusted for 

daytime minutes. PAR was measured using LI-COR model LI190 at OJP and HJP75 (LI-COR 

Biosciences, Nebraska, USA); and Eko model ML-020P (Eko Instruments, Co. Ltd., Japan) at 

HJP94 and HJP02. Above canopy incident and reflected PAR sensors were installed on booms at 

heights of 28 m, 17 m, 3 m and 2 m above the ground at OJP, HJP75, HJP94, and HJP02. Below 
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canopy incident PAR measurements were made at OJP and HJP75 at a height of ~1 m. Below-

canopy PAR measurements were not available at HJP94 or HJP02.  

 

In this study, meteorological driving mechanisms were related to LUE to determine their 

interaction at different sites. Daily average Tair and VPD were measured using top-of-canopy air 

temperature and relative humidity sensors (model HMP45C, Vaisala by Campbell Scientific Inc. 

Edmonton Alberta, Canada). Soil volumetric moisture content (θ) (m3⋅m-3) was measured at equal 

depths, (0 to 15cm, 15 to 30cm, 30 to 60cm, 60 to 90cm, 90 to 120cm, and 120 to 150 cm) at each 

location using soil moisture probes (CS615, Campbell Scientific Inc., Edmonton, Alberta). Soil 

temperature was measured using soil temperature probes (CS107b, Campbell Scientific Inc., 

Edmonton, Alberta) placed at depths (2 cm, 5 cm, 10 cm, 20 cm, 50 cm, and 100 cm) within the 

soil column. Soil moisture was examined at depths of 30 to 60 cm, and soil temperature was 

examined at depths of 10 cm.  

2.5 Methodology 

2.5.1 Calculation of Light Use Efficiency 

APAR was used in the estimation of LUE, with GPP, and can be calculated from PAR sensors as:  

 

APAR = (PARAC↓ - PARAC↑) � (PARBC↓ - PARBC↑),    [1] 

 

where PARAC↓ is above canopy incoming PAR, PARAC↑ is above canopy reflected PAR, PARBC↓ 

is incoming below canopy PAR after interception with branches and leaves, and PARBC↑ is the 

reflected PAR from the ground surface (Gower et al. 1999). In this study PARBC↑ was not 

measured at any of the sites, therefore it has not been included in the estimation of APAR. 
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Reflected ground surface PAR albedo (PARBC↑) is 6% at OJP and HJP75 (Chen, 1996), and does 

not contribute greatly to the reduction of APAR at these sites.  

 

There was only one PAR sensor measuring PARBC↓ at OJP and HJP75. Each sensor was 

compared with 40 DHPs per site at 100 m and 500 m locations from each tower to assess the 

representivity of the OJP and HJP75 PARBC↓ sensors. Average fPAR measured by PAR sensors 

was 0.61 (OJP) and 0.70 (HJP75) in 2005. Average fPAR from DHP was 0.54 (stdev. = 0.06) 

(OJP) and 0.55 (stdev = 0.06) (HJP75). Green fPAR estimates of Chen et al. (2006) in 2005 were 

0.49 (OJP) and 0.54 (HJP75) using TRAC (fractional cover was not provided). Results of Chen et 

al. (2006) were slightly lower than our estimates of fractional cover because Chen et al. (2006) 

removed the fraction of wood observed by the sensor as well as PARAC↑ and PARBC↑. Average 

difference between DHP and PAR sensors at OJP was 11%, and at HJP75 it was 21%. This 

indicates that PARBC↓ at OJP and HJP75 may have been located in areas that had slightly greater 

foliage than the rest of the stand, on average. DHP methods are also prone to measurement errors 

and have been found to underestimate gap fraction by 8%, on average, at a number of sites when 

compared with other optical methods (Chen et al. 2006). Despite slight overestimation of fPAR 

by PAR sensors at HJP75, fPAR estimates were reasonable approximations of DHP 

measurements throughout the stand. 

 

APAR was not directly measured at HJP94 and HJP02 because of the lack of PARBC↓, therefore 

APAR was modeled at HJP94 and HJP02 based on Beer�s Law: 

 

 APAR = αs ⋅ PARAC↓ (1 � e-kL*),       [2] 
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where αs is the canopy absorptivity (1 � PARAC↑ / PARAC↓), and k is the extinction coefficient 

estimated as a constant 0.45 for simplicity (Chen et al. 2006). LAI (L) likely varies within the 

growing season and between years at HJP94 and HJP02. Unfortunately, monthly measurements 

of LAI were not made at these sites. To rectify this, NDVI was used at both sites to estimate 

monthly average LAI following methods discussed in Wilson and Meyers (2007). Monthly mean 

NDVI values were calculated from 30-minute global shortwave radiation and incoming and 

reflected PAR between 09:00 and 15:00 local time. Only clear days were used in the averaging 

procedure where above-canopy incoming shortwave radiation was greater than 200 W⋅m-2. LAI 

was estimated per month following Wilson and Meyers (2007): 

 

 







−
−

−=
minmax

maxlog
NDVINDVI

NDVINDVI
KLAI      [3] 

 

NDVImax  is the maximum NDVI with dense vegetation, NDVI is measured for the month, 

NDVImin is the minimum NDVI with no vegetation, and K is a scaling constant based on 

measured LAI (Tables 2.1 and 2.2). Table 2.3 provides minimum and maximum NDVI 

measurements and estimated LAI minimum and maximum from 2002 (2003 at HJP02) to 2005. 

 

Table 2.3. NDVI, LAI, and the scaling constant, K. Minimum and maximum growing season 
average estimates are shown based on in situ measured LAI (Tables 2.1 and 2.2) during the last 
year of study (2005).  

Site Year Minimum 
Summer NDVI 

Maximum 
Summer NDVI 

K Minimum LAI Maximum LAI 

HJP02 2003 0.16 0.49 0.9 0.20 0.21 
 2004 0.29 0.50 0.9 0.25 0.31 
 2005 0.37 0.57 0.9 0.24 0.31 
HJP94 2002 0.14 0.56 3.9 0.64 0.73 
 2003 0.29 0.57 3.9 0.97 1.07 
 2004 0.33 0.59 3.9 1.03 1.14 
 2005 0.31 0.56 3.9 1.01 1.06 
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Beer�s Law was also used to model APAR at OJP for comparison with measured APAR (as an 

example). Figure 2.2 provides a comparison between APAR derived using radiation sensors and 

modeled results from [2] at OJP. High correlation between the Beer�s Law method for estimating 

APAR and measured APAR at OJP indicate that results will be comparable to measured methods 

at HJP94 and HJP02. 

 

Figure 2.2. Relationship (thin line) between measured total daytime APAR and modeled APAR at 
OJP during the four years of study (n = 488). The relationship tends to follow the 1:1 line for 
most days. 

 

Cloudy, partly sunny, and sunny days have been examined on a daily basis, per growing season, 

based on the ratio of measured incoming shortwave radiation (Kin) to the modelled ground surface 

shortwave radiation (Kmod). Modelled incoming shortwave radiation was determined using the 

clear sky model of Bird and Hulstrom (1991) (http://rredc.nrel.gov/solar/models/clearsky/) 

adjusted for latitude, longitude, and time zone of the sites. The influences of solar zenith angle 

and leaf angle/area effects have been reduced by averaging Kin/Kmod between 1000 and 1400, 
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local sun time. Daily ratios of Kin/Kmod were used to define cloudy (< 0.33), partly sunny (> 0.33 

and < 0.66), and sunny (> 0.66) days. 

2.5.2 Statistical Analysis 

Statistical analyses used in this study were done using MiniTab Software, v. 15 (State College, 

Pennsylvania). Comparisons were made to determine the influence of site age, radiation 

conditions, and drought vs. wet years on LUE using an Analysis of Variance (ANOVA) (Ebdon 

1992). In all cases, the description of how the ANOVA was employed (e.g. multiple factor vs. 

single factor) was described along with the results. An ANOVA requires that: 1) all data 

examined are normally distributed; 2) variances are equal; and 3) data do not co-vary. We have 

analyzed and discussed data limitations within the ANOVA test. As part of the ANOVA we 

implicitly state where significant differences exist (p ≤ 0.05), but do not use this method to test 

hypotheses. Least squares (quadratic) regression methods were used to determine the 

relationships between LUE and meteorological driving mechanisms. 

2.6 Results  

2.6.1 Influences of Dry, Normal and Wet Years on LUE at Individual Sites 

In this study, strong differences in meteorological driving mechanisms, and CO2 fluxes, GPP, 

NEP, and Re were found during dry, normal and wet years and between the sites studied (Table 

2.4). The drought year of 2003 had a strong influence on meteorological conditions measured at 

each site, resulting in higher average growing season APAR, Tair and stronger VPD. Average θ 

was reduced by up to 40% at all sites. The wet years of 2004 and 2005 had greater than normal 

cumulative annual precipitation (~760 mm and 640 mm as opposed to 290 mm in 2003), 

increased θ, and lower growing season average Tair, APAR and VPD. 2002 had normal amounts 

of precipitation, and average meteorology was similar to 2004 and 2005.  
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Table 2.4 presents cumulative totals of CO2 fluxes and average meteorological conditions during 

the growing season at each site from 2002 to 2005. Cumulative growing season increases in GPP, 

NEP, and Re are shown in Figure 2.3 for each site. NEP did not vary greatly at OJP despite large 

average differences in soil moisture (varying by as much as 40%). Average growing season GPP 

and Re at OJP were found to decrease from 2002 to 2003 by 9% and 8%, despite an early peak in 

GPP from June to early August. This was caused by a warm spring and leaf flush of 

approximately three weeks earlier than in 2002 (Kljun et al. 2006). Cumulative mid-growing 

season (July and August 2004) GPP remained low compared with 2002 and 2005 (Figure 2.3a).  

Re fluxes decreased by 8% in 2003 and increased slightly in 2004 and 2005. Kljun et al. (2006) 

found that fluxes were significantly reduced during prolonged drought (2000 to 2003) at a mature 

aspen (OA) site located within approximately 100 kms of the jack pine forests studied. The 

authors also found that fluxes at OJP and a mature black spruce stand (OBS) were not greatly 

affected, as has also been observed here. Low θ was also found to negatively affect 

photosynthesis in Euskirchen et al. (2006) for jack pine forests in Michigan. Further, Baldocchi et 

al. (1997b) suggest that the OJP forest will continue to gain water via deeper sources, although 

after years of drought, it is not clear if water will continue to be available. HJP75, measured in 

2004 and 2005 were also very similar, although mid-season CO2 fluxes, GPP and Re were lower 

in 2004 than in 2005 (Figure 2.3b). GPP comparisons during the drought were not made at HJP75 

due to lack of data collection. At HJP94, average growing season GPP decreased by 5% and NEP 

increased by 12%, in proportion with significant decrease in Re by 17% in 2003. GPP was 

significantly greater in June and July 2003, than at the same time in 2004, likely due increased air 

temperatures and an early spring (Kljun et al. 2006). By the end of the growing season, NEP was 

only slightly greater in 2003 than 2002 at HJP94. Fluxes at HJP02 were not measured in 2002, 
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but became a greater source of CO2 to the atmosphere from 2003 to 2004. -NEP increased by 

14% between 2003 and 2004, GPP increased by 30%, as did Re (24%). Increases in GPP by 22% 

and decreases in Re by 16% from 2004 to 2005 resulted in a reduction in �NEP by 66%.  

 
Table 2.4. Growing season average meteorological conditions, annual variability in canopy 
structure, and CO2 flux totals per site and for up to four years of study. 

Site Year Ave. 
Tair oC 

Ave. 
VPD 
Pa 

Ave. 
Tsoil oC 

Ave. θ 
m3 ⋅m-3  

fPAR Ave. 
Total 
APAR 
MJ⋅d-1 

Ave. 
Total 
IPAR 
MJ⋅d-1 

Ave. 
LUE   g 
C ⋅MJ-1 
APAR 

Ave. 
LUE g 
C⋅MJ-1 
IPAR 

Total 
GPP g 
C⋅m-2, 
June 
to 
Sept. 

Total 
NEP g 
C⋅m-2, 
June 
to 
Sept. 

Total 
Re    g 
C⋅m-2, 
June 
to 
Sept. 

2002 14.95 1.69 12.68 0.10 0.55 4.12 4.47 1.06 1.00 475 166 299 

2003 16.59 1.70 13.02 0.06 0.55 4.23 4.60 0.87 0.82 432 164 274 

2004 14.00 1.22 11.40 0.09 0.55 3.75 4.08 1.09 1.01 450 173 278 

OJP 

2005 14.95 1.31 12.42 0.09 0.56 3.96 4.29 1.06 0.98 463 184 280 

2002 - - - -  - - - - - - - 

2003 - - - -  - - - - - - - 

2004 14.10 1.22 12.68 0.13 0.70 3.70 3.50 0.85 0.81 459 195 256 

HJP 
75 

2005 14.89 2.65 13.68 0.12 0.69 4.05 4.29 0.77 0.75 463 198 259 

2002 14.98 1.65 14.80 0.08 0.25 2.34 2.51 0.82 0.77 208 45 162 

2003 15.24 1.70 15.26 0.07 0.35 3.27 3.50 0.58 0.54 197 51 135 

2004 - - - - 0.38 - - - - - - - 

HJP 
94 

2005 - - - - 0.36 - - - - - - - 

2002 - - - -  - - - - - - - 

2003 16.63 1.66 15.41 0.12 0.08 0.87 0.94 0.72 0.66 45 -51 100 

2004 13.93 1.21 14.19 0.14 0.18 0.94 1.01 0.73 0.68 65 -59 132 

HJP 
02 

2005 14.39 1.26 13.87 0.11 0.20 0.84 0.92 0.85 0.79 84 -20 111 
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Figure 2.3. Cumulative growing season CO2 fluxes estimated at a) OJP; b) HJP75; c) HJP94; and 
d) HJP02. Early spring temperatures in 2003 increased fluxes near the beginning of the growing 
season (June).  

 

Did the drought of 2003 reduce the efficiency at which jack pine at varying stages of growth use 

light for photosynthesis? LUE was lower at all sites in 2003 (Table 2.4), in comparison with 

growing season average θ (Figure 2.4). Strong correspondence between rising and falling LUE 

and average θ per year was observed for most sites except HJP02, which tended to increase in 

LUE, regardless of changes in average θ. Changes in LUE were also a function of average 

changes in APAR, especially during the drought year when both APAR and IPAR were greater 

than other years, resulting in lower LUE. APAR was 11% greater in 2003 than 2004 at OJP 

corresponding with the 20% decrease in LUE. APAR was 28% greater at HJP94 in 2003 than 



 

  32

2002, corresponding with a 29% decrease in LUE. However, at HJP02, APAR was reduced by 

only 7% in 2003 when compared with 2004.  

 

Comparisons between LUE in 2003 vs. 2005 were made using a single factor ANOVA at OJP 

and HJP02. HJP75 and HJP94 were not included due to lack of data during these years. LUE was 

normally distributed in all cases, and variances between LUE in 2003 and 2005 were 

approximately the same at OJP. However, variance in HJP02 LUE data for 2003 and 2005 varied 

by 30%. Average daily LUE varied significantly between the drought of 2003 and the wet period 

of 2005 at OJP (p = 0.000, F = 11.75, Fcritical = 3.88), however, at HJP02, LUE remained relatively 

the same regardless of dry and wet conditions (p = 0.27, F = 1.23, Fcritical = 3.91). If we compare 

during the years that were studied at HJP75 and HJP94, LUE at HJP75 decreased slightly with 

soil moisture from 2004 to 2005, as did HJP94 from 2002 to 2003 (Figure 2.4).  

 

Figure 2.4. Growing season average LUE per year and average θ at each site. 
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2.6.2 Meteorological Influences on GPP and LUE 

Meteorological drivers and the amount of solar radiation available for photosynthesis play 

important roles on the variability GPP and LUE per growing season year and per site (Figure 2.5). 

For all years studied, approximately 50% of the variability in VPD occurred because of changes 

in Tair  (p=0.000). Tair and Tsoil were also autocorrelated (r2 = 0.35, p = 0.000), whereas Tair and 

VPD had lesser influences on θ at all sites. Incoming PAR had the largest control on GPP at OJP 

and HJP75 (Figure 2.5a and b), accounting for approximately (r2) 28 and 36 percent (p = 0.000) 

of the variability in carbon uptake over the four year period. Total daily GPP increased with total 

incoming PAR to a saturation level of approximately 4.2 g C⋅m-2⋅d-1 and 8 MJ of PAR at OJP and 

did not vary greatly from year to year. Turner et al. (2003) found that GPP tended to saturate at 

high levels of solar radiation due to low leaf area and maximum photosynthetic capacity within 

boreal conifers, as was also found at OJP. VPD and Tair had less influence on GPP at OJP (VPD 

r2 = 0.21, p<0.001, Tair r2 = 0.14, p < 0.01) using a quadratic least squares regression (Figure 

2.5a). Optimal photosynthesis at OJP occurred at VPD of 200 Pa and Tair of 18oC. Similar 

relationships were also found at HJP75, where GPP saturated at approximately 4 g C⋅m-2⋅d-1 but 

could withstand higher levels of incoming PAR of 10 MJ, on average. VPD and Tair had the 

greatest influence on GPP at HJP75 (VPD r2 = 0.20, p < 0.001; Tair r2 = 0.20, p < 0.001). Optimal 

levels of photosynthesis occurred at 350 Pa and at Tair of 18oC. Lagergren et al. (2005) found that 

VPD had a strong relationship with NPP, where maximum photosynthesis tended to saturate at 

approximately 600 to 800 Pa within a mixed conifer site in Sweden. They state that stomata will 

close at high VPD levels, limiting photosynthesis. Similar results were found by Jenkins et al. 

(2007) at a northern hardwood forest where incoming PAR had the greatest influence on gross 

carbon exchanges, however, VPD and Tair were only weakly correlated with CO2 concentration. 
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Variability in daily θ at OJP and HJP75 was small and did not correlate well with GPP on a daily 

basis.  

 

LUE was also strongly affected by meteorological driving mechanisms at OJP and HJP75 (Figure 

2.5). LUE at OJP decreased to 0.6 g C⋅MJ-1 APAR with increasing VPD to a maximum of 400 Pa 

when examined over all four growing seasons (r2 = 0.33, p = 0.000). LUE also decreased with 

increasing Tair and was positively correlated with changes in θ. HJP75 tended to be only weakly 

correlated with daily average Tair (r2 = 0.13, p < 0.01) in 2002 and 2003 and decreased with Tair 

greater than 20oC (Figure 2.5a and b). Jenkins et al. (2007) found that a maximum bound of VPD 

had a strong influence on maximum LUE, despite a lack of correlation with high frequency data. 

Lagergren et al. (2005) also found that LUE tended to increase with increasing VPD up to 

approximately 600 Pa before decreasing to approximately half at maximum VPD within a mixed 

conifer forest in Sweden. They suggest that a linear decrease in LUE from 100% to 50% will 

occur between VPDs of 50 and 150 Pa per day, whereas Waring et al. (1995) assume this 

decrease to occur between 150 and 250 Pa.  

 

At the two younger sites, HJP94 and HJP02, daily average meteorological driving mechanisms 

had weak (non-significant) influences on GPP (Figure 2.5c and d). Incoming PAR had the 

greatest influence on GPP at HJP94 (r2 ~ 0.10, p = 0.1), where GPP tended to saturate at 2 g C⋅m-

2⋅d-1, approximately 12 MJ of PAR. GPP also increased to 2 g C⋅m-2⋅d-1 and then decreased with 

Tair > 15oC and VPD > 200 Pa. LUE was strongly influenced by VPD at HJP94 (r2 = 0.47, p = 

0.000) where LUE decreased to below 0.5 g C⋅MJ-1 of APAR at VPDs of approximately 400 Pa. 

LUE was greatest at Tair, = 10oC, but decreased almost linearly beyond 10oC. Tair, and VPD were 
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strongly autocorrelated at HJP94 (r2 = 0.68), therefore relationships between LUE and Tair and 

VPD were similar. Tsoil and θ had minimal influences on LUE at HJP94 on a daily basis. No 

significant relationships between GPP and driving mechanisms were found at HJP02.  However, 

LUE at HJP02 decreased with increasing VPD  (r2 = 0.19, p = 0.000) to LUE levels of 

approximately 0.5 g C⋅m-2⋅d-1 at approximately 350 Pa. Strong controls by VPD at these sites may 

be due to low soil moisture content and limits to stomatal conductance (e.g. Jenkins et al. 2007).  
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Figure 2.5. Daily average meteorological influences on total daily GPP and average LUE at a) 
OJP and b) HJP75 for the 2002 to 2005 combined growing seasons (where data exist). Quadratic 
regression lines (y=b0+b1x+b2x2) are provided to illustrate relationships between driving 
mechanisms and GPP and LUE. 
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Figure 2.5 cont. Daily average meteorological influences on total daily GPP and average LUE at 
c) HJP94 and d) HJP02 for the 2002 to 2005 combined growing seasons (where data exist).  

 



 

  38

2.6.3 LUE Differences between Jack Pine Ages  

Functional convergence of LUE between species and age classes was first discussed in Monteith 

(1972) and has been examined in numerous studies since (e.g. Ruimy et al. 1994, Ruimy et al. 

1999, Goetz and Prince, 1996, Green et al. 2001, Green et al. 2003, Ahl et al. 2004, Schwalm et 

al. 2006). There is a general consensus that LUE varies strongly as a result of species type, age, 

and environment, therefore, there tends to be little evidence of functional convergence (e.g. 

McCrady and Jokela, 1998, Lagergren et al. 2005, Schwalm et al. 2006). Does this assumption 

hold over longer periods of time and within different ages of trees? In this study, a multiple factor 

ANOVA was set up to examine daily average LUE from all growing seasons at all four sites, 

simultaneously. LUE at each site was normally distributed. However, all sites had some 

interdependence, with correlations (r2) of 0.27 (HJP02), 0.43 (HJP94) and 0.55 (HJP75) when 

compared with OJP for the entire four year (growing season only) period. HJP75, HJP94, and 

HJP02 were more independent, with correlations ranging between 0.10 and 0.15 (r2). Significant 

differences in LUE existed between OJP (p = 0.000, F = 48.79, Fcritical = 2.61), and the other three 

sites (HJP75, HJP94 and HJP02). Differences between HJP75 and HJP94 were less significant 

(OJP: p = 0.07, F = 2.71, Fcritical = 3.01). The second factor, drought effects on LUE within 

species, was also found to have a significant influence on LUE per species between the drought 

year of 2003 and other years examined (p = 0.000, F = 11.75, Fcritical = 3.88).  

 

Differences in average LUE between HJP94 and HJP02, and to a lesser extent, HJP75 were not 

significant (Figure 2.6). These results were also biased because HJP75 included only the two wet 

years (2004 and 2005), whereas HJP94 included one normal (2002) and one drought (2003) year. 

Assuming that LUE is greater during wet years than dry ones (as was found for OJP), LUE at 



 

  39

HJP75 could be biased towards slightly higher values, and HJP94 could be biased towards 

slightly lower values. This may increase similarity in average LUE estimates per site. 

 

Figure 2.6. Box plot of daily average LUE over four growing seasons (June to September). Circle 
with cross hairs represent mean LUE, whereas the central line represents the median LUE. The 
top portion of the box is the top 75th percentile, and bottom portion of the box is the lower 25th 
percentile. Upper and lower whisker lines extend to the maximum and minimum limits of LUE. 

 
 

2.6.4 Influences of Radiation on LUE at Individual Sites 

Radiation conditions have a large influence on LUE within many species (e.g. Roderick et al. 

2001, Green et al. 2003, Gu et al. 2002, Still et al. 2004, Schwalm et al. 2006, Jenkins et al. 

2007). However it is not known to what extent radiation conditions affect LUE within different 

ages of the same species. To what extent does LUE vary due to radiation conditions within 

different ages of jack pine trees? Does site age or canopy structure affect LUE at the jack pine 

sites?  

 

Figure 2.7 presents box plots of LUE during sunny, partly sunny and cloudy radiation conditions 

for each individual site. A multiple factor ANOVA has been used to test differences in age-

specific daily average LUE for up to four growing seasons based on: 1) radiation conditions; and 
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2) dry vs. wet years (as these are inherent factors within all datasets). Significant differences in 

LUE were found at each site due to varying radiation conditions; however, drought vs. wet years 

did not have a significant affect on the use of diffuse vs. direct radiation for photosynthesis. The 

largest differences in LUE occurred between cloudy and partly sunny, and to a lesser extent partly 

sunny and sunny conditions at all sites. This study found that differences in LUE between cloudy 

and partly sunny conditions were greatest at HJP02 (p = 0.000, F = 40.86, Fcritical = 3.03) where 

average daily LUE during cloudy conditions was 0.55 g C⋅MJ-1 APAR greater than during partly 

sunny conditions. Similar average LUE differences of 0.49 and 0.47 g C⋅MJ-1 APAR were found 

between cloudy and partly sunny conditions at HJP75 (p = 0.000, F = 62.86, Fcritical = 3.03) and 

OJP (p = 0.000, F = 141.94, Fcritical = 3.01). Finally HJP94 had the least difference in average 

daily LUE (0.39 g C⋅MJ-1 APAR) between cloudy and partly sunny conditions (p = 0.000, F = 

58.22, Fcritical = 3.03).     

 

Smaller differences in average LUE were found between partly sunny and sunny radiation 

conditions. OJP had the greatest difference in average LUE between partly sunny and sunny 

conditions (0.25 g C⋅MJ-1 APAR). HJP75 and HJP02 had the same difference in average LUE 

between partly sunny and sunny conditions (0.19 g C⋅MJ-1 APAR), whereas HJP94 had the least 

difference (0.15 g C⋅MJ-1 APAR). These results indicate that site age and/or canopy structure 

exhibit some influence on LUE, although results tend to be somewhat confounding. We might 

expect that the greatest effects of diffuse vs. direct conditions would occur at OJP and HJP75 due 

to a reduction of shadow (e.g. Gu et al. 2002), but it appears that these differences were strongest 

at the youngest site.   
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Figure 2.7. Box plots of daily average LUE over four growing seasons (June to September) 
studied for a) OJP, b) HJP75, c) HJP94, and d) HJP02. Each growing season has been divided 
into cloudy, partly sunny, and sunny days. Circles with cross hairs represent mean LUE, whereas 
the central line represents the median LUE. The top portion of the box is the top 75th percentile, 
and bottom portion of the box is the 25th percentile. Upper and lower whisker lines extend to the 
maximum and minimum limits of LUE. 

 

2.6.5 A Comparison of Methods for Estimating LUE 

Several methods used for estimating LUE have been discussed within the literature. Popular 

methods include: 1) LUE = GPP(or NPP)/APAR (Ruimy et al. 1999, Gu et al. 2002, O�Connell et 

al. 2003, Green et al. 2003, Ahl et al. 2004, Still et al. 2004, Lagergren et al. 2005, Schwalm et al. 

2006, Jenkins et al. 2007); 2) LUE = GPP(or NPP)/IPAR (Nichol et al. 2000, Green et al. 2001, 

Turner et al. 2002, Turner et al. 2003, Martin and Jokela, 2004, Coursolle et al. 2006, Pereira et 

al. 2007); 3) LUE = GPP/total intercepted solar radiation (Kin) (Gu et al. 2002, Allen et al. 2005, 

discussed); and 4) a biome-specific maximum LUE (1.058 g C⋅MJ-1 IPAR for evergreen needle 
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leaf forests) linearly reduced with VPD and/or Tair within remote-sensing based production 

efficiency models (e.g. MODIS) (Running et al. 1999, Running et al. 2004, Bradford et al. 2005, 

Heinsch et al. 2006, Yuan et al. 2007). The problem with using one or many different methods for 

estimating LUE is that there may be an inconsistency between reported LUE estimates within the 

literature. For example, the use of GPP or NPP may not result in vastly different LUE estimates, 

because GPP includes the removal of Re, whereas NPP includes the removal of autotrophic 

respiration (Ra) only (Lovett et al. 2006, Kljun et al. 2006). LUE based on GPP or NPP will 

likely be similar. However, using IPAR as opposed to APAR may result larger in differences in 

LUE, especially within open canopies (e.g. Gower et al. 1999).  

 

The term, APAR also tends to vary within the literature. It is defined according to [1], but in 

much of the literature, it does not include the PARBC↑ component (e.g. this study), or the PARAC↑ 

component (e.g. Coursolle et al. 2006, Schwalm et al. 2006, for some sites). Coursolle et al. 

(2006), as in numerous other studies, use IPAR = PARAC↓ � PARBC↓ and may be modeled from 

Beer�s Law if the PARBC↓ is not included. Therefore, LUE depends on how IPAR and APAR are 

estimated. Do varying definitions of APAR or IPAR greatly affect LUE?  

 

Examples of four different methods for estimating average growing season LUE (from daily 

averages) are illustrated for the jack pine sites over four years of study (Figure 2.8). In the first 

example (a), APAR is defined as: APAR = (PARAC↓ - PARAC↑) � (PARBC↓) at OJP and HJP75, 

but was modeled using Beer�s Law at HJP94 and HJP02, with the inclusion of PARAC↑. In b) 

IPAR was estimated as PARAC↓-PARBC↓, and was modeled using Beer�s Law at HJP94 and 

HJP02. The example in c) used incoming shortwave radiation (Kin) only at all sites. The LUE 

example in d) was used within the MODIS GPP remote sensing context. It incorporates a constant 
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maximum LUE (1.058 g C⋅MJ-1 IPAR) determined per classified biome type and is linearly 

reduced when VPD exceeds 2500 Pa, and Tair freezes stomata closed (-8oC) (Heinsch et al. 2006). 

LUE estimates in d) are typically driven using meteorology from general circulation model 

(GCM) reanalysis, but in this case maximum LUE has been reduced using measured Tair and 

VPD at the tower.    

 

Figure 2.8. A comparison of four separate methods commonly used to estimate LUE: a) LUE = 
GPP/APAR; b) LUE = GPP/IPAR; c) LUE = GPP/total intercepted solar radiation; d) LUE = 
1.058 g C⋅MJ-1 IPAR linearly reduced with VPD > 2500 Pa, and Tair < -8oC. Each has been 
averaged from daily estimates per growing season per year. 

 

The results in Figure 2.8 illustrate little difference between LUE estimated using APAR (Figure 

2.8a) as opposed to the IPAR (Figure 2.8b), even as canopies increase in openness. The above 

canopy reflected component is approximately 3% to 7%. Ground surface PAR albedo was 

measured by Chen (1996) at OJP and HJP75, and was approximately 6% of incoming above 
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canopy PAR. Inclusion of reflected PAR from the ground surface would increase LUEAPAR by an 

additional 6% in comparison with LUEIPAR. Use of incoming shortwave radiation only (Figure 

2.8c), without removal of incident radiation below the canopy resulted in an overestimation of 

light and a strong decrease in LUE at all sites. Shortwave solar radiation is problematic because 

much of the near infrared portion of the spectrum is strongly scattered and is not used in 

photosynthesis (Gower et al. 1999).  

 

The final method (Figure 2.8d), based on a biome-specific maximum LUE, follows growing 

season average trends of LUE observed at each site. The maximum LUE approximately matches 

average LUE of OJP. This includes a reduction of LUE in 2003 followed by increased LUE in 

2004 and 2005. Average growing season LUE used by MODIS to estimate GPP (with the 

inclusion of fPAR from MODIS) was underestimated by approximately 40% (OJP), 15% 

(HJP75), 14% (HJP94), and 16% (HJP02), on average. MODIS often overestimates fPAR (e.g. 

Heinsch et al. 2006) which is multiplied by LUE to estimate GPP. Low biome-specific LUE may 

be used to offset overestimates of fPAR by MODIS when used to calculate global GPP products 

(e.g. Zhao et al. 2003, Turner et al. 2006, Heinsch et al. 2006). Inclusion of varying degrees of 

diffuse and direct radiation measured on a global basis per day using remote sensing satellites 

may also improve LUE estimates per biome-type applied to fPAR to estimate cumulative GPP.    

2.7 Discussion 

2.7.1 Drought and Wet Growing Season Influences on LUE 

Average LUE per site was approximately double those of Schwalm et al. (2006) for the growing 

season of 2004 at the same sites. Schwalm et al. estimate average growing season LUE 0.5 g C⋅ 

MJ-1 of APAR (OJP) 0.48 g C⋅MJ-1 of APAR (HJP75) and 0.11 g C⋅MJ-1 of APAR (HJP02), 
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where APAR is estimated from measured LAI and the MODIS-based LAI product (HJP02) using 

Beer�s Law. LAI measurements in Schwalm et al. (2006) were approximately 25% to 35% 

greater at OJP and HJP75 and 75% greater at HJP02 when compared with Chen et al. (2006) and 

this study. MODIS typically overestimates LAI at HJP02 because of mixed pixel influences 

within the site (Chasmer et al. accepted). Overestimates of LAI would result in underestimates of 

LUE if using a Beer�s Law approach. Results of Turner et al. (2003) are similar to ours, where 

LUE varied from between 0.8 and 1.2 g C⋅MJ-1 of APAR between June and September at a 

northern boreal black spruce stand. Green et al. (2003) found that annual average LUE for a jack 

pine forest was 0.71 g C⋅MJ-1 of IPAR, also in the range of results found in this study. The same 

result 0.71 g C⋅MJ-1 of IPAR was also found in Lagergren et al. (2005) for a mixed conifer forest 

in Sweden.  

 

The results of this study indicate that variability in LUE can be strongly affected by severe 

drought and wet years within jack pine of varying ages (Figure 2.4). Similar results have been 

found in Pereira et al. (2007) within Mediterranean ecosystems (oak, eucalyptus, and grassland) 

and Allen et al. (2004) within irrigated and non-irrigated sweetgum and sycamore stands. Pereira 

et al. (2007) found that drought caused reduction in photosynthesis as a result of seasonal water 

deficits and elevated light and Tair. They also mention that ground plants with shallow root 

systems die during droughts, and Re is less affected than carbon uptake. Phillips and Riha (1993) 

suggest that drought might cause increased partitioning of biomass to roots, thereby causing a 

reduction in LUE within older ecosystems. When GPP and Re were compared at the jack pine 

sites, during drought and wet years, we found that the magnitude of GPP and Re reductions were 

dependent on age. For example, at OJP, GPP in 2003 is reduced by 8% and Re by 7% from 2002 
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cumulative values. However, in HJP94, GPP was reduced by 5% and Re by 17% between years 

2002 and 2003.  

2.7.2 Environmental Influences on LUE 

The influences of diffuse vs. direct radiation had clear but varied influences on LUE at jack pine 

stands of different ages. Other studies have found that diffuse radiation and the lack of within 

canopy shadows significantly increased LUE (e.g. Roderick et al. 2001, Gu et al. 2002, Still et al. 

2004, Turner et al. 2003, Schwalm et al. 2006, Jenkins et al. 2007, Pereira et al. 2007). Positive 

relationships between LUE and increased diffuse vs. direct radiation have not been examined 

within different ages of the same species. Increased LUE occurs during cloudy conditions 

because more light is scattered and distributed within the canopy (Gu et al. 2002). Direct 

illumination of the canopy results in saturation of photosynthesis, whereas the remaining portion 

of the canopy (not saturated by sun flecks) is in shadow and is not able to photosynthesize 

efficiently (Gu et al. 2002). In this study, we have shown that the decrease of LUE between 

cloudy (diffuse) to partly cloudy radiation conditions is greater than from partly cloudy to sunny 

(direct) conditions at different ages of jack pine sites studied. This result agrees with that of 

Jenkins et al. (2007) who state that when the ratio of diffuse to total radiation is high, the 

efficiency for photosynthesis will also be great, and will increase linearly to a point where the sky 

is diffuse, but bright (before direct sunlight breaks through the clouds). However, as uniform 

cloud cover decreases and direct radiation conditions increase, LUE will decrease and the rate of 

photosynthesis will peak (Gu et al. 2002, Turner et al. 2003, Schwalm et al. 2006).  

 

The transition of LUE from diffuse to direct light conditions tended to be great at OJP and HJP75, 

possibly due to slight shadowing within these open and low LAI canopies. LUE at HJP94 was 
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less influenced by direct and diffuse radiation conditions than at OJP and HJP75, although light 

conditions did have a significant influence on LUE. By observation, the canopy at HJP94 does 

not intersect in many parts of the site and trees often had branches extending to the ground 

surface. Needles were located on the outer envelope of individual trees. HJP02 tended to be most 

affected by diffuse vs. direct conditions out of all sites studied, and also had the greatest 

variability in LUE. In 2005, HJP02 consisted of small jack pine seedlings, alder (Alnus crispa 

Ait.) shrubs and a ground cover of herbs and grasses. Without any shadows, saturation of 

photosynthesis in combination with increased Tair and VPD occurred almost immediately with 

direct radiation. The linear increase of GPP with APAR, described by a light response curve, was 

almost non-existent (Figure 2.5d), possibly resulting in strong differences between LUE during 

cloudy as opposed to partly cloudy conditions.    

 

Meteorological driving mechanism influences on LUE also varied between different jack pine 

sites and ages. VPD tended to have the greatest influence on LUE at most sites studied but was 

less important at HJP75. This may be due to increased leaf area, tree density, and increased 

within canopy shadowing, as well as decreased roughness. Gu et al. (2002) found that VPD and 

Tair tended to have varying influences on vegetation photosynthesis during different radiation 

conditions, possibly as a result of upper canopy as opposed to lower canopy leaf temperature. For 

example, during direct radiation conditions, upper leaves may have higher temperatures and may 

experience greater VPD than lower leaves, which are in shadow. These results also correspond 

with those of Turner et al. (2003) within several biomes; a mixed conifer forest in Lagergren et al. 

(2005); and within several forest types in Gu et al. (2002). VPD also co-varied with Tair, relative 

humidity (RH), and latent energy exchanges (LE), which explained much of the variability in 

LUE at numerous sites in Schwalm et al. (2006). Jenkins et al. (2007) found a lack of 
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correspondence between LUE and VPD and Tair at a northern hardwood stand. VPD and/or Tair 

influences on LUE may become more important within moisture deficient forest such as the 

boreal jack pine forests used in this study. Average daily θ had little influence on daily estimates 

of LUE (except at HJP94, where it has a stronger influence, r2 = 0.20). When averaged over the 

growing season at each site, θ tends to have a strong influence on the seasonal variability of LUE. 

Schwalm et al. (2006) found that soil moisture had a moderate influence on LUE at three mature 

deciduous sites and two regenerating forests, including HJP02, whereas Kljun et al. (2006) found 

almost an immediate response of CO2 fluxes to θ at a mature aspen site.  

 

The use of LUE, especially within remote sensing-based production efficiency models, would 

benefit from the inclusion of daily diffuse and direct LUE. Currently MODIS GPP algorithms 

estimate eight-day cumulative GPP from average fPAR multiplied by a maximum LUE term that 

is adjusted based on very high VPD and low Tair. Over the four years of study, 29% of days were 

cloudy, 50% were partly sunny, and 21% of days were sunny, resulting in large differences in 

LUE during those days. The use of an average biome-specific LUE may improve estimates of 

GPP by either increasing or decreasing LUE relative to the amount of cloud cover and diffuse 

radiation on a per day basis, and cumulated over the eight-day composited period. 

2.8 Conclusions 

In this study, CO2 fluxes and LUE were examined over a unique period of drought, normal and 

wet conditions within a jack pine chronosequence in Saskatchewan, Canada. The purpose of the 

study was to determine meteorological and site-specific controls on LUE during years of severe 

drought and wet conditions. The efficiency at which vegetation uses light may change with 

increased air temperatures and drying, which may be one outcome of climatic change within the 
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Canadian boreal forest (Kljun et al. 2006). The ability to characterize changes in LUE and 

vegetation productivity, especially using remote sensing-based production efficiency models, is 

of importance. This study found that significant differences in LUE occurred at OJP, HJP75 and 

HJP94 during the drought of 2003, likely as a result of decreased average θ. LUE was not greatly 

affected by drought and wet conditions at HJP02, but NEP did vary between the years studied. 

Cumulative CO2 fluxes (GPP, NEP, and Re) did not vary greatly at OJP between drought and wet 

years. Despite this, an early spring in 2003 resulted in early leaf flush and increased productivity 

before the effects of mid-summer soil drying were felt. Similar variability in fluxes were also 

found at HJP94, where GPP tended to be greater in 2003 during the early part of the growing 

season, but was reduced compared with other years towards the end of the growing season. GPP 

and Re tended to be lower at all sites in 2004, perhaps in response to the previous years drought, 

as well cooler growing season Tair. During 2004, leaf growth rates were significantly reduced at 

HJP94, and in 2005, leaf foliage cover was less than in 2004, despite typical rapid regeneration of 

this young site. Daily average VPD had the greatest influence on the variability of LUE at all 

sites, whereas daily θ did not greatly affect LUE. Diffuse vs. direct radiation conditions also had 

large but varying influences on LUE at different sites, depending on canopy structural 

characteristics. Differences between cloudy and partly sunny/sunny conditions were greatest at 

HJP02, possibly due to almost immediate saturation of GPP with increased PAR. OJP and HJP75 

were also subject to large differences LUE during cloudy and partly sunny conditions, likely as a 

result of some within-canopy shadowing. These results suggest that the inclusion of radiation 

conditions (e.g. diffuse vs. direct) in the calculation of LUE would improve remote-sensing 

estimates of GPP from MODIS.     
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Chapter 3 

Vegetation Structural and Ground Elevation Influences on CO2 
Uptake within a Mature Jack Pine Forest in Saskatchewan, 

Canada 
 

3.1 Abstract 

Carbon dioxide, water vapour, and energy fluxes vary spatially and temporally within forested 

environments. However, it is not clear to what extent they vary as a result of variability in 

biomass and elevation gradients. The following study presents a new methodology for extracting 

structural vegetation characteristics and elevation changes within footprints, for direct 

comparison with eddy covariance (EC) CO2 flux concentrations. The purpose was to determine if 

within-site canopy structure and local elevation influenced CO2 fluxes in a mature jack pine forest 

located in Saskatchewan, Canada. Airborne light detection and ranging (lidar) was used to extract 

tree height, canopy depth, foliage cover and elevation within 30-minute flux footprints. Within-

footprint average structural components and elevation were related to 30-minute average net 

ecosystem productivity (NEP) and gross ecosystem production (GEP).  

 

NEP and GEP were modeled using multiple regression and, when compared with measured 

fluxes, almost all periods showed improvements in the prediction of flux concentration when 

canopy structure and elevation were included. Increased biomass was related to increased NEP 

and GEP in June and August when the ecosystem was not limited by soil moisture. On a daily 

basis, fractional cover and elevation had varying but significant influences on CO2 fluxes.  



 

  57

3.2 Introduction 

The eddy covariance (EC) method is commonly used to measure the direction and movement of 

energy and trace gas (e.g. water, CO2) concentrations throughout ecosystems (Baldocchi, 2008). 

Networks of EC systems have been set up at local, biome, continental and global scales based 

loosely on the idea that individual nodes are representative of larger ecosystems. These are then 

sometimes combined with remote sensing data and ecosystem models to determine spatial and 

temporal variability of CO2 exchanges within areas that have undergone some prior disturbance 

(e.g. land management, extreme weather, insect infestation, fire, etc.), and within different stand 

ages, species types, and in areas of complex terrain (e.g. Heinsch et al. 2006).  

 

Spatial heterogeneity in canopy structure and elevation may be an important consideration when 

measuring CO2 and water fluxes, especially if wind directions do not vary. If the ecosystem is 

homogeneous, apart from other driving mechanisms, the location of the flux origin should not be 

important because it would not matter where the winds were originating from. There would be 

little variability in flux concentration resulting from the relatively similar characteristics of the 

ecosystem in all directions. However, if the ecosystem is spatially variable, then flux 

concentrations may vary depending on spatial location and winds originating from dominant 

directions (Rahman et al. 2001; Chen et al. 2008). In many ecosystems, spatial variations in the 

availability of soil nutrients and moisture are manifested in the variability of above-ground 

biomass and exchanges measured by EC (Baldocchi and Meyers, 1998; Griffis et al. 2003). If 

differences in the amount of CO2 sequestration can be found between ecosystems, then is it true 

that areas of greater and lesser amounts of biomass may also affect CO2 and water exchanges 

within a single ecosystem?  
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Few studies have directly examined the influence of structural and elevation heterogeneity on 

fluxes within a single ecosystem (Kim et al. 2006; Chen et al. 2008). Until recently, it has been 

difficult to spatially measure three-dimensional vegetation structure and ground surface elevation 

at high resolutions. Airborne light detection and ranging (lidar) is an active remote sensing 

technology that is used to measure canopy structure and ground surface elevation at high 

resolution. A footprint model may then be used to discretize the variability in canopy biomass and 

elevation at a particular place and time, which can then be correlated with trace gas exchanges 

measured by EC. The footprint model determines the probability that fluxes originated from a 

particular place within the ecosystem based on measured atmospheric turbulence (e.g., Foken and 

Leclerc, 2004; Vesala et al. 2008). Each footprint, therefore, contains the extent in x and y 

coordinates of the source/sink area and a probability (probability density function [PDF]) that the 

CO2 source/sink at x/y will be measured at the sensor.  

 

In this study, vegetation structure and elevation were characterized using lidar within the contours 

of half-hourly flux footprint areas (approximately 80% of the probability of flux) from Kljun et 

al. (2004). The objective was to quantify the influences of vegetation structure and elevation on 

CO2 concentrations measured by EC, specifically net ecosystem production (NEP) and gross 

ecosystem production (GEP). Three growing season periods were examined in 2002 at a mature 

jack pine site in Saskatchewan, Canada.  

3.3 Methods 

3.3.1 Study Area and Site Characteristics 

The study area consists of a mature jack pine (Pinus banksiana Lamb.) (OJP) forest of 

approximately 90 years old (Baldocchi et al. 1997) located near the southern edge of the boreal 
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forest (520230 E, 5974262 N), Saskatchewan Canada. The ground elevation varies between 482 

m and 494 m throughout the 1000 m radius surrounding the EC flux measurement tower, and tree 

heights vary by up to 6 m (Figure 3.1a and b). The understory is comprised of lichens (Cladina 

spp.), bearberry (Arctostaphylos uva-ursi L.), cranberry (Vaccinium vitisideae L.) and sparse 

groupings of alder (Alnus crispa Ait.). Soils within the site are coarse and well-drained sand with 

low nitrogen content (Baldocchi et al. 1997). Measurements of forest structure (e.g. canopy 

height) within eight geo-located forest mensuration plots were used to validate lidar canopy 

structural attributes within the ecosystem (Table 3.1). 

 

Table 3.1. Average structural vegetation characteristics measured at eight plots surrounding the 
flux measurement station at the jack pine site.  
Plot # Northing 

Coordinate 
(Zone 13) 
(m) 

Easting 
Coordinate 
(m) 

Elevation 
(m) 

DBH* 
(cm) 

Tree 
height (m) 

Canopy 
depth = 
height � 
base (m) 

LAIe** 
(m2m-2) 

Stem 
density 
(m-1) 

Alder 
density 
(m-1) 

1 520238.8 5974368.1 494.3 15.9 15.0 6.3 1.50 0.12 0.03 
2 520224.5 5974155.5 495.1 14.6 13.6 6.1 1.45 0.08 0 
3 520130.9 5974261.7 494.1 11.7 13.0 5.9 1.49 0.17 0 
4 520365.4 5974259.0 492.5 12.9 13.3 5.2 1.55 0.15 0 
5 520623.3 5974564.0 489.5 17.5 15.7 8.8 1.82 0.09 0.03 
6 519813.4 5973981.9 491.9 16.1 14.9 8.1 1.52 0.10 0.02 
7 520430.5 5973784.2 487.0 11.8 11.4 6.2 1.21 0.14 0 
8 520012.7 5974728.1 492.4 23.6 16.4 11.2 1.49 0.04 0.47 

*DBH = diameter at breast height; ** LAIe = effective leaf area index 
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Figure 3.1. a) Lidar measured ground surface elevation within 750 m of the flux station with 
removal of understory and canopy vegetation. b) Lidar measured canopy heights within 750 m of 
the flux station after removal of topographical influences. Blue circles represent the location of 
11.3 m radius measurement plots and the red circle represents the location of the EC flux tower 
(centre). Laser returns have been rasterized to produce a continuous surface digital elevation 
model (DEM) (a) of the ground returns and a canopy height model (CHM) of the maximum z 
returns (b). 



 

  61

3.3.2 Canopy Structure Measurements 

Mensuration data (Table 3.1) were collected over two periods, May 9 to 16 and July 25 to August 

15, 2005. Plot locations were selected for spatial representation according to compass cardinal 

directions at distances of 100 m (May field campaign), and 500 m (July/August field campaign) 

from the flux measurement station. Each plot has a radius of 11.3 m and follows Fluxnet-Canada 

protocols for measurements (Fluxnet-Canada, 2003). Plot location, tree height, base of live crown 

height, diameter at breast height, gap fraction, and effective LAI (LAIe) were measured at each 

plot. Alder were also counted and measured for height and crown diameter in each cardinal 

direction. Plots were located at the centre using survey-grade, differentially corrected global 

positioning system (GPS) receivers (Leica SR530, Leica Geosystems Inc. Switzerland; Ashtec 

Locus, Ashtec Inc., Hicksville, NY) with the same base station coordinate as was used for the 

lidar survey. Geo-location accuracies varied from 1 cm to 1 m depending on the canopy cover 

density at time of GPS data collection. Plots were geo-located so that lidar data could be directly 

compared with plot averages and individual tree measurements.  

 

Canopy gap fraction was determined from digital hemispherical photography (DHP) at five 

locations within each plot (north, south, east, west, and centre), at distances of 11.3 m apart. All 

photographs were taken during either diffuse daytime conditions, or 30 minutes before dawn or 

after dusk to reduce the influence of sun brightness and apparent leaf reduction within the 

photograph (Zhang et al. 2005). Photographs were exposed to two f-stops below automatic 

exposure (normally set between one and four exposure settings and with larger aperture) (Chen et 

al. 2006). Each individual photograph was processed following sky and vegetation thresholding 

methods of Leblanc et al. (2005) to obtain estimates of gap fraction and fractional cover (1-gap 
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fraction). DHP version 1.6.1 software was used to process all photographs (S. Leblanc, Canada 

Centre for Remote Sensing provided to the Fluxnet-Canada Research Network).  

 

Average DHP measurements slightly underestimated LAIe by 14% and 11% when compared 

with TRAC and LiCOR LAI-2000 transect methods in Chen et al. (2006) at the same site. It is 

likely that ecosystem heterogeneity, and technological differences between optical measurements 

of Chen et al. (2006) and DHP resulted in variability between LAIe estimates. Despite differences 

in LAIe when compared with Chen et al. (2006), our estimates provide reasonably close 

approximation of LAIe and, more importantly, are indicative of relative differences in canopy 

fractional cover using lidar.  

3.3.3 Flux Measurements 

Meteorological, CO2 and H2O flux measurements at OJP have been collected for 30-minute 

periods each day since 1999 (Griffis et al. 2003; Barr et al. 2006) and previously in 1994 during 

the Boreal Ecosystem-Atmosphere Study (BOREAS) (Middleton et al. 1997; Goetz et al. 1999). 

Three periods of five, nine, and seven days of flux and meteorological data were examined during 

the 2002 growing season when EC data were available. The selected periods occurred from June 

10 to 15 (P1), July 5 to 13 (P2) and August 7 to 13 (P3), shown in Figure 3.2 with precipitation. 

These periods (and numbers of days) were chosen a) to coincide with dry periods during which 

little to no rainfall occurred; and b) so that the influence of three varying soil moisture regimes 

could be examined. Average tree height growth since BOREAS (1994 to 1996) was 

approximately 1 m over an 11-year period from measurements made during field campaigns in 

1994 and those made in 2005 (Gower et al. 1997). Differences in canopy height between summer 

2002 (flux measurements) and summer 2005 (field campaigns and lidar data collection) varied by 

less than 30 cm and were within the range of error of the lidar system.  
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Figure 3.2. Precipitation (mm) recorded at OJP and during the growing season, 2002. Grey 
rectangles mark the duration of the three periods of study. Total cumulative precipitation in 2002 
is ~410 mm, which is the 30-year normal precipitation for this area, but is the second consecutive 
drought year in western Canada (Kljun et al. 2006).  

 

Meteorological and flux measurements made at OJP are described in detail in Barr et al. (2006) 

and Kljun et al. (2006). Briefly, above-canopy CO2 fluxes were measured at approximately 28 m 

above the ground surface using the EC method at 20 Hz and aggregated over 30-minute periods. 

A sonic anemometer (CSAT3, Campbell Scientific Inc. Edmonton, Alberta, Canada) and closed-

path infrared gas analyzer (LI-6262, LI-COR Biosciences Inc., Lincoln, Nebraska) were used to 

measure friction velocity and atmospheric CO2. Net ecosystem exchange (NEE) (µmol⋅m-2⋅s-1) 

was measured by EC, where �NEE was equal to positive NEP (µmol⋅m-2⋅s-1). Positive NEP 

indicates that greater amounts of CO2 were used in photosynthesis than were released via 

ecosystem respiration (Re). Daytime Re (µmol⋅m-2⋅s-1) was modeled from the relationship 

between nighttime Re and soil temperature (Barr et al. 2006). GEP (µmol⋅m-2⋅s-1), defined as the 

uptake of CO2 by the ecosystem through photosynthesis, was estimated from measured NEP and 

modeled Re, where GEP = NEP + Re. A friction velocity threshold of greater than 0.35 m s-1 was 
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used to filter out periods when wind speeds were too low for accurate estimates of flux 

concentration.  

 

Uncertainties in measuring CO2 fluxes occur because, during calm and stable conditions, the 

transfer of CO2 by non-turbulent exchanges are not detected by the EC system (Massman and 

Lee, 2002; Griffis et al. 2003). Early morning (before 0900 LST) and late afternoon (after 1700 

LST) periods were not compared with canopy structure and site elevation because of the 

difficulty of measuring CO2 storage in the air column below the EC sensors at that time (Yang et 

al. 1999). Nighttime fluxes have also been excluded because, during often stable nocturnal 

conditions, the footprint source area sometimes extended beyond the extent of the lidar dataset. 

Other issues associated with the accuracy of EC measurements include flux concentration loss 

due to a) instrument set up limitations, b) assumption of near neutral atmospheric stability; c) 

inability to consider the full complexity of EC equations; and d) 2D and 3D terrain influences 

(Massman and Lee, 2002). Average 24-hour energy balance closure for each day and each period 

was determined using the energy balance ratio method (e.g. Wilson et al. 2002). Average energy 

balance closure was ~88% (P1) (standard deviation (SD) = ~10%), ~83% (P2) (SD = ~8%), and 

~85% (P3) (SD =~14%), calculated from net radiation (Rn), latent heat flux (Le), sensible heat 

flux (H), and soil heat flux (G). Barr et al. (2006) suggest that an energy balance correction may 

be applied to CO2 fluxes, so that they are increased relative to the percentage that is under-

estimated when unable to close the energy balance. This assumes that underestimation of energy 

fluxes are representative of underestimation of CO2 fluxes. Based on this assumption, CO2 fluxes 

have been corrected for underestimated energy fluxes and an inability to close the energy balance 

at OJP and other mature forest sites operated by Fluxnet-Canada (Canadian Carbon Program) at 

BERMS. 
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Meteorological variables were also examined to determine the influence of meteorology on flux 

exchanges prior to examining canopy structure and elevation effects. Measurements included 

above canopy incoming photosynthetically active radiation, PAR (µmol m-2 s-1), relative 

humidity, RH (%), and air temperature, Tair (oC) (model HMP45C, Vaisala by Campbell 

Scientific Inc. Edmonton Alberta, Canada), soil temperature, Tsoil (oC) (CS107b, Campbell 

Scientific Inc., Edmonton, Alberta), and volumetric soil moisture, θ (m3 m-3) (CS615, Campbell 

Scientific Inc., Edmonton, Alberta). Above canopy incoming and reflected PAR (µmol m-2 s-1) 

and below-canopy incoming PAR (µmol m-2 s-1) were measured using LI-COR model LI190 (LI-

COR Biosciences, Nebraska, USA). θ was examined at depths of 30 to 60 cm, and Tsoil was 

examined at depths of 10 cm. RH and Tair were examined above the canopy at a height of 16 m.   

3.3.4 Lidar Data Collection and Processing 

Lidar data were obtained at OJP on August 12, 2005 (Figure 3.1) using a scanning discrete pulse 

return system (ALTM3100, Optech Inc. North York, Ontario). The ALTM3100 is owned and 

operated by the Applied Geomatics Research Group, Nova Scotia. Up to four laser pulse 

reflections or �returns� were obtained per laser pulse emitted, at a rate of 71 kHz and at a flying 

height of 950 m above ground level (a.g.l.). The scan angle was set at ± 19o with 50% overlap of 

adjacent flight lines. This enabled penetration of laser pulses through to the base of the canopy, 

whilst also obtaining returns on all sides of individual trees (Chasmer et al. 2006). Cross-track 

and down-track resolutions, with 50 percent overlap of scans, were 35 cm (�post spacing�, the 

distance between returns).  

 

Percentile distributions were used to approximate average tree heights, base of live crown height 

and canopy depth (e.g. Lim and Treitz, 2004; Chasmer et al. 2006) within footprint PDF contour 

lines. Height and live canopy base height percentile distributions were calculated on individual 



 

  66

returns greater than or equal to 1.3 m above the ground surface so that returns from the ground 

surface would not influence and shift the percentiles downwards. Percentile distributions were 

also compared at mensuration plots to determine the most accurate and descriptive percentiles to 

adopt. The 90th and 8th percentiles were most appropriate for determining average tree heights and 

base of live crown height at the plot level. The resulting heights underestimated measured canopy 

heights by up to 0.94 m and overestimated the base of the live crown by up to 0.77 m when 

compared with plot-level averages. Canopy fractional cover (fcover) (where 1 = full canopy cover 

and 0 = no canopy cover) was determined from laser returns based on the ratio of the number of 

canopy returns to canopy and ground returns: 
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where Pcanopy is the total frequency of laser pulse returns within the canopy (≥ 1.3 m a.g.l.) and Pall 

is the total frequency of all laser pulse returns from the canopy and ground surface within each 1 

m x 1 m x 30 m column. 1.3 m heights were chosen to capture the base of the canopy without 

inclusion of the understory, and also, because of the inability of the lidar to record multiple 

returns at heights within approximately 1.3 m of the ground. Morsdorf et al. (2006) indicate that 

fcover is an effective proxy indicator of variations in foliage density. A schematic diagram of the 

lidar structure classification is provided in Figure 3.3. 
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Figure 3.3. A schematic diagram of the distribution of laser returns within a tree and the methods 
used to differentiate canopy height (90th percentile), canopy base height (8th percentile), canopy 
depth (canopy height � canopy base height), and fcover within a 1 m x 1 m x z (height) column. 

 

3.3.5 Footprint Data Analysis 

The footprint parameterization used in this study follows that of Kljun et al. (2004). This 

parameterization was chosen because a) it is based on variables that are easy to derive from 

measurements obtained from EC; b) it is neither computationally difficult nor time-intensive; and 

c) it has been thoroughly applied and tested using a variety of meteorological (e.g. varying 

stability, roughness length, etc.) and technological (instrument measurement height) applications 

(Kljun et al. 2004).  

 

The footprint parameterization allows for the derivation of the crosswind-integrated footprint 

( yf ) based on the along-wind distance from the EC (x), the EC height (zm), roughness length 

(z0), and the height of the planetary boundary layer (H). Directionality and origin of the flux was 

determined from wind direction. Trace gas advection and diffusion was accounted for in the 

surface friction velocity (u*), whereas buoyancy and the formation and size of eddies within the 
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planetary boundary layer were determined using the standard deviation of the vertical velocity 

(σw). Dispersion in the y direction (the cross-wind distance from the centre-line) was calculated 

using a Gaussian function (Amiro, 1998). Roughness length (z0) at OJP has been estimated from 

Choudhury and Monteith, (1998) as: 
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and  

( ) ( )[ ]66/1 1ln031.01ln XXhd +++= ,      [3] 

 

where X = 0.2 LAI (1.5 m2 m-2 on average at OJP), h is the average height of the canopy, and z0s 

is the soil surface roughness = (0.10hs). hs is the height of the understory (Shuttleworth and 

Wallace, 1985; Monteith and Unsworth, 1990), consisting mainly of sporadic and infrequently 

occurring alder and in many cases, footprints contained little to no understory. Therefore, hs was 

assigned a value of zero. Finally, d is zero plane displacement. Therefore z0 for OJP, using an 

average measured tree height of 14.2 m was 1.9 m, varied between 1.6 m and 2.2 m for shortest 

and tallest trees within measured plots (11.4 and 16.4 m, respectively). The location of maximum 

daytime flux varied between 176 m and 200 m from the flux tower for areas of smaller z0 vs. 

areas of higher z0 respectively, whereas the along wind distance may vary by as much as 50 m. 

Due to these slight variations in roughness length and minimal impact on footprint size, average 

z0 for the entire site was based on average tree height.   

 

Variable wind speed and boundary layer height also affect the length of the footprint (not shown), 

where increased u* and decreased H results in footprints located nearer to the EC. Richardson 
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number (Ri) was used to determine approximate stability of the atmosphere (Monteith and 

Unsworth, 1990) based on air temperature and windspeed at 30-minute periods during relatively 

unstable conditions when u* was >0.35 ms-1: 

 

 21 )//()/( zuzTgTRi air ∂∂∂∂= − ,       [4] 

 

T is absolute temperature (K), g is gravitational acceleration (9.8 m⋅s-1), u is windspeed, and z is 

height. The generalized stability factor is calculated as: 

 

2)51( RiF −=     -0.1 ≤ Ri ≤ 1      [5] 

and  

75.0)161( RiF −=   Ri < -0.1.      [6]  

 

F was used to approximate H following tables in Gryning et al. (1987). The maximum along-

wind and cross wind distances were used to estimate the area of the footprint and within footprint 

average canopy structure and elevation characteristics. Canopy structure and elevation were then 

correlated with 30-minute average CO2 flux concentrations measured by EC.  

3.3.6 Statistical Analysis 

To determine if vegetation structure and elevation affect NEP and GEP, the combined influence 

of meteorological variables were first examined. Meteorological variables included incoming 

PAR, RH, Tair, Tsoil, and θ. A Landsberg light response curve (Landsberg and Waring, 1997; Chen 

et al. 2002) was used to examine the relationship between incoming PAR and NEP (GEP) during 

individual periods: 
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where Pmax is the maximum average NEP (or GEP) at saturation, α is the slope of NEP (GEP) as 

it increases with incoming PAR, and Icomp is the light compensation point. The residuals of the 

measured vs. modeled flux (NEPmeasured � NEPmodelled) were then examined to determine the 

remaining contribution of the most important meteorological variables (RH, Tsoil, and θ) to the 

variability in the flux. This was done using a multiple linear regression (Chen et al. 2002). A 

linear regression was chosen because it was best able to describe the variability in the residuals. A 

second multiple linear regression was also performed to examine the combined influences of 

meteorological variables and the most important canopy structure (fcover) and elevation 

influences on the flux. Both multiple regression analyses were added (separately) to the 

NEPmodelled and GEPmodelled and compared with the measured NEP and GEP for each time period. 

Pearson�s r correlation was used to determine the relative correspondence between flux 

concentration and meteorological driving variables, canopy structure, and elevation as a 

correlation matrix. 

 

The influence of local meteorology was also assessed by relating wind direction to 

meteorological driving mechanisms during the periods of study. It could be argued that winds 

originating from particular directions may bring specific meteorological conditions (e.g. a north 

originating wind bringing cold air, a southern originating wind bringing warm air, changes in 

humidity from nearby lakes, etc.). These could affect the local meteorological driving 

mechanisms and photosynthesis. During the periods of study, it was found that wind direction had 

no influence on local meteorology. Tair ranged from ~5oC to 30oC, and a two-sample t-test 

confirms that Tair was un-related to the origin of wind (r2 = 0.04, p = 0.8). Similarly, RH also had 

no relationship to wind direction (based on a two-sample t-test), and varied between ~20% and 
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100%, regardless of wind origin (r2 = 0.05, p = 0.72). Therefore, it can be concluded that local 

weather conditions were not dependent on wind direction during the periods studied.  

3.4 Results  

3.4.1 Footprint Climatologies 

Half-hourly filled footprint contour lines during three periods of study have been �overlaid� onto 

the CHM derived from lidar (Figure 3.4) to illustrate footprint directionality and location within 

the ecosystem. The main part of the footprint (containing 80% probability of flux) occurred 

within 500 m of the EC whereas footprint areas often extended to 1 km and beyond during stable 

conditions. Figure 3.5 illustrates the frequency of wind directions and flux origins throughout 

2002 and during three periods of study. During 2002, approximately 45% of fluxes originated 

from areas northwest of the EC system. These areas are characterized by higher elevations, taller 

trees, and greater leaf area than the averages of the site (Table 3.2). Fluxes from the south-west 

(20%) and from the north-east (18%) originated from areas of average vegetation structure and 

elevation. 17% of winds originate from south-east quadrants, which typically have lower 

elevations, shorter trees, and lower leaf area. If winds originate from some directions more than 

others, the EC system may not be adequately sampling all of the within-site heterogeneity in 

fluxes. By comparison, during the three periods studied (Figure 3.5b), fluxes tended to come from 

fairly representative wind directions found in 2002. Sampling from most directions allowed for 

comparisons to be made from most parts of the ecosystem, bearing in mind that fluxes throughout 

the year most frequently originated from the northwest.  
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Figure 3.4. Daily 30-minute footprint extent (80% contour lines) and wind direction for the three 
periods of study are over-laid onto the OJP CHM (shown in Figure 3.1b) to illustrate variability 
in canopy height and associated footprint locations for daytime periods (0900 to 1700) 
(approximately 17 ½ hourly periods or 8.5 hours per day). 
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Figure 3.5. Wind roses of the percent frequency of wind directions at OJP during the year 2002 
(a) and for the three periods studied (b). 

 

Table 3.2. Average canopy structure and elevation characteristics surrounding the EC sensor. 
Source of flux areas may be influenced differently depending on wind direction, canopy structure 
and elevation.  
Wind direction 
quadrants 

Frequency of wind 
origin during periods 
studied 

Average tree height (m) 
per wind direction 
quadrant 

Average fcover per 
wind direction 
quadrant 

Average elevation 
(m) per wind 
direction quadrant 

North-west 45% 16.4 0.74 495 
South-west 20% 14.9 0.55 491 
North-east 18% 15.2 0.67 490 
South-east 17% 11.6 0.43 487 

Site Average - 14.8 0.63 4.91 
 
 
 



 

  74

3.4.2 Dominant Meteorological Driving Mechanisms 

To make comparisons between fluxes and spatial variability in biomass and elevation, the 

influence of meteorological variables on CO2 uptake needs to first be determined. This divides 

structural and spatial influences from changing meteorological conditions. During all three 

periods, meteorological variables had varying influences on CO2 fluxes. Landsberg light response 

curves indicate that NEP and GEP saturated at different levels of PAR depending on the time 

period within the growing season and available θ (Figure 3.6). P1 and P3 had higher amounts of 

precipitation preceding them than P2, and P2 had higher Tair than the other two periods.  

Saturation of NEP and GEP was more pronounced during P1 and P2, and was increasingly linear 

during P3. Table 3.3 provides information on average meteorological conditions per period, 

incoming PAR (PARin), θ, Tair, and VPD, which likely affected NEP and GEP light response 

curves during the three periods of study. 



 

  75

 
Figure 3.6. Relationships between NEP (a, b, and c) and GEP (d, e, and f) and PAR represented 
by Landsberg light response curves at OJP during the three periods of study: June 10 � 15, 2002 
(a and d), July 5 � 13, 2002 (b and e), and August 7 � 13, 2002 (c and f). Relationships are shown 
for entire days when incoming PAR exceeded 0.1 µmol m-2 s-1. 
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Table 3.3. Average meteorological conditions and NEP (GEP) Pmax during three periods studied. 
Periods NEP Pmax 

(µmol m-2 s-1) 
GEP Pmax 

(µmol m-2 s-1) 
Average θ 
(m3 m-3) 

Average Tair 
(oC) 

Average 
Tsoil (oC) 

Average 
VPD (Pa) 

Average PARin 
(µmol m-2 s-1)  

P1 4.5 7.1 0.82 16.8 9.2 132 767 
P2 3.2 7.7 0.54 23.7 14.4 299 955 
P3 6.8 11.6 0.068 19.0 14.3 154 523 

 

Saturation of photosynthesis at OJP was consistent with the results of Turner et al. (2003). They 

found that two forests (one conifer and one deciduous) tended to saturate at high levels of 

absorbed PAR because of the low photosynthetic capacity of shade leaves and possible inhibition 

of photosynthesis of sunlit leaves during the afternoon. Within season influences of incoming 

PAR on CO2 uptake and lower rates of saturation during P3 (as opposed to P1 and P2) were also 

found in Hollinger et al. (1999) within a mixed forest. Middleton et al. (1997) found that lower 

water use efficiency, reduced evapotranspiration and reduced CO2 uptake at OJP in June and July 

1994, were caused by low soil moisture and stomatal limitations to photosynthesis. They also 

observed a late summer and early autumn peak in photosynthesis at OJP and attributed this to the 

maturing of new needles. New needles commence growth in June and are fully developed by 

mid-July enabling increased photosynthesis in August (Middleton et al. 1997).  

 

Incoming PAR accounted for the greatest variability in NEP and GEP during the three periods 

studied (Table 3.4) but had the least influence during P2 when NEP and GEP were highly 

variable. After removing the influence of PAR on NEP and GEP using the Landsberg equation, 

the residuals of the variance of NEP and GEP were affected by Tair, RH, θ, and Tsoil to varying 

degrees. Table 3.4 summarizes the relationships and significance between the driving variables 

and NEP and GEP, respectively, during the three periods studied.    
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Table 3.4. Pearson�s correlation coefficients for the relationships between NEP and GEP, and 
PAR using the Landsberg light response curve. Dominant meteorological variables affecting the 
residuals of NEP and GEP after accounting for PAR are also included. The p-value, the 
percentage when NEP and GEP were not affected by driving mechanisms, is shown in brackets. 
Number of observations = 192 (P1); 288 (P2); and 224 (P3).   

Period Incoming PAR Tair RH Tsoil θ 
P1 0.77 (0.000) -0.59 (0.000) 0.54 (0.000) -0.63(0.000) 0.22 (0.02) 
P2 0.59 (0.000) -0.66 (0.000) 0.57 (0.000) -0.49 (0.000) 0.30 (0.000) 

NEP 

P3 0.78 (0.000) -0.25 (0.004) -0.072 (0.41) -0.20 (0.03) 0.02 (0.79) 
P1 0.86 (0.000) -0.45 (0.000) 0.46 (0.000) -0.38 (0.000) 0.007 (0.94) 
P2 0.65 (0.000) -0.63 (0.000) 0.58 (0.000) -0.42 (0.000) 0.30 (0.000) 

GEP 

P3 0.81 (0.000) -0.25 (0.004) 0.03 (0.74) -0.12 (0.19) -0.02 (0.86) 
 

Interacting influences between meteorological variables and CO2 fluxes cannot be ignored (Chen 

et al. 2002). Incoming PAR, Tair, RH, Tsoil and θ each covaried to some degree, resulting in 

similar combined influences on NEP and GEP, as described in a correlation matrix during the 

three periods in Table 3.5. Incoming PAR correlated strongly with RH and to a lesser extent with 

Tair and very little with Tsoil and θ. Tair also correlated strongly with RH and Tsoil, whereas RH 

correlated less strongly with Tsoil. If each is assessed individually with the residuals of NEP and 

GEP, after removing the influence of incoming PAR, we find that Tair and RH typically have 

similar but opposite influences on the residuals (Table 3.4). This suggests that Tair was typically 

low and RH was high when NEP and GEP residuals were positive (i.e. when the Landsberg 

equation underestimated NEP and GEP). Tsoil and θ also had similar relationships with NEP and 

GEP residuals, but to a lesser extent than Tair and RH (Table 3.4). Tsoil was similar to Tair, and was 

negatively related to increases in NEP and GEP residuals during all periods, whereas θ had the 

opposite relationship (i.e Tsoil was low, and θ had greater water content during periods of 

increased CO2 uptake). Similar results were also found at three Douglas-fir sites of varying ages 

in Chen et al. (2002), where Tsoil and Tair were also negatively related to increases in the residuals 

of NEP (increased temperature equals decreased NEP).  
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Table 3.5. Pearson�s r correlation matrix of interacting meteorological driving mechanisms and p-
values (in brackets). 

Period Meteorological 
Parameter 

Incoming PAR Tair RH Tsoil θ 

Incoming PAR - 0.59 (0.000) -0.60 (0.000) 0.09 (0.19) -0.23 (0.002) 
Tair 0.59 (0.000) - -0.94 (0.000) 0.65 (0.000) -0.42 (0.000) 
RH -0.60 (0.000) -0.94 (0.000) - -0.62 (0.000) 0.34 (0.000) 
Tsoil 0.09 (0.19) 0.65 (0.000) -0.62 (0.000) - -0.67 (0.000) 

P1 

θ -0.23 (0.002) -0.42 (0.000) 0.34 (0.000) -0.67 (0.000) - 
Incoming PAR - 0.42 (0.000) -0.51 (0.000) -0.13 (0.03) 0.09 (0.1) 
Tair 0.42 (0.000) - -0.69 (0.000) 0.68 (0.000) -0.46 (0.000) 
RH -0.51 (0.000) -0.69 (0.000) - -0.15 (0.01) -0.08 (0.18) 
Tsoil -0.13 (0.03) 0.68 (0.000) -0.15 (0.01) - -0.80 (0.000) 

P2 

θ 0.09 (0.1) -0.46 (0.000) -0.08 (0.18) -0.80 (0.000) - 
Incoming PAR - 0.50 (0.000) -0.59 (0.000) -0.10 (0.16) 0.33 (0.000) 
Tair 0.50 (0.000) - -0.56 (0.000) 0.45 (0.000) 0.22 (0.001) 
RH -0.59 (0.000) -0.56 (0.000) - -0.50 (0.000) -0.61 (0.000) 
Tsoil -0.10 (0.16) 0.45 (0.000) -0.50 (0.000) - 0.18 (0.007) 

P3 

θ 0.33 (0.000) 0.22 (0.001) -0.61 (0.000) 0.18 (0.007) - 
 

 

Meteorological variables, RH, Tsoil and θ were combined using a multiple linear regression with 

the residuals of incoming PAR from the Landsberg approach (Table 3.6). These variables were 

used because there was the least interaction between them and they described the greatest 

combined variability in CO2 flux. RH was able to describe much of the variability in Tair, 

resulting in the exclusion of Tair from the analysis. Tsoil has been included, despite being used to 

derive GEP, it did not greatly covary with GEP during the periods examined (r = -0.02, P1; -0.36, 

P2; -0.18, P3). The multiple regressions were performed on the residuals of PAR vs. NEP and 

GEP for each time period because the Landsberg curve provided the best description of the 

relationship (Table 3.6). Regression equations were then added to the Landsberg equation for 

each period and were plotted against measured NEP and GEP in Figure 3.7. In all cases, inclusion 

of meteorological driving mechanisms (apart from incoming PAR) improved the prediction of 

NEP and GEP. 
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Table 3.6. Landsberg and multiple regression equations used to predict NEP and GEP using 
meteorological variables. Relative importance of each contribution is indicated by the p-value. 
Number of observations = 111 (P1); 166 (P2); and 126 (P3). 

p-value of Contribution Period Landsberg Equation Multiple Regression Equations  
RH Tsoil θ 

P1 )1(5.4 )160(002.0 −−−= PARey  NEPr = 23.9 + (0.016 RH) - (1.55 
Tsoil) - (129 θ) 

0.001 0.000 0.000 

P2 )1(2.3 )400(002.0 −−−= PARey  NEPr = -14.8 - (0.04 RH) + (0.92 
Tsoil) + (58.9 θ) 

0.000 0.000 0.390 

NEP 

P3 )1(8.6 )235(0015.0 −−−= PARey  NEPr = -22.8 + (0.02 RH) - (1.06 
Tsoil) - (85 θ) 

0.039 0.005 0.816 

P1 )1(1.7 )32(0023.0 −−−= PARey  GEPr = 3.10 + (0.01 RH) - (0.23 
Tsoil) - (17.7 θ) 

0.006 0.439 0.202 

P2 )1(7.7 )60(0022.0 −−−= PARey  GEPr = -8.4 + (0.05 RH) - (0.06 
Tsoil) + (139 θ) 

0.000 0.769 0.051 

GEP 

P3 )1(6.11 )10(0018.0 −−−= PARey  GEPr = 16.7 + (0.005 RH) - (0.49 
Tsoil) - (140 θ) 

0.687 0.183 0.656 
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Figure 3.7. Relationships (adjusted r2) between NEP (a, b, and c), GEP (d, e, and f), and modeled 
estimates of the same using Landsberg + multiple regression of the residuals presented in Table 
3.6 during the three periods of study: June 10 � 15, 2002 (a and d), July 5 � 13, 2002 (b and e), 
and August 7 � 13, 2002 (c and f). Relationships are shown for entire days when incoming PAR 
exceeded 0.1 µmol m-2 s-1. 
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3.4.3 Within Footprint Vegetation Structural and Ground  Elevation Influences on 
Fluxes 

We hypothesize that the inclusion of canopy structure and ground elevation will improve 

estimates of NEP and GPP when compared with meteorological variables. In other words, canopy 

structure and ground elevation will have some influence on the variability of CO2 fluxes. fcover 

and elevation were combined within a multiple linear regression with meteorological driving 

variables, RH, Tsoil, and θ and incoming PAR (Landsberg approach) for each of the periods 

studied (Table 3.7). Canopy structure indicators and elevation co-vary to some degree. Average 

canopy height was strongly positively correlated with average canopy depth (r = 0.94, p = 0.000), 

and fcover (r = 0.64, p = 0.000) and canopy depth was correlated with fcover (r = 0.71, p = 

0.000). Canopy height was not significantly correlated with elevation (r = 0.16, p = 0.07), but 

fcover tended to be negatively correlated with elevation (r = -0.38, p = 0.000). fcover best 

described the variability in NEP and GEP when compared with other structural attributes. 

Modelled NEP and GEP, based on the multiple regression with the inclusion of meteorological 

variables, fcover and elevation were compared with measured in Figure 3.8. 

 

Table 3.7. Multiple regression equations used to predict NEP and GEP using meteorological 
variables, fcover and elevation, added to Landsberg results (Table 3.6). Relative importance of 
each contribution is indicated by the p-value. Number of observations = 111 (P1); 166 (P2); and 
126 (P3). 

p-value of Contribution Period Multiple Regression Equations  
RH Tsoil θ fcov. Elev. 

P1 NEPr = 158 + (0.01 RH) - (1.54 Tsoil) - (224 θ) + (0.27 
Elev.) + (9.95 fcover) 

0.23 0.000 0.001 0.041 0.21 

P2 NEPr = -1.9 + (0.08 RH) - (1.44 Tsoil) -(153 θ) + (0.041 
Elev.) +  (8.36 fcover) 

0.000 0.000 0.05 0.10 0.63 

NEP 

P3 NEPr = 0.7 - (0.02 RH) - (1.60 Tsoil) -(1091 θ) + (0.17 
Elev.) + (18.5 fcover) 

0.25 0.004 0.36 0.020 0.32 

P1 GEPr = 167 + (0.009 RH) - (0.84 Tsoil) - (224 θ) -(0.30 
Elev.) + (10.45 fcover) 

0.15 0.000 0.000 0.025 0.15 

P2 GEPr = -22.3 + (0.08 RH) - (0.88 Tsoil) - (20.6 θ) -(0.05 
Elev.) + (8.88 fcover) 

0.000 0.000 0.79 0.071 0.53 

GEP 

P3 GEPr = 19.6 + (0.003 RH) � (0.84 Tsoil) - (826 θ) -
(0.075 Elev.) + (16.4 fcover) 

0.85 0.15 0.11 0.032 0.66 
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Figure 3.8. Relationships (adjusted r2) between NEP (a, b, and c), GEP (d, e, and f), and modeled 
estimates of the same using Landsberg + multiple regression of the residuals presented in Table 
3.6 (including fcover and elevation) during three periods of study: June 10 � 15, 2002 (a and d), 
July 5 � 13, 2002 (b and e), and August 7 � 13, 2002 (c and f). Relationships are shown for 
periods between 0900 and 1700 local time. 
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The inclusion of fcover was sometimes a more important component of the flux than daily 

variability in θ (P3, and to a certain extent P2) and RH (P1 and P3) (Table 3.7). Elevation, 

however, was not an important part of the combined influence on fluxes, demonstrated by p-

values in Table 3.7. fcover improved prediction of NEP and GEP during most periods studied 

(when comparing r2 and RMSE of Figures 3.8 and 3.9). During P1, prediction of NEP and GEP 

was improved by 10% and 5% when meteorological variables were included, and an additional 

15% and 4% when fcover and elevation were included. Meteorological influences (apart from 

incoming PAR) had the least importance during P1 when compared with the other two periods. 

fcover had a larger influence on NEP than meteorological driving mechanisms (15% vs. 10%), 

and a slightly less important influence on GEP (4% vs. 5%). Smaller improvements were found 

during P2, apart from meteorological variables, which improved the Landsberg predicted NEP 

and GEP by 68% and 29% (NEP and GEP). Meteorological variables had a dominant influence 

on fluxes during P2, whereas fcover and elevation had relatively minor influences, improving 

modelled NEP and GEP by an additional 3% and 11%, respectively. Much of the variability in 

fluxes during P2 remained unexplained, even after inclusion of meteorological variables and 

canopy structure and elevation. During P3, fcover and elevation worsened the prediction of NEP 

by 16% when compared with that modeled using driving mechanisms alone (which improved 

NEP and GEP prediction by 28% and 4%), whereas GEP was only slightly improved by 4% 

when fcover was included. Small improvements to modeled NEP and GEP from fcover and 

elevation also resulted in lower root mean squared error (RMSE). 

 

On a daily basis rather than by study periods, canopy structure and elevation had varying 

correspondence with measured NEP and GEP (Figure 3.9), perhaps due to sensitivity of fluxes to 

the vegetation characteristics of the maximum source area and available resources. We expect 
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that areas with more biomass (e.g. foliage amounts) would be positively related to increased CO2 

uptake by vegetation because increased numbers of leaves would be photosynthesizing. An 

assessment of light response curves during four days of similar meteorological conditions (July 7 

and 8 and August 9 and 10), when fluxes came from opposite directions within the ecosystem 

yield direct evidence of the influences of canopy structure and elevation on fluxes. On July 7th 

and August 10th fluxes originated from the north-west part of the ecosystem: areas of relatively 

high leaf area, tall trees, and higher elevation. On July 8th and August 9th fluxes originated from 

the east and south east parts of the ecosystem: areas of relatively low leaf area, shorter trees, and 

low elevation. Light response curves for NEP and GEP on July 7th and August 10th (not shown) 

indicate that areas with greater amounts of biomass, located at higher elevations had greater 

ability to photosynthesize than areas with lesser amounts of biomass. A t-test confirms that 

significant differences in light response curves exist between dates where fluxes originated from 

high biomass as opposed to low biomass areas (p < 0.01). Differences in Landsberg curve 

descriptors Pmax and Icomp are demonstrated in Table 3.8 for specific dates. 

 

Table 3.8. NEP and GEP light response curve characteristics for four days of similar 
meteorological conditions when footprints originated from opposite parts of the ecosystem (high 
biomass vs. low biomass (fcover, tree height), and higher elevation (upland) vs. lower elevation 
(lowland)).  

Pmax  (µmol m-2 s-1) Icomp (µmol m-2 s-1) Daily total flux (µmol m-2 s-1) Date 
NEP GEP NEP GEP NEP GEP 

Average Footprint 
Characteristics 

July 7, 2002 3.1 7.5 450 273 44.9 166.8 High biomass, 
upland 

July 8, 2002 2.3 6.7 470 350 40.1 151.7 Low biomass, 
lowland 

August 9, 2002 5.8 9.7 390 125 87.3 194.4 Low biomass, 
lowland 

August 10, 2002 8.5 11.8 310 50 92.4 199.6 High biomass, 
upland 
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Of the 22 days studied, 13 (59%) and 9 (41%) of the days showed significant (p < 0.01) positive 

relationships between increased biomass and increased NEP and GEP, respectively. Four and five 

additional days were also positively correlated with NEP and GEP, but did not have a significant 

influence. The opposite relationships were found on five and eight days (NEP, GEP), where 

increased biomass was also related to increased atmospheric CO2 concentrations, but only two 

and three days were significant (p < 0.01). The best correspondence between CO2 uptake and 

increased biomass occurred during P1 and P3 when photosynthesis was not limited by θ, high 

average Tair, and incoming PAR.   

 

NEP and GEP were also significantly negatively affected by increased elevation (or vice versa) 

for 10 and 8 of 22 days, respectively (where p < 0.01) (Figure 3.9). Negative relationships 

occurred mostly during P2 and P3, corresponding with high average Tair and Tsoil. For example, 

on June 13 2002, GEP (and NEP) were negatively affected by fluxes originating from areas of 

higher elevation (Figure 3.4). June 13th was also the warmest day of the week, having an average 

Tair = 21.8oC as opposed to days previous and following (average Tair = 13.5 oC; 19.2oC). Warmer 

days with increased Tsoil typically resulted in negative correspondence between elevation and CO2 

fluxes. In this case Tsoil provides a general estimate of ecosystem Tsoil variability over time 

because it is only measured in one location. Average Tair and Tsoil were greatest during P2 (Tair = 

23.7 oC, Tsoil = 14.4 oC) and P3 (Tair = 19.0 oC, Tsoil = 14.3 oC) on days when elevation and NEP 

and GEP were significantly related. Cooler and wetter periods during P1 showed limited 

correspondence between CO2 fluxes and elevation.  
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Figure 3.9. Bar graph of Pearson�s r correlations between daily NEP and GEP and a) fcover and 
b) elevation influence (n = ~17 per day but may vary due to low u*). Orange and yellow bars 
represent p-values < 0.01. In a) 13 of 22 (NEP) and 9 of 22 (GEP) days are significantly 
correlated with areas of increased fcover, whereas the opposite is found on 2 of 22 (NEP) and 3 
of 22 (GEP) days. In b) 2 of 22 (NEP) and 3 of 22 (GEP) days are significantly correlated with 
areas of higher elevations, whereas 10 of 22 (NEP) and 8 of 22 (GEP) days are significantly 
correlated with areas of lower elevations. Increases in biomass (e.g. greater foliage) should be 
positively correlated with increased NEP and GEP. 
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3.5 Discussion and Conclusions 

In this study, we found that CO2 fluxes varied spatially and temporally due to variations in 

meteorological variables, canopy biomass and elevation gradients within a jack pine ecosystem. 

Why does the relative importance of interactions between CO2 fluxes, and canopy structure and 

elevation vary on a daily basis and throughout each period? This may be due, in part, to 

sensitivity of fluxes to the characteristics of vegetation within the maximum source location of 

the fluxes and available resources. Footprint estimates indicate that the greatest contribution of 

measured fluxes typically originated from up to 150 m to 300 m from the tower. Trees were 

typically shorter within 150 m east and south-east of the EC system (average canopy height = 

13.6 m) whereas trees were taller west and north-west of the tower (average canopy height =15.2 

m) (Figure 3.1). Canopy fcover was also low, ranging from 0.36 to 0.45 in all directions within 

150 m of the EC.  

 

At distances of 150 m to 350 m of the EC, the ecosystem becomes more spatially variable. 

Average tree heights ranged from 12.5 m (south east of the EC) to 18.4 m (north west of the EC), 

resulting in ~32% difference in average tree height within two parts of the ecosystem from which 

CO2 fluxes likely originated. fcover also varied significantly, ranging between 0.36 and 0.81 at 

spatial resolutions of 1 m. High average foliage fractional cover was located north-east and north-

west of the EC, and lower foliage amounts were found to the south-east and south-west of the site 

(Table 3.2). Even on a daily basis, the amount of biomass sampled by eddy covariance can vary 

greatly at OJP, depending on the source location of fluxes. Variable maximum source area 

locations can vary over space, as do vegetation and elevation characteristics. When combined 

with meteorological variables, the effects of these (meteorology and biomass) on fluxes can also 

differ (Figure 3.9). At OJP, Baldocchi et al. (2000) found that between 25% and 35% of incoming 
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solar radiation reached the forest floor. Similarly, Griffis et al. (2003) suggest that approximately 

70% of solar radiation is absorbed by the canopy at this site. In our study, spatial mapping of 

fcover by airborne lidar at 1 m resolution shows that the light penetration to the ground surface 

can be as little as 19%, in areas of high fcover and as great as 64% in areas of low fcover. These 

relatively large differences in the spatial variability of light absorption by canopies and 

penetration to the ground may explain the variable influences on CO2 exchanges from different 

parts of the ecosystem. Future studies should examine the area extent of classified fcover, tree 

height and elevation within footprints, not only footprint averages examined in this study. 

 

Over the course of several days, canopy structure and elevation exhibited strong influences on 

CO2 fluxes during P1 and to a lesser extent in P3, but had relatively little influence during P2. 

This was perhaps because of limited availability of resources and saturation of photosynthesis by 

high amounts of average incoming PAR. Canopy structural influences on CO2 fluxes were 

typically less important than meteorological variables, but during many days canopy structure, 

especially fcover, explained a comparatively large proportion of the variance of NEP and GEP.  

 

In this study, assessment of average elevation within footprints was simplistic. For example, CO2 

fluxes may be affected by slope curvature leading to either wetting or drying of soils, thereby 

affecting tree growth, photosynthesis, and Re (e.g. Baldocchi et al. 1997; Baldocchi and Meyers, 

1998). Elevation height is not necessarily indicative of micro-topographic features affecting 

fluxes of CO2 within the landscape because micro-topography is also dependent on the spatial 

distribution of small hills and valleys, slope and aspect. This could be improved by incorporating 

local ground morphology, slope curvature (concave vs. convex) and aspect to properly classify 

upland and lowland areas and their attributes.  
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Based on this limited analysis and the variability in wind directions illustrated in Figure 3.4 for 

the entire year of 2002, flux measurements at this site may not be equally measuring fluxes from 

all parts of the ecosystem surrounding the EC flux station. Winds typically originate from upland 

areas which have slightly different canopy structural characteristics than low lying areas. 

Differences in the variability in NEP could be influenced, to some degree, by differences in 

canopy and ground surface characteristics in one part of the site as opposed to another. Rahman et 

al. (2001) found that EC underestimated gross CO2 fluxes by 5% at OJP because biomass tended 

to be lower within the immediate vicinity of the EC as opposed to areas of higher biomass 

surrounding the ecosystem (also found here). Fluxes at more heterogeneous sites may have 

increased dependency on canopy structure and elevation. Along with meteorology, these may be 

a deciding factor on whether the annual carbon balance of a vegetated ecosystem is a net annual 

source or sink. Further research over extended (e.g. annual) periods is needed to determine if this 

is the case.  
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Chapter 4 

Using Airborne Lidar for the Assessment of MODIS fPAR 
 

4.1  Abstract 

 

Airborne light detection and ranging (lidar) data were compared with coincident digital 

hemispherical photography (DHP) and radiation sensors within a jack pine chronosequence of 

three sites. The purpose of the study was to compare a simple lidar model of the fraction of 

photosynthetically active radiation absorbed by the canopy (fPAR) with DHP and PAR estimates 

of fPAR, and then, to scale lidar fPAR to MODIS pixels. Average DHP fPAR was estimated at 

40 locations per site and compared with fPAR estimated using PAR sensors located at the centre 

of mature and immature jack pine forests, old jack pine and a jack pine site harvested in 1975 

(OJP and HJP75, respectively). DHP under-estimated average fPAR by 11% and 21% at OJP and 

HJP75 when compared with PAR sensors. This was attributed to differences in canopy foliage 

cover throughout the stand and, as reported in the literature, underestimation by the DHP method. 

A fractional-cover ratio (fcover) based on the number of canopy lidar returns to the total number 

of returns was then compared with fPAR estimated from DHP at 110 geographically located 

photographs. fcover compared well with DHP-derived fPAR using annulus rings 1-9 at mature, 

immature, and regenerating sites (r2 = 0.84, RMSE = 0.01) and to a lesser extent using rings 1-5 

(r2 = 0.66, RMSE = 0.11). When compared with DHP, fcover was underestimated by ~3% (rings 

1-9) and overestimated by ~16% (rings 1-5). Using the relationship between fcover and DHP 

(rings 1-9), lidar-derived fPAR was then averaged and compared to ~1 km resolution Moderate 

Resolution Imaging Spectroradiometer (MODIS) pixels throughout a watershed. MODIS fPAR 

was within 10% of lidar fPAR for approximately 1/4 of the area (24 pixels).    
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4.2  Introduction 

Covering approximately 76 percent of the global land surface area, vegetation plays a key role in 

the functioning of local ecosystems and can affect processes at scales as large as global weather 

patterns (Pielke et al. 1998). Leaf area is particularly important, affecting energy and mass 

exchanges between the terrestrial biosphere and the atmosphere (e.g. Chen et al. 2005). Accurate 

spatial and temporal estimates of measurable leaf attributes, e.g., leaf area index (LAI) and/or the 

fraction of photosynthetically active radiation absorbed by the canopy (fPAR), are required as 

inputs into ecosystem/atmosphere models (e.g. Gower et al. 1999; Chen et al. 2007).  

 

LAI is defined as one-half the total leaf area per unit ground surface area (m2 m-2) (Chen et al. 

2006) whereas fPAR can be estimated from radiation sensors based on the ratio: 

 
fPAR =  ((PAR AC↓ - PAR AC↑) � (PAR BC↓ - PAR BC↑))/PAR AC↓   [1] 

 
where PAR AC↓ is the incident photosynthetically active radiation (PAR) above the canopy,     

PAR AC↑ is the reflected PAR above the canopy, PAR BC↓ is the incident below-canopy PAR after 

interception by branches and leaves, and PAR BC↑ is the reflected PAR from the ground surface 

(Gower et al. 1999). Despite their importance, LAI and fPAR are difficult and time consuming to 

measure spatially and temporally within representative ecosystems. Both require measurement of 

canopy fractional cover and light transmission (optical methods) (Gower et al. 1999; Huemmrich 

et al. 1999; Leblanc et al. 2005; Schwalm et al. 2006; Chen et al. 2006; Sonnentag et al. 2007), or 

alternative approaches involving destructive sampling of leaves and branches. Optical methods 

are less time consuming than destructive sampling, and are more frequently used (Jonckheere et 

al. 2004). These rely on temporal measurements from radiation sensors located above and below 

the canopy on a meteorological tower (e.g. Schwalm et al. 2006; Gower et al. 1999; Huemmrich 
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et al. 1999; [1]). They can also be collected spatially below the canopy via incident hemispherical 

radiation measurement units such as the LiCOR LAI-2000 Plant Canopy Analyzer, Tracing 

Radiation and Architecture of Canopies (TRAC), and digital hemispherical photography (DHP) 

(e.g. Leblanc et al. 2005; Chen et al. 2006; Sonnentag et al. 2007). Optical methods are 

inexpensive to operate, but remote study locations often make it difficult to measure changes 

frequently throughout the growing season (Heinsch et al. 2006).  

 

Other methods used for estimating LAI and fPAR include measurements of reflected light 

collected using remote sensing satellite and airborne platforms (e.g., the Moderate Resolution 

Imaging Spectroradiometer (MODIS)) (Gamon et al. 2004). Remote sensing methods using 

spectral reflectance alone are not able to resolve the complexity of the vegetation canopy within 

averaged pixels of fPAR and LAI (e.g. Xu et al. 2004; Eriksson et al. 2006; Jin et al. 2007). 

Radiative transfer models often improve spectral reflectance measurements by incorporating 

species-based three-dimensional canopy structure, leaf and stem geometry, and foliage density at 

the tree to canopy level (e.g. Myneni et al. 1997; Goel and Thompson, 2000; Sun and Ranson, 

2000; Fernandes et al. 2004). These can be directly related to variability in canopy reflectance 

measured using remote sensing methods. Accurate spatial and temporal methods of collecting 

fPAR and LAI would therefore be beneficial and cost-effective for scaling from radiation sensors 

at a local scale to landscape and regional scales (at lower resolutions).  

 

The fractional cover of vegetation (where 1 = full canopy cover and 0 = no canopy cover) may be 

estimated from airborne light detection and ranging (lidar) using a combination of the ratio of the 

number of canopy laser returns (single and multiple) to all returns (e.g. Morsdorf et al. 2006; 

Hopkinson and Chasmer, 2007):  
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Pcanopy is the total frequency of laser pulse returns within the canopy and Pall is the total frequency 

of all laser pulse returns. These ratios are calculated within a specified resolution or grid (e.g. 1 m 

x 1 m). Morsdorf et al. (2006) examined numerous laser pulse ratios and DHP annulus ring 

configurations, and found that central rings combined with first pulse returns provided the 

strongest correlations. Also, the extraction of lidar data within a circular area mimicked by DHP 

(�data traps�, Lovell et al. 2003; Morsdorf et al. 2006) were found to be most appropriate when 

radii of up to 2 m were used (Morsdorf et al. 2006). Hopkinson and Chasmer (2007) extend the 

waveform lidar approaches of Lefsky et al. (1999) and Parker et al. (2001) and use laser pulse 

intensity as an indicator of transmission losses through the canopy. In their study, the Beer-

Lambert Law was modified to include the ratio of lidar intensity-based ground return power to 

the total return power.  

 

Current studies that use lidar to estimate effective LAI (Le), fractional cover, and fPAR tend to 

concentrate on one or a couple of different forest types within a specified location (e.g. Thomas et 

al. 2006) and often with controlled lidar survey configurations (e.g. Hopkinson and Chasmer, 

2007). It is not known how well the return ratio (i.e., fcover) will work given different tree 

heights and canopy closure. Further, the use of lidar as a validation tool for lower resolution 

remote sensing products has not been examined (to the authors� knowledge). This study reports 

on the application of the return ratio described in [2] (i.e., fcover) at a jack pine chronosequence 

for the evaluation of MODIS fPAR across a watershed.  
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Relationships between mixed pixels, land cover type, and canopy structural characteristics found 

in lidar data may be used to better understand inconsistencies in MODIS fPAR/LAI products 

without the need for extensive field validation. Inexpensive and sometimes free lidar data are 

available through a number of website and contact listings (e.g. the United States Geological 

Survey CLICK program). This simple lidar methodology for estimating fPAR could be an 

important step towards improving ecosystem models and validating remote sensing products, 

such as those derived from MODIS. 

4.3 Methodology 

4.3.1 Study Areas 

In this study, three jack pine (Pinus banksiana Lamb.) sites of different stand ages were examined 

during the 2005 growing season (June 1 to September 31). All sites are located in close proximity 

to each other (~6 km) within the White Gull River watershed, located north of Prince Albert, 

Saskatchewan, Canada. The three sites consist of (i) a mature (i.e., old) jack pine (OJP) forest, 

approximately 90 years old (520230 E, 5974262 N, UTM zone 13); (ii) an immature jack pine 

forested harvested in 1975 (HJP75) (523326 E, 5969765 N); and (iii) a regenerating jack pine 

forest harvested in 1994 (HJP94) (522606 E, 5973386 N). The canopy structure and species 

characteristics of the sites are described in Table 4.1. The area extent of the forests are 

approximately 3 km x 3 km (OJP and HJP75), covering approximately three MODIS pixels each. 

The homogeneous area representative of HJP94 is 700 m along the narrowest part (east to west) 

and extends up to 1 km along the longest edge. The site falls within one MODIS pixel, which also 

contains a mixture of older jack pine trees.  
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Table 4.1. Average vegetation characteristics at OJP, HJP75, and HJP94 for 22 plots. The values 
in parentheses represent standard deviation (stdev).  
Site Number 

of trees 
sampled 

Average stem 
density 
(stdev) (stems  
m-2)  

Average 
tree 
height 
(stdev) 
(m) 

Average 
DBH* 
(stdev) 
(cm) 

Average 
LAI (stdev) 
(m2 ⋅m-2)  

Average 
canopy depth 
(stdev) (m) 

Average 
crown 
diameter 
(stdev) (m) 

Other species 

OJP 381 0.11 (0.001) 14.2 (3.5) 9.33 
(4.55) 

1.6 (0.1)** 8.3 (2.7) 
 

2.0 (1.0) Alder, 
bearberry, 
reindeer lichen, 
blueberry, 
cranberry 

HJP75 1447 0.59 (0.19) 6.3 (1.6) 5.69 
(3.49) 

2.8 (0.4) 3.5 (1.3) 0.9 (0.4) Grasses, 
reindeer lichen, 
bearberry 

HJP94 2081 0.86 (0.56) 1.6 (0.7) 2.31 
(1.05) 

1.1 (0.2) 1.6 (0.7) 0.7 (1.1) Grass, 
blueberry, alder, 
raspberry, 
bearberry, 
reindeer lichen 

* DBH refers to tree bole diameter at breast height (1.3 m above the ground). 
** LAI measurements from Chen et al. (2006) differ from LAI observed in this study.  
 

4.3.2 DHP Data Collection and Analysis 

In this study, DHP was used to validate lidar estimates of fcover at plots throughout each site. If 

lidar provides fcover estimates that can be related to DHP fPAR, then lidar may be used to 

evaluate MODIS fPAR. Canopy gap fraction was collected using DHP (Nikon Coolpix 8.0 mega 

pixel, with a Nikon FC-E9 180o fisheye converter; Nikon Inc. Tokyo, Japan) at geo-located plots 

within each study area. One photograph was taken at the centre of the plot, and four were located 

11.3 m from the centre, along cardinal (N, S, E, and W) directions determined using a compass 

bearing and measuring tape (Fluxnet-Canada, 2003). Photographs were located at the centre of 

the plot using differentially corrected data obtained from survey-grade global positioning systems 

(GPS) (Leica SR530, Leica Geosystems Inc. Switzerland; Ashtec Locus, Ashtec Inc., Hicksville, 

NY). Geo-location accuracies vary from 1 cm to 1 m depending on the canopy cover density at 

the time of GPS data collection. Photographs were taken at a height of ~1.3 m at OJP and HJP75 

and at a height of 0.7 m at HJP94. The heights of the trees within HJP94 (i.e.,a regenerating 

stand) were often less than 2 m. All photographs were taken during either diffuse daytime 
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conditions, or at dawn or dusk at two F-stops below normal exposure to reduce the influence of 

sun brightness and apparent leaf reduction within the photograph (Zhang et al. 2005). Individual 

photographs were processed following sky and vegetation thresholding methods of Leblanc et al. 

(2005) to obtain estimates of gap fraction (Ω). DHP version 1.6.1 software was used to process all 

photographs (S. Leblanc, Canada Centre for Remote Sensing provided to L. Chasmer through the 

Fluxnet-Canada Research Network). 

 

Estimates of fPAR were determined from DHP based on Ω from annulus rings 1 � 5 (0-50o) and 1 

� 9 (0 - 81o) from individual photographs (Gower et al. 1999), and including albedo (Chen et al. 

2006):  

 
θαρρ cos/)1(45.0)1()1( eL

ua efPAR −−−−−=      [3] 

 
where ρa is the PAR albedo of the stand (i.e., above-canopy), ρu is the PAR albedo of the ground, 

and θ is the solar zenith angle at 12:00 local standard time on the date of the lidar survey. ρa was 

estimated from Chen et al. (2006) as 0.05 at OJP and HJP75, and 0.08 at HJP94. ρu was estimated 

as 0.06 at OJP and HJP75 and 0.15 at HJP94 (Chen 2006). An extinction coefficient (k) of 0.45 

was used to estimate global PAR (Chen et al. 2006). Le was multiplied by a scaling factor of 1.16 

(Chen et al. 2006) prior to calculation of fPAR in [3]. It is expected that lidar fcover should be 

highly correlated with DHP fPAR, because Le was estimated directly from Ω (1-fractional cover) 

and k, where kLe /)ln(Ω−= . In this study, allometric estimates of wood fraction (α) were not 

removed from Le, or fPAR.  
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4.3.3 Validation of DHP Using PAR Sensors 

PAR was measured using LI-COR model LI190 at OJP and HJP75 (LI-COR Biosciences, 

Nebraska, USA); and Eko model ML-020P (Eko Instruments, Co. Ltd., Japan) at HJP94. Above 

canopy incident and reflected PAR sensors were installed on booms at heights of 28 m, 17 m, and 

3 m above the ground at OJP, HJP75, and HJP94, respectively. Below canopy incident PAR 

measurements were made at OJP and HJP75 at a height of ~1 m, but PARBC↑ measurements were 

not made. Below-canopy PAR measurements were also not available at HJP94. Therefore, the use 

of HJP94 PAR sensor measurements for validation of DHP was excluded in this study. 

Measurements at OJP and HJP75 were examined specifically from June 1st to September 30th, 

2005 over 30-minute average periods at each site. 

 

One below-canopy PAR sensor was examined per site. These were located within 10 m of towers 

containing above-canopy PAR. Towers were located at the centre of the sites and between photo 

plots (located 100 and 500 m from the tower), and therefore location-specific and varying canopy 

heterogeneity within DHP plots was not captured by PAR sensors. Although DHP was not 

obtained directly below PAR sensors, we felt it was important to compare photographic methods 

with PAR sensors to determine if: a) DHP provides a reasonable estimate of fPAR when 

compared with PAR measurements; and b) PAR sensors were representative of the canopy 

characteristics throughout each site. 

 

Diffuse PAR (Model BF3, Delta-T Inc. Cambridge, UK) was also measured during the 2005 

growing season at OJP at a height of 28 m to determine the ratio of diffuse to direct PAR days. 

fPAR should be examined during diffuse days because estimates are more consistent than during 

direct radiation days (Gower et al. 1999). fPAR measurements were then compared during diffuse 
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conditions at both OJP and HJP75. Despite being approximately 6 kms apart, we assumed that 

diffuse radiation conditions did not vary greatly between the two sites. fPAR measured during 

diffuse vs. direct PAR conditions were averaged between 1000 and 1400 local sun time (LST) so 

that fPAR was not affected by low diurnal solar zenith angles.    

4.3.4 Lidar Data Collection and Processing 

Lidar data were obtained on August 12, 2005 for the entire watershed using a scanning discrete 

pulse return system (ALTM3100, Optech Inc. North York, Ontario) owned and operated by the 

Applied Geomatics Research Group (AGRG), Nova Scotia. Up to four laser pulse reflections or 

�returns� were obtained per laser pulse emitted, at a rate of 71 kHz and at a flying height of 950 

m above ground level (a.g.l). The scan angle was set at ± 19o with 50% overlap of adjacent flight 

lines. This enabled penetration of laser pulses through to the base of the canopy, whilst also 

obtaining returns on all sides of individual trees (Chasmer et al. 2006). Cross-track and along-

track resolutions, with 50 percent overlap of scans, were 35 cm (�post spacing�, the distance 

between returns) or ~8 returns per m2.  

 

Laser pulse ranges, aircraft movement/attitude (i.e., pitch, roll and heading) and ground and 

airborne GPS trajectories were combined within REALM (Optech Inc. Toronto, Ontario) and 

POSPAC (Applanix Inc., Toronto, Ontario) proprietary software processing packages at the 

AGRG. POSPAC was used to extract positional GPS and attitude information from an inertial 

measurement unit and position orientation system within the laser head to create a forward and 

reverse trajectory of aircraft position. This information was then combined in REALM with the 

laser timing information to create an x, y, z coordinate of laser reflection at the point where the 

laser pulse intercepts a feature on, or near the ground surface.  
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After the initial processing of lidar range files and GPS data, location (i.e. x, y, z) and intensity 

data were imported into Terrascan (Terrasolid, Finland) for classification and subsetting. Each 

larger area dataset was first filtered for outlying (far above and below ground) returns. Returns 

were then classified into �ground� returns. All returns, including those from the ground, were 

kept in a separate �all� file (Pall [2]). Ground classification was required to provide a digital 

terrain model (DTM) from which all other returns may be normalized relative to the ground 

surface. This enabled classification of canopy returns located at heights ≥1.3 m (0.7 m at HJP94) 

above the ground surface (Pcanopy) and Pall (all returns including ground, those above the ground 

but below 1.3 (0.7) m, and canopy returns ≥1.3 m (0.7 m at HJP94)). Normalization of Pall and 

Pcanopy returns was performed in Surfer (Golden Software Inc. Golden, CO). The DTM was 

interpolated from lidar point data at 2 m resolution to avoid �holes� where returns have been 

effectively blocked from reaching the ground. The DTM was rasterised using an inverse distance 

weighting procedure (IDW) where each return within 2 m x 2 m cells is used to create a 

generalized grid of the ground surface. This method provides accurate estimates of elevation from 

high resolution lidar data and rapid processing when compared with other methods (e.g. kriging) 

(Wise, 2000). Figure 4.1 illustrates how the fcover return ratio is calculated from lidar.  
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Figure 4.1. A schematic diagram of the distribution of laser returns within a conifer tree 
(represented by red circles) and calculation of the fcover ratio within a 1 m x 1 m x z (height) 
column. The ratio in [2] is estimated for every 1 m x 1 m of ground area within each site. 

4.3.5 MODIS Data 

The MODIS fPAR product (MOD15A2 Collection 4.0) was obtained for the lower part of the 

White Gull River watershed during cumulative 8-day periods (www.modis.ornl.gov/modis/ 

index.cfm). MODIS fPAR was averaged during July and August 2005 to provide a single 

estimate of fPAR (fPARMODIS) and to reduce the influence of pixels that did not meet quality 

control (~75% of the area over the growing season). Averaged dates included: July 12, 2005; July 

28, 2005; August 5, 2005; and August 29, 2005. The four days were selected because pixel fPAR 

did not vary greatly (i.e., less than 15%) and also centered on the time of the lidar survey. fPAR 

estimated from lidar at 1 m resolution was averaged within each geo-referenced MODIS pixel 

(fPARlidar) and subtracted from MODIS fPAR (fPARMODIS) to provide an estimate of the 

differences between lidar and MODIS.    
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4.4 Results 

4.4.1 Validating fPAR from DHP using Radiation Sensors 

Differences between measured fPAR and diffuse to direct PAR are shown in Figure 4.2 at OJP 

and HJP75 throughout the growing season. Diffuse days have been classified as being equal to, or 

greater than 1 when compared with direct PAR. Days when the diffuse to direct PAR ratio was 

between 0.5 and 1 were excluded in Figure 4.2 so that only clear sky and diffuse sky differences 

were examined. fPAR was more variable during direct (sunny) days at OJP and HJP75 than 

during diffuse days (Gower et al. 1999). fPAR varied by less than 5% over the growing season at 

these sites, indicating that accurate fPAR estimates at a single �snap-shot� in time may be 

adequate for vegetation photosynthesis modeling when foliage is not changing. 

 

 

Figure 4.2. Comparison of fPAR on days with high and low ratios of diffuse to direct PAR days 
throughout the growing season at OJP and HJP75. 

 
 
Average fPAR comparisons between DHP, radiation sensors, and lidar fcover are shown in Table 

4.2. Results of Chen et al. (2006) were slightly lower than our estimates because they removed 
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the fraction of wood observed by the sensor. Average fPAR from DHP underestimated that 

measured by PAR sensors by 11% (OJP) and 21% (HJP75). This indicates that PARBC↓ at OJP 

and HJP75 may have been located in areas that had slightly greater foliage than the rest of the 

stand, on average. Alternatively, DHP may have slightly underestimated the amount of foliage 

observed. DHP methods have been found to underestimate Le by approximately 8%, on average, 

at a number of sites when compared with the LAI-2000 (Chen et al. 2006).  

 
Table 4.2. Comparisons between 2005 average fPAR estimates at OJP and HJP75 from: Chen et 
al. (2006); diffuse and direct PAR; average fPAR measured from DHP (annulus rings 1-5 and 1-
9); and average photo plot-level fcover from lidar. 

Site Transect green 
fPAR at noon 
Aug. 15, 2005 

(Chen et al. 
2006) 

Average 
Measured fPAR 
(diffuse days) 

Average 
Measured fPAR 

(direct days) 

Average fPAR 
from DHP (rings 

1-5) 

Average fPAR 
from DHP (rings 

1-9) 

Average fcover 
from Lidar 

OJP 0.49 0.61 0.52 0.46 0.54 0.46 
HJP75 0.54 0.69 0.70 0.45 0.55 0.47 

 

4.4.2 Relationship between fPAR from DHP and Lidar fcover 

A strong relationship (r2 = 0.84 p = 0.000; Figure 4.3a) was found between lidar fcover and DHP 

fPAR using annulus rings 1-9 (and r2 = 0.66 p = 0.01, rings 1-5; Figure 4.3b) as a result of two 

clusters of data along the 1:1 line. These clusters were grouped into OJP and HJP75, and HJP94. 

The individual relationships between fcover and DHP fPAR per site are not significant (r2 = 0.28, 

OJP; 0.14, HJP75; and 0.15, HJP94) due to relatively small variability in fcover and fPAR 

between plots within individual stands. Despite poor relationships within individual stands, the 

fcover method does work well over a broad range of stand types and fractional covers (Chasmer 

et al. accepted). In Figure 4.3a airborne lidar fcover slightly underestimated fPAR when 

compared with each photograph using annulus rings 1-9. fPAR estimated from DHP typically 

includes more wood biomass than lidar, because DHP collects information from below the 

canopy, whereas lidar collects information from above the canopy. Therefore fPAR from DHP is 

slightly greater than fPAR from lidar because of the inclusion of wood biomass. Lidar 
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overestimated DHP fPAR by approximately 16%, which is close to the woody:total ratio at OJP 

(0.20) and HJP75 (0.15). Lidar fcover was typically over-estimated at HJP94 because, unlike at 

OJP and HJP75, much of the foliage is located near the ground surface and was measured by lidar 

(where fcover beneath trees = 100%). Rings 1-5 greatly underestimated fPAR because only the 

top parts of the trees were observed within photographs. At OJP and HJP75, it is suggested that 

local gaps within the canopy had greater influences on average fPAR estimates using 5 rings as 

opposed to 9. The two outliers (Figure 4.3b), where fPAR was significantly greater than fcover 

(i.e., for HJP94) were likely due to the location of photographs in close proximity to tree 

branches.  



 

  108

 

Figure 4.3. Comparisons between lidar fcover and DHP fPAR using annulus rings 1-9 (a) and 1-5 
(b).  

 

4.4.3 Using Lidar to Assess MODIS fPAR within a Watershed 

A 1 m x 1 m fPARlidar image map, based on the relationship between fcover and DHP fPAR 

(Figure 4.3a) for the White Gull River watershed is presented in Figure 4.4. This watershed 

contains OJP, HJP75 and HJP94 as well as two other eddy covariance flux stations operated by 

the Canadian Carbon Program (CCP). The relationship assumes that all vegetation types within 

the watershed are treated similarly to jack pine. An examination of 486 sites located across 
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Canada, containing 11 different species and up to four different classes of forest regeneration 

demonstrates that the relationship varied by less than 8% when compared with the jack pine sites 

examined here (Chasmer et al. accepted).  

 

The area covered by lidar is up to 7 km wide x 18 km in length, providing 99 MODIS fPAR 

comparison pixels (~1 km resolution), over five biome types (evergreen needle leaf forest, 

deciduous broadleaf forest, mixed forest, grassland, permanent wetlands). Subset areas in Figure 

4.4 illustrate spatial patterns of vegetation cover within the watershed. The watershed is partly 

managed and contains a mixture of heterogeneous land cover types typical of the Canadian boreal 

forest. Heterogeneous areas are also problematic for MODIS fPAR product accuracy due to the 

fragmentation of the landscape.  

 

The evaluation of MODIS vegetation products using optical LAI and fPAR methods has been 

underway since the satellites were launched (i.e., 1999 (Terra) and 2001 (Aqua)), resulting in a 

number of improved leaf area products (e.g. Turner et al. 2003; Zhao et al. 2005; Heinsch et al. 

2006; Pisek and Chen, 2007). Validation of MODIS vegetation products is essential but difficult 

because of vegetation heterogeneity and scaling influences over areas contained within MODIS 

pixels (Fernandes et al. 2004; Xu et al. 2004; Turner et al. 2006).  
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Figure 4.4. fPAR estimated from airborne lidar using the ratio of the number of canopy returns to 
total returns [2], and the regression model for all species (annulus rings 1-9) at a spatial resolution 
of 1 m. Subset areas have been expanded to show details in the spatial heterogeneity of fPAR. 
These include A) OJP, B) HJP94, C) riparian zone of the White Gull River, D) HJP75, and E) fen 
site, also monitored by the Canadian Carbon Program (CCP). Recent clear cuts have fPAR values 
close to zero, whereas low-lying shrub and grass vegetation near the White Gull River have fPAR 
values approaching one. 
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Comparisons between lidar fPAR and MODIS fPAR are shown visually in Figure 4.5. fPARlidar 

was averaged within each geo-referenced MODIS pixel (fPARMODIS) and subtracted from 

fPARMODIS. The difference image has been superimposed as a translucent layer (1 km x 1 km 

pixels) over the fPARlidar image (Figure 4.4). The purpose of Figure 4.5 is to demonstrate 

differences between fPARlidar and fPARMODIS across the watershed, and also, to show spatial 

vegetation heterogeneity within the landscape that might affect the accuracy of fPARMODIS within 

some pixels. 

  

Average fPARMODIS for the watershed was 0.73 (stdev. = 0.07), whereas average fPARlidar was 

0.40 (stdev. = 0.24). MODIS pixels that were overestimated when compared with fPARlidar 

contained recently clear cut areas and a fen. Approximately 22% of pixels within the watershed 

were in this category. MODIS did provide good estimates of fPAR (within 10% of fPARlidar) 

within pixels that were relatively homogeneous. These contribute to approximately 24% of the 

watershed. The remaining pixels were over-estimated by up to 30%, even in some areas where 

homogeneous pixels exist.  
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Figure 4.5. Two image maps are illustrated in this figure. The first (illustrated in dark to light 
tones) shows fPARlidar at 1 m resolution. Overlaid on top of the fPARlidar image is the difference 
between average 1 km x 1 km fPARlidar and fPARMODIS shown as transparent pixels. Shades of 
green indicate that fPARMODIS was overestimated when compared fPARlidar. Shades of red 
indicate fPARMODIS underestimates fPARlidar.  
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4.5 Discussion  

There are a number of possible reasons for the differences found between some fPARMODIS pixels 

and average fPARlidar. These may stem from inaccuracies associated with the lidar approach, or 

problems within the MODIS fPAR product. 

 

The lidar algorithm [2] does not take into account the fractional coverage of grass vegetation 

because of the inability to separate pulses between short grasses/understory and the ground below 

~1.3 m a.g.l. (Hopkinson et al. 2005). fPARlidar within grassland and recently cleared forests were 

close to zero, resulting in apparently large over-estimates by fPARMODIS when these may or may 

not exist.  

 

When collecting DHP and PAR sensor measures of fPAR, sensors are usually located at heights 

above the understory so that only the dominant canopy is included. However, the MODIS fPAR 

product observes both understory and canopy greenness, and therefore appears to overestimate 

fPAR when compared with DHP and PAR sensors, when this may not be the case (Wang et al. 

2004; Heinsch et al. 2006). Wang et al. (2004) and Heinsch et al. (2006) found that MODIS 

greatly overestimated fPAR at evergreen needle leaf sites with an open canopy and significant 

understory. They suggest that sites with open canopies should consider the understory 

contribution to fPAR and LAI. We also found that MODIS slightly overestimated fPAR at OJP 

when compared with fPARlidar. This site has an alder understory located within some parts of the 

ecosystem that were not included in either the fPARlidar or DHP fPAR estimates. The alder 

understory will likely increase fPARMODIS due to increased foliage cover within pixels. MODIS is 

similar to lidar because it receives information vertically, from both the canopy and understory, as 

well as horizontally over the entire pixel. We suggest that lidar may be used to define understory 
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vegetation below the base height of the canopy, but above the ground surface. This assumes that 

the understory has a fractional cover of 100 percent (per return resolution, e.g. 1 m) due to the 1.3 

m �blind distance� of lidar. This would increase fPAR estimates of lidar relative to MODIS and 

may provide more comparable estimates of fPAR within a MODIS pixel. Further research should 

focus on this topic.    

 

Another issue that occurs in MODIS fPAR products is caused as a result of the fPAR retrieval 

algorithm every eight days. Coops et al. (2007) found that MODIS accurately estimated fPAR 

(without referring to a back-up algorithm) only 20% of the time over a five year period at a forest 

site in British Columbia. The majority of the fPAR datasets observed in Coops et al. (2007) were 

noisy and failed to use directionally-corrected reflectance required by best quality controlled 

pixels (Knyazikhin et al. 1999). Further, geolocation issues within cumulative datasets can reduce 

the locational accuracy of MODIS pixels by ~10% (or 100 m) in any direction (Wolf et al. 2002). 

This could affect the differences between fPARMODIS and fPARlidar, where MODIS reflectance 

may come from areas beyond the pixel, but were not accounted for by lidar. Geolocation errors 

may also be increased when data are converted from the native Integerized Sinusoidal Projection 

(Turner et al. 2004).  

 

Finally, land cover mis-classification resulted in over-estimation of fPARMODIS when compared 

with measured fPAR in Cohen et al. (2003), Hill et al. (2006), and Turner et al. (2006). The 

organization of within pixel heterogeneity or �patches� of vegetation vs. clear cut may affect 

fPARMODIS within mixed pixels if these are not classified correctly. In this study, differences 

between fPARMODIS and fPARlidar exist within open canopies that show significant pixel fractions 

containing bare earth (also found in Huemmrich et al. 2005; Turner et al. 2006). Hansen et al. 



 

  115

(2000) found that the global vegetation classification scheme is approximately 85% correct. In 

this study, 21% of pixels were mis-classified as either woody savanna, instead of evergreen 

needle leaf forest or evergreen needle leaf forest instead of open grassland (determined from 76 

handheld GPS measurements taken throughout the watershed (data not shown)). Pixels that were 

evergreen needle leaf, but classified as woody savanna better approximated fPAR from lidar for 

the same pixels. These results show that the watershed area falls just outside of the average 

MODIS land classification accuracy.  

4.6 Conclusions 

In this study, a simple ratio of the number of canopy to total returns from airborne lidar was used 

to estimate fPAR at a jack pine chronosequence. The results of this study indicate that airborne 

lidar fcover is closely related to fPAR based on comparisons with digital hemispherical 

photography (DHP) and above and below-canopy PAR sensors. Lidar fPAR was then compared 

with MODIS fPAR across a watershed. The results of the analysis show that MODIS typically 

overestimated fPAR within recently clearcut areas, but was often within 10% of lidar fPAR when 

examined over homogeneous pixels. These results are important because they demonstrate that 

MODIS fPAR, currently validated using DHP and radiation sensors, may be spatially evaluated 

using lidar. Airborne lidar also provides the ability to assess within-pixel canopy structure, land-

cover patterns, and fragmentation, as well as the potential impact of understory species. These 

have been cited as the most problematic issues affecting MODIS land cover products, apart from 

atmospheric contamination of pixels and meteorological inputs discussed within recent literature 

(Heinsch et al. 2006; Wang et al. 2004). The availability of lidar data will enable further 

development and research into the methods discussed, including application within sites of 

greater leaf area and adjustment for understory species. 
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Chapter 5 

Scaling and Assessment of GPP from MODIS Using a 
Combination of Airborne Lidar and Eddy Covariance 

Measurements over Jack Pine Forests 
 

5.1 Abstract 

Understanding the influence of within-pixel land cover heterogeneity is essential for the 

extrapolation of measured and modeled CO2 fluxes from the canopy to regional scales using 

remote sensing. Airborne light detection and ranging (lidar) was used to estimate spatial and 

temporal variations of gross primary production (GPP) across a jack pine chronosequence of four 

sites in Saskatchewan, Canada for comparison with the Moderate Resolution Imaging 

Spectroradiometer (MODIS) GPP product. This study utilizes high resolution canopy structural 

information obtained from airborne lidar to bridge gaps in spatial representation between plot, 

eddy covariance (EC), and MODIS estimates of vegetation GPP. First we investigate linkages 

between canopy structure obtained from measurements and light response curves at a jack pine 

chronosequence during the growing season of 2004. Second, we use the measured canopy height 

and foliage cover inputs to create a structure-based GPP model (GPPLandsberg) which was tested in 

2005. The GPP model is then run using lidar data (GPPLidar) and compared with eight-day 

cumulative MODIS GPP (GPPMODIS) and EC observations (GPPEC). Finally, we apply the lidar 

GPP model at spatial resolutions of 1 m to 1000 m to examine the influence of within-pixel 

heterogeneity and scaling (or pixel aggregation) on GPPLidar. When compared over eight-day 

cumulative periods throughout the 2005 growing season, the standard deviation of differences 

between GPPlidar and GPPMODIS were less than differences between either of them and GPPEC at all 

sites. As might be expected, the differences between pixel aggregated GPP estimates are most 
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pronounced at sites with the highest levels of spatial canopy heterogeneity. The results of this 

study demonstrate one method for using lidar to scale between eddy covariance flux towers and 

coarse resolution remote sensing pixels using a structure-based Landsberg light curve model.  

5.2  Introduction 

Ecosystem gross primary production (GPP) can be estimated at the flux footprint scale using eddy 

covariance (EC) methods (e.g. Barr et al. 2006) or over contiguous land cover types at the low 

resolution pixel scale using satellite-derived products from sensors such as the Moderate 

Resolution Imaging Spectroradiometer (MODIS) (e.g. Heinsch et al. 2006). However, reconciling 

local EC estimates of GPP from spatially and aerially variant flux footprints with fixed coverage 

satellite-based estimates poses a challenge that is a function of the disparate scales and methods 

of observation (e.g. Turner et al. 2002; Chen et al. 2008). In this paper, we aim to address part of 

this scaling problem by using canopy structural information extracted from airborne light 

detection and ranging (lidar) data to improve estimates of GPP both at the flux footprint and 

MODIS pixel scales.  

 

A number of factors are known to lead to a level of incongruence between MODIS and site-

specific (EC) estimates of GPP. These include: a) under-estimation of CO2 exchanges by EC due 

to atmospheric stability, resulting in the apparent over-estimation of GPP by MODIS (e.g. 

Massman and Lee, 2002; Coops et al. 2007); b) scaling errors associated with comparing point 

measurements of GPP, leaf area index (LAI) and the fraction of photosynthetically active 

radiation absorbed by the canopy (fPAR) to large area remote sensing pixels (Tian et al. 2002; 

Turner et al. 2002; Turner et al. 2004; Heinsch et al. 2006); c) a limited ability to accurately 

represent the effects of three-dimensional canopy shadowing and ground surface reflectance on 

MODIS pixels (Xu et a. 2004; Erikson et al. 2006; Jin et al. 2007); and d) MODIS pixel 
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geolocation issues and the inclusion of land areas not represented by EC (Turner et al. 2004). Plot 

or transect measurements of vegetation characteristics, used to rectify these issues within large 

area MODIS pixels, are also often difficult and time-consuming to obtain, especially in remote 

locations (Heinsch et al. 2006).  

 

We believe that some of the challenges associated with comparing EC estimates of GPP with 

fixed coverage MODIS pixel-based estimates can be addressed by scaling between these 

disparate observation methods using airborne lidar data. Lidar provides a very high resolution 

map of the three-dimensional characteristics of the vegetated canopy, understory, and ground 

surface. The interception of photosynthetically active radiation (PAR) by the canopy and 

understory directly impacts GPP and photosynthesis (e.g. Baldocchi and Meyers, 1998) through 

the convergence efficiency of intercepted PAR to GPP, also known as light use efficiency (LUE) 

(Turner et al. 2002; Schwalm et al. 2006). LUE can be estimated from the slope of a Landsberg 

light response curve, which is related to the saturation of photosynthesis beyond certain light 

levels (e.g. Turner et al. 2002; Turner et al. 2003). If LUE for an ecosystem is known or can be 

estimated from a look-up table, for example, then the Landsberg curve can be used to model GPP:  

 

)1( )(
max

compIPARa
Landsberg ePGPP −−−= ,     [1]  

 

where Pmax is the maximum average GPP at saturation (g C m-2) (the point at which GPP plateaus 

with increased light levels), α is the slope or scaling factor of GPP as it increases with incoming 

PAR, and Icomp is the light compensation point at which GPP is zero. This then provides the 

context for scaling between EC and MODIS using airborne lidar. EC estimates of GPP are based 

on measures of flux from the ecosystem, and MODIS estimates of GPP are based on the 
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absorption and reflection of light from within ~1 km resolution pixels. However, actual canopy 

detail is not considered. In both cases (EC and MODIS) the canopy and understory structure is 

implicit in directly influencing the GPP estimate. Lidar enables this implicit treatment of canopy 

structure to be made explicit in both cases.  

 

 A hypothesis can be formulated as follows: Foliage density and canopy height, which can be 

estimated from lidar, may correspond with variability in LUE. LUE is also used in the MODIS 

algorithm to estimate GPP. To illustrate that LUE and GPP may be related to canopy structure, an 

example is provided: Papers by Schwalm et al. (2006) and Chen et al. (2006) have recorded LUE, 

canopy height and fractional cover (as fPAR) for the same 16 Fluxnet-Canada forest sites. 

Comparing the observations from both papers, we find that average growing season LUE for 

boreal conifer and deciduous forests, temperate rain forest, previously harvested stands, and 

previously burned stands is significantly related to average canopy height (r2 = 0.61, p = 0.001, 

RMSE = 0.19 g C MJ-1 APAR (not shown)) (see Schwalm et al. 2006). Based on this comparison 

and results in Chasmer et al. (2008) and Chasmer et al. (accepted) it follows that (all else being 

equal) areas displaying taller canopy heights and/or fractional canopy cover will be positively 

related to gross photosynthesis and CO2 uptake. Therefore, Landsberg input parameters, such as 

average maximum GPP, may be greater for canopies containing more biomass and taller trees. 

The light compensation point may also vary due to within canopy shadowing, fractional cover 

and vegetation height. For example, shorter vegetation with lower fractional cover will receive 

more radiation early in the morning than taller vegetation with greater fractional cover (due to 

long morning shadows), thereby increasing the level of light required for photosynthesis in forests 

of taller trees and greater leaf area. If this is the case, then GPP may be modeled using the 

Landsberg curve, canopy height and fractional cover estimates from airborne lidar.   
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The analysis presented first investigates linkages between field-based canopy structure 

measurements and Landsberg light response curves at a jack pine chronosequence during the 

growing season of 2004 and tested in 2005 (GPPLandsberg). Second, we use the lidar inputs 

(fractional cover and canopy height) to create a structure-based GPP model (GPPlidar) (also tested 

in 2005). GPPlidar is then compared with eight-day cumulative MODIS GPP (GPPMODIS) and EC 

observations (GPPEC). Finally, we apply GPPlidar at spatial resolutions of 1 m to 1000 m at three 

jack pine sites to examine the influence of within-pixel heterogeneity and scaling (or pixel 

aggregation) on modeled GPP.  

5.3 Data Collection 

5.3.1 Site Characteristics 

Four jack pine sites, forming a post-harvest chronosequence, were examined during the growing 

seasons (June 1st to September 31st) of 2004 and 2005. The jack pine stands included a mature 

jack pine forest of ~90 years of age (OJP); an immature jack pine forest harvested in 1975 

(HJP75); a regenerating jack pine forest harvested in 1994 (HJP94); and a naturally regenerating 

jack pine site harvested in 2000 and scarified in 2002 (HJP02). The forest stands are located 

within 6 km of each other near the southern edge of the boreal forest, north of Prince Albert, 

Saskatchewan, Canada. All sites examined in this study were operating as part of Fluxnet-Canada 

(Barr et al. 2006; Margolis et al. 2006), under the Boreal Ecosystem Research and Monitoring 

Sites (BERMS) project. Each site is relatively flat with coarse-textured and well-drained sandy 

soils (e.g., Baldocchi et al. 1997).  

 

Forest stand characteristics are summarized in Tables 5.1 (OJP, HJP75, and HJP94) and 2 

(HJP02). Measurements of canopy structure were made at eight (OJP), eight (HJP75), and six 
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(HJP94) geo-located 11.3 m radius plots located at distances of 100 m and 500 m (at OJP and 

HJP75) and within 250 m (HJP94) of EC towers in May and August, 2005. At HJP02, four 25 m 

x 2 m transects containing 50 1 m x 1 m plots were located at distances of 50 m to 75 m (N, S, E, 

and W) from the EC tower. The centre of plots, and the start and end of transects were located 

using survey-grade, differentially corrected global positioning system (GPS) receivers (Leica 

SR530, Leica Geosystems Inc. Switzerland; Ashtec Locus, Ashtec Inc., Hicksville, NY) with the 

same base station coordinate as was used for the lidar survey. Geo-location accuracies varied 

from 1 cm to 1 m depending on the canopy cover density at the time of GPS data collection.  

 

Canopy gap fraction was obtained using digital hemispherical photography (DHP) at OJP, HJP75, 

and HJP94, and radiation sensors at HJP02 (Chasmer et al. 2008). One photograph was taken at 

the centre of the plot, and four were located 11.3 m from the centre along cardinal (N, S, E, and 

W) directions, determined using a compass bearing and measuring tape (Fluxnet-Canada, 2003). 

Photographs were taken at a height of ~1.3 m at OJP and HJP75, and 0.7 m at HJP94. Trees were 

often less than 2 m in height at HJP94; therefore a lower DHP height was chosen to capture more 

biomass. Photographs were taken during either diffuse daytime conditions, or 30 minutes before 

dawn or after dusk, at one F-stop below normal exposure. Under-exposure of photographs 

reduces the influence of sun brightness and under-estimation of leaf area (Zhang et al. 2005). 

Individual photographs were processed following sky and vegetation thresholding methods of 

Leblanc et al. (2005). Thresholds for sky and foliated pixels were used to obtain estimates of gap 

fraction (Ω) within the software, DHP version 1.6.1 (S. Leblanc, Canada Centre for Remote 

Sensing provided to L. Chasmer through the Fluxnet-Canada Research Network). Average 

canopy height, estimated using a Vertex sonic hypsometer (Haglof, Maddison), and vegetation 
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fractional cover (1- Ω) per site were compared with inputs used in light response curves, whereas 

plot level averages were compared with lidar estimates of the same. 

 

Table 5.1. Average vegetation characteristics at OJP, HJP75, and HJP94 for 22 plots. The values 
in parentheses represent standard deviation (stdev).  
Site Number 

of trees 
sampled 

Average 
stem 
density 
(stdev) 
(stems  m-2)  

Average 
tree height 
(stdev) (m) 

Average 
DBH* 
(stdev) (cm) 

Average 
LAI (stdev) 
(m2 ⋅m-2)  

Average 
canopy 
depth 
(stdev) (m) 

Average 
crown 
diameter 
(stdev) (m) 

Other species 

OJP 381 0.11 
(0.001) 

14.2 (3.5) 9.33 (4.55) 1.6 (0.1)** 8.3 (2.7) 
 

2.0 (1.0) Alder, 
bearberry, 
reindeer lichen, 
blueberry, 
cranberry 

HJP75 1447 0.59 (0.19) 6.3 (1.6) 5.69 (3.49) 2.8 (0.4) 3.5 (1.3) 0.9 (0.4) Grasses, 
reindeer lichen, 
bearberry 

HJP94 2081 0.86 (0.56) 1.6 (0.7) 2.31 (1.05) 1.1 (0.2) 1.6 (0.7) 0.7 (1.1) Grass, 
blueberry, alder, 
raspberry, 
bearberry, 
reindeer lichen 

* DBH refers to tree bole diameter at breast height (1.3 m above the ground). 
** LAI measurements from Chen et al. (2006) differ from LAI observed in this study.  
 
 
Table 5.2. Average vegetation characteristics at HJP02 for 200 1m x 1m plots along four 
transects. Average percent cover does not add up to 100% (averaged between four transects) due 
to varying amounts of vegetation coverage per plot. 
Number of 
trees (in 
200 1m 
plots) 

Average tree 
height (stdev) 
(m) 

Average 
% tree 
cover 
(stdev) 

Average % 
grass cover 
(stdev) 

Average % 
reindeer 
lichen 
cover 
(stdev) 

Average %  
soil cover 
(stdev) 

Average % 
wood 
debris 
cover 
(stdev) 

Average % 
herb cover 
(stdev) 

Average 
estimated 
LAI  
(m2 ⋅m-2) 

37 0.19 (0.12) 9 (11) 21 (18) 23 (30) 32 (18) 26 (24) 8 (15) 0.29 

 

5.3.2 Site Instrumentation 

Measurement and processing of eddy covariance (EC) data has been discussed in Kljun et al. 

(2006) and Barr et al. (2006) and follow Fluxnet-Canada procedures for standardization between 

sites.  Briefly, EC was used at all sites to measure CO2 fluxes averaged over 30-minute periods 

and then aggregated on a daily basis and again, over eight day periods for comparison with 

MODIS. The plot measurement-based GPP model (GPPLandsberg) was developed using EC data 
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collected during the growing season (June 1st to September 31st) of 2004 and was then tested and 

compared with GPPEC and GPPMODIS   in 2005. 

  

GPP (used interchangeably with gross ecosystem production, GEP) was estimated from EC-

measured net ecosystem production (NEP) (µmol⋅m-2⋅s-1) and modeled ecosystem respiration (Re) 

(µmol⋅m-2⋅s-1). Re was estimated based on the relationship between nighttime Re and soil 

temperature (Barr et al. 2004). Cumulative daily estimates of GPPEC have been expressed in units 

of g C⋅m-2⋅day-1 for direct comparison with GPPMODIS (kg C⋅m-2⋅8-days-1 converted to g C⋅m-2⋅8-

days    -1). CO2, H2O and friction velocity were measured using a sonic anemometer (CSAT3, 

Campbell Scientific Inc. Edmonton, Alberta, Canada at OJP and HJP02; Gill R3-50, Gill 

Instruments Ltd., England at HJP75; SAT-550, Kaijo Co., Tokyo, Japan at HJP94) combined 

with a closed path infrared gas analyzer (LI 6262, LI-COR Inc., Lincoln, NE, USA). EC systems 

have been installed above the canopy at heights of approximately 28 m, 17 m, 3 m, and 2 m at 

OJP, HJP75, HJP94, and HJP02 respectively. Any gaps in the 30-minute fluxes were filled using 

a moving-window regression approach (Barr et al. 2006; Kljun et al. 2006). EC data were quality 

controlled using a minimal surface friction velocity of 0.35 m s-1 at all sites, and an energy 

balance closure correction was applied to reduce under-estimates of measured net ecosystem 

exchange (NEE) by EC (Barr et al 2006).  

 

Above-canopy incoming and reflected PAR (400 to 700 nm) and below-canopy incoming PAR 

were measured using quantum sensors LI-COR model LI190 at OJP and HJP75 (LI-COR 

Biosciences, Nebraska, USA); and Eko model ML-020P (Eko Instruments, Co. Ltd., Japan) at 

HJP94 and HJP02. Above canopy incident and reflected PAR sensors were installed on booms at 

heights of 28 m, 12 m, 3 m and 2 m above the ground at OJP, HJP75, HJP94, and HJP02. Below 
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canopy incident PAR measurements were made at OJP and HJP75 at a height of ~1 m. Below-

canopy PAR measurements were not available at HJP94 and HJP02. 

5.3.3 Lidar Data Collection and Analysis 

Airborne lidar data were obtained throughout the entire White Gull River watershed, including 

jack pine chronosequence sites, on August 12, 2005. The lidar system is an Airborne Laser 

Terrain Mapper (ALTM) 3100 (Optech Inc. Toronto, Ontario, Canada) small-footprint discrete 

pulse return lidar. Data were collected in partnership with the Applied Geomatics Research Group 

(AGRG), Nova Scotia, Canada. The lidar was flown at a height of 950 m above the ground 

surface, and emitted laser pulses at a rate of 70 kHz. A ±19o scan angle was used with 50% 

overlap of scan lines, enabling penetration of laser pulses through to the base of the canopy and 

returns from all sides of individual trees (Chasmer et al. 2006). Up to four laser returns were 

obtained per laser pulse emitted resulting in cross- and down-track resolutions of ~35 cm. 

 

After initial processing of GPS trajectories and range files at the AGRG, lidar data were imported 

into the software package Terrascan (Terrasolid, Finland) for area subsetting and laser return 

classification. The larger lidar dataset was subset into 1 km x 1 km areas containing EC flux 

stations within the same geographical area covered by one MODIS pixel. Circular 11.3 m radius 

mensuration plots were also extracted from the lidar for comparison with average plot-measured 

canopy height and fractional cover. Lidar datasets were then filtered for outlying returns greater 

than the height of the EC tower or lower than 1.5 m below the ground surface. Datasets were then 

classified into �ground� returns (Pground), �canopy� returns (above 1.3 m at OJP and HJP75; and 

0.7 m at HJP94) (Pcanopy), and �all� returns (which included ground returns) (Pall). Pground was used 

to create a 2 m x 2 m digital terrain model (DTM) from which Pall and Pcanopy returns were 

normalized relative to the ground surface. The DTM was created by interpolating between ground 
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returns within 2 m resolution pixels using an inverse distance weighting procedure (IDW) (i.e. 

O�Sullivan and Unwin, 2003) and a search radius of 3 m. This method was chosen because it a) 

retains point values of the data; b) is a rapid interpolation method, which is important when 

dealing with large volumes of lidar data; and c) is appropriate for regularly spaced data (Myers, 

1994). Although the resolution of the lidar dataset is greater than 2 m, areas of dense canopy 

foliage and individual alder bushes can reduce the density of ground returns. Therefore a 2 m 

resolution was used to avoid �holes� within the DTM. 

 

Lidar canopy height models (CHM) were created from the normalized maximum z-height (m) at 

jack pine sites using IDW at 1 m x 1 m resolution. At HJP02, short vegetation and ground 

topography could not be resolved between first, intermediate, and last returns. This is due to the 

inability of lidar systems to distinguish between returns separated by less than 1.6 m, depending 

on the lidar systems used (Hopkinson et al. 2005). Therefore, comparisons at HJP02 were limited 

to measured data only and did not include any lidar data analysis. Fractional cover (fcover) 

(where 1 = full canopy cover and 0 = no canopy cover) was estimated based on the ratio of the 

number of canopy returns to the number of all returns within 1 m x 1 m x height columns 

throughout each site: 

 









∑

∑
=

all

canopy

P
P

erf cov .        [2] 

 

The fcover or �return ratio� method has been examined in various forms within numerous studies 

and closely approximates fractional cover when compared with DHP (Morsdorf et al. 2006; 

Solberg et al. 2006; Hopkinson and Chasmer, in review).   
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5.3.4 MODIS GPP Product 

GPPMODIS (Collection 5) data were obtained from the Oak Ridge National Laboratory (ORNL) 

Distributed Active Archive Center (DAAC) (http://www.modis.ornl.gov/modis/ index.cfm) and 

was subset into 3 km x 3 km areas (9 pixels) at OJP, HJP75, HJP94 and HJP02 flux tower sites. 

Eight-day cumulative periods were compared with the same cumulated GPP periods observed 

from EC. Only days that contained the best quality controlled MODIS data for all nine pixels 

were included. The estimation of GPP by MODIS is described in detail in Running et al. (1999); 

Zhao et al. (2005); and Heinsch et al. (2006). 

5.4  Methods 

In this study, four methods are used to estimate GPP. These include EC (GPPEC), Landberg 

curves based on local plot measurements (GPPLandsberg), Landsberg curves based on airborne lidar 

(surrounding the EC) within the area covered by one MODIS pixel (GPPlidar), and MODIS pixel 

estimates containing the EC (GPPMODIS). GPPLandsberg has been modeled in 2004 and tested and 

compared in 2005. Table 5.3 provides a summary of the four methods that are used. Further 

discussion of the methodologies used to define these estimates is found in the following sections. 

 

Table 5.3. Summary of GPP methods estimated using EC, plot measurements, airborne lidar, and 
MODIS. 

GPP 
Estimation 

Method 

Description Growing Season Examined Data Inputs 

GPPEC GPP estimated using EC 2004 and 2005. 2005 compared 
with all other GPP methods. 

NEE, Re  

GPPLandsberg GPP estimated using canopy structure inputs from 
forest plot measurements 

Method developed in 2004, 
tested in 2005. 2005 compared 
with all other GPP methods. 

Incoming PAR, average 
measured tree height and 
fractional cover 

GPPlidar GPP estimated using area averaged canopy height 
and fractional cover from airborne lidar. Average 
areas include that within MODIS pixel area 
including the EC (1km x 1km) 

2005 compared with all other 
GPP methods. 

Incoming PAR, lidar 
average tree height and 
fractional cover 

GPPMODIS GPP estimated from MODIS within the pixel 
containing the EC at each site.  

2005 compared with all other 
GPP methods. 

Incoming PAR, MODIS 
fPAR product, and LUE 
determined from a look-up 
table. 
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5.4.1 Landsberg Light Response Curve Analysis and Development of GPP Model 

The first objective makes comparisons between Landsberg input variables used to predict GPP 

from light response curves and canopy structure attributes at the jack pine chronosequence during 

the growing season of 2004. The purpose is to first determine if there is a relationship between 

canopy structure and Landsberg input variables, and if there is, to then develop GPP models 

based on canopy structure and Landsberg principles.  

 

The Landsberg equation [1] (e.g. Landsberg and Waring, 1997; Chen et al. 2002) was used to 

examine the relationships between daily average incoming PAR and GPPEC per site during 2004. 

Fitted values for Pmax and α were compared to canopy height across sites and the fitted value for 

Icomp was compared with average fractional cover across sites to estimate GPP (GPPLandsberg). 

However, fractional cover was not actually measured in 2004. To estimate fractional cover in 

2004, DHP plot measurements were adjusted based on percentage differences in fractional cover 

measurements made by PAR sensors between 2004 and 2005: 

 

 Fractional cover = (PARAC↓  - PARBC↓) / PARAC↓,     [3]  

 

and at HJP94 and HJP02: 

 

Fractional cover = PARAC↓ (1 � e-kL*)/ PARAC↓     [4] 

 

where PARAC↓ is above-canopy incoming PAR, and PARBC↓ is incoming below-canopy PAR 

after interception with branches and leaves. L is LAI, and k is the extinction coefficient estimated 



 

  134

as a constant 0.45 for simplicity (Chen et al. 2006). Measured fractional cover [3, 4] was 

examined during diffuse radiation conditions only and then averaged throughout the growing 

season. Based on results of Middleton et al. (1997) we have assumed that canopy fractional cover 

did not vary at the jack pine sites within the growing seasons studied. 

 

Measured below canopy PAR percent differences between the two years were used to vary site-

averaged estimates of fractional cover between 2004 and DHP measurements in 2005. PAR 

adjusted DHP fractional cover was estimated as 0.57 (OJP), 0.73 (HJP75), 0.41 (HJP94), and 

0.22 (HJP02) in 2004. Measurement of average fractional cover by DHP was 0.59 (OJP), 0.72 

(HJP75), 0.39 (HJP94) and 0.29 (HJP02) in 2005. Meteorological conditions during 2004 were 

similar to 2005; however, a severe drought in 2003 and a late, cool spring in 2004 may have 

caused slight reduction in foliage cover at some sites (Chasmer et al. 2008).  

 

Tree heights also were not measured in 2004 and were estimated based on jack pine forest growth 

rates in Manitoba and Saskatchewan (Burns and Honkala, 1990). Average growth rates are 

approximately 0.15 m from ages one to two, 0.23 m per year from ages five to eight years, 0.33 m 

per year at age 30, and 0.23 m per year at age 50. Canopy heights for 2004 were reverse estimated 

and averaged from the 2005 field plot data as 13.97 m (OJP), 5.64 m (HJP75), 1.37 m (HJP94), 

and 0.15 m (HJP02).  

5.4.2 GPP Model Assessment  

GPP was modeled based on the relationships between canopy height and fractional cover, and 

Landsberg curve inputs in 2004. To test the applicability of the model, the structure-based GPP 

model was run during the 2005 growing season by substituting 2005 measured canopy height and 
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fractional cover, and incoming PAR into the Landsberg equations (GPPLandsberg). GPPLandsberg was 

then compared with GPPEC in 2005.  

 

Root mean square error (RMSE), systematic RMSE (RMSEs) and unsystematic RMSE (RMSEu) 

were used to evaluate the accuracy of GPPLandsberg when compared with GPPEC. RMSE provides a 

measure of the average differences between observed and predicted GPP, whereas RMSEs and 

RMSEu provide measures of the systematic biases and unsystematic or random biases un-related 

to the model (Rymph, 2004). RMSEs and RMSEu were calculated as: 
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where Oi is the GPPEC, Pi is the GPPLandsberg, bmOP ii +=� , and m and b are the slope of the 

regression lines and Y-intercepts, respectively (from Rymph, 2004). Models that perform well 

have low RMSE, RMSEs should be close to zero and the RMSEu should be close to the RMSE. 

Low measurements of RMSEs indicate that the model is predicting at maximum accuracy and the 

sources of errors are random and not related to the model (Rymph, 2004).    

5.4.3 Model Application and Comparison 

The third objective uses airborne lidar to spatially model GPP (GPPlidar) within the 1 km x 1 km 

area surrounding the EC station (equivalent to one MODIS pixel) at 1 m resolution during the 
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growing season of 2005. Average canopy height from the CHM and lidar fractional cover 

(fcover) are input into the Landsberg GPP model (Objective 1) to estimate GPP (GPPlidar). GPPlidar 

is compared with GPPMODIS and GPPEC, cumulated over 8-day periods during the growing season 

of 2005. The purpose is to compare GPPlidar at the MODIS pixel scale with GPPEC at the flux 

footprint scale and GPPMODIS at 1 km resolution to determine if differences in GPP exist as a 

result of spatial variability in canopy structure beyond the footprint of the EC station. We 

hypothesize that GPPLidar and GPPMODIS will be more similar than when compared with GPPEC 

because the same area will be included in the estimation of GPP using remote sensing methods, 

whereas GPPEC will sample a smaller area within the larger MODIS pixel. The maximum source 

area of the footprint extends to up to 1 km at OJP and HJP75, 250 m at HJP94, and 150 m at 

HJP02 during convective daytime periods (Chasmer et al. accepted).   

5.4.4 GPP Scaling Analysis 

The final objective aggregates GPPlidar from 1 m to 25 m, 250 m, 500 m, and 1000 m resolutions 

to determine the influence of within pixel patches on GPP estimation. This is done by averaging 

from higher resolution pixels (i.e. 1 m) to lower resolutions in ArcGIS (ESRI, CA). When scaling 

from 1 m to 25 m resolution, for example, the mean of all 1 m resolution pixels within the 25 m x 

25 m area are used to estimate a single value of GPP at 25 m resolution. This was repeated for all 

pixels within each MODIS pixel area (i.e. 1 km x 1 km). The same methodology was then applied 

to other resolutions by aggregating all 1 m x 1 m pixels within 250 m x 250 m, 500 m x 500 m, 

and 1000 m x 1000 m pixels by retaining the individual 1 m resolution cell values of GPP. The 

mean GPPlidar of the lower resolution pixels was used following results of Woolard and Colby 

(2002). They found that the means of the aggregated pixels were statistically most appropriate 

when compared with other methods of aggregation (i.e. central pixel resampling, median, etc.) 
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and retained patterns in the landscape at varying scales. Comparisons between resolutions were 

then made by subtracting each lower resolution pixel from 1 m x 1 m pixels.  

5.5 Results 

5.5.1 Comparisons between Landsberg Inputs and Canopy Structure 

Incoming PAR accounted for 60%, 54%, 61% and 8% of the variability of 30-minute average 

GPPEC at OJP, HJP75, HJP94, and HJP02 (Table 5.4, Figure 5.1). Landsberg curve relationships 

between GPPEC and incoming PAR indicate that saturation occurred at different levels of PAR 

depending on the forest age and the structural characteristics of the site. This indicates that 

canopy structure plays a role in the variability in CO2 uptake per site, and the non-linearity of the 

Landsberg curves. GPP saturated at incoming PAR levels of approximately 800, 700 and 450 

µmol⋅m-2⋅s-1 at OJP, HJP75, HJP94 and almost immediately at HJP02.  

 

Table 5.4. Parameters (Pmax, Icomp, and α) used in Landsberg curves and the correlation between 
incoming PAR and GPP described by the Landsberg curve. Landsberg input parameters have 
been determined from all 30-minute periods of PAR and GPP measured during the growing 
season of 2004.  

Site Pmax 

(µmol⋅m-2⋅s-1) 

α  (scaling) Icomp 

(µmol⋅m-2 ⋅s-1) 

Correlation (r2) between incoming 

PAR and GPP described by 

Landsberg curve 

OJP 10.37 0.0048 12 0.60 

HJP75 9.25 0.0035 14 0.54 

HJP94 6.53 0.0028 10 0.61 

HJP02 1.71 0.0011 8 0.08 
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Figure 5.1. Landsberg model light response curves and relationships between observed 30-minute 
incoming PAR (µmol⋅m-2⋅s-1) and GPP (µmol⋅m-2⋅s-1) during the 2004 growing season. 

 

Relationships between average measured tree heights, measured fractional cover and Landsberg 

input variables are shown in Figure 5.2 for 2004. Pmax was positively related to average canopy 

height (r2 = 0.99), where taller trees had greater average maximum GPP at saturation than shorter 

trees at the sites studied. The relationship was non-linear, where increases in Pmax with height 

were greatest between HJP02 and HJP94, and leveled off between HJP75 and OJP. Relationships 

between Pmax and fractional cover were lower, but still non-linear (r2 = 0.74). Icomp was linearly 

related to the average fraction of foliage cover within each stand (r2 = 0.99) and non-linearly 

related to canopy height (r2 = 0.80). The scaling function (α) also varied with canopy structure (r2 
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= 0.97, canopy height; 0.68, fractional cover). α was greatest at OJP and was slightly lower at 

HJP75 and HJP94. At HJP02, the scaling function was much lower than at other sites.  

 

Figure 5.2. Site-level relationships between a) Pmax and average measured tree height; b) Icomp and 
average measured fractional foliage cover from DHP; and c) α and average measured tree height 
estimated in 2004.  

 

Based on the relationships between plot measured canopy structure (Table 5.1) and Landsberg 

input variables (Figure 5.2), canopy structure obtained either from plot measurements may be 

used to model GPP. Pmax, Icomp, and α can be substituted into the Landsberg equation (including 

daily incoming PAR) based on logarithmic and linear relationships between sites as follows: 

 

 Pmax = 2.8 x Ln(tree height) + 6.50,      [7] 
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 Icomp = 13.7 x (fractional cover) + 5.17,      [8] 

 

and 

 

 α = 0.0008 x Ln(tree height) + 0.0026.      [9] 

 

Application of these relationships is suitable only for the sites examined in this study. 

Relationships between measured canopy structure and Landsberg inputs should be examined at 

other sites.  

5.5.2 Comparing GPP Predicted from Height and Fractional Cover with Observed 
GPP 

In the second objective, GPPLandsberg [Eq. 7, 8, and 9], is tested and compared with GPPEC during 

the 2005 growing season at each site. Average canopy cover and tree heights from plot 

measurements were used to estimate GPPLandsberg (Table 5.3; Figure 5.3).   
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Figure 5.3. Comparisons between GPPEC and GPPLandsberg with the inclusion of measured canopy 
height and fractional cover during the growing season of 2005.  
 

GPPLandsberg (Table 5.5) compared well with GPPEC at all sites but HJP02 in 2005. The slopes of 

the linear regression (ideally 1.00) were between 0.72 and 0.78 at OJP, HJP75, and HJP94. The 

Y-intercept was close to zero at HJP94 and HJP02, but high at OJP and HJP75 (2.28 g C⋅m-2⋅d-1, 

and 1.31 g C⋅m-2⋅d-1). This indicates that GPPLandsberg was over-estimated at OJP and HJP75 for 

low values of GPPEC. Table 5.5 provides measures of GPPLandsberg model accuracy when compared 

with GPPEC. Examination of daily GPPEC using probability plots (not shown) indicate that OJP 

and HJP02 were normally distributed in 2004, whereas HJP75 and HJP94 were not normally 

distributed. In 2005, when the model was tested, OJP, HJP75, and HJP94 were normally 

distributed, whereas HJP02 was not. Either Pearson�s r or Spearman�s rank correlations are 
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shown for each site because Pearson�s r correlation requires that data are normally distributed, 

whereas Spearman�s rank does not. Daily RMSE was less than 10% of the mean daily GPP, and 

systematic errors varied by less than ~14% of the mean daily GPP at HJP75, HJP94, and HJP02. 

Unsystematic errors were lower than systematic errors at all sites, except HJP75, indicating that 

predicted GPP may have been influenced by other factors at this site. At OJP, however, the model 

did not perform as well, indicating that predicted GPP was prone to some systematic biases and 

could be further refined. 

 

Table 5.5. Measurements of the accuracy of GPPEC vs. GPPLandsberg (n = 122) during the growing 
season of 2005. p-values are included in brackets. Pearson�s r correlation is appropriate for OJP, 
HJP75 and HJP94, whereas Spearman�s rank correlation is appropriate for HJP02. 

Site RMSE  

(g C⋅m-2⋅d-1) 

RMSEs 

(g C⋅m-2⋅d-1) 

RMSEu 

(g C⋅m-2⋅d-1) 

Pearson�s correlation 

coefficient (r) (p) 

Spearman�s rank 

correlation (p) 

OJP 1.59 1.38 0.75 0.76 (0.000) - 

HJP75 0.66 0.42 0.87 0.86 (0.000) - 

HJP94 0.63 0.46 0.39 0.87 (0.000) - 

HJP02 0.45 0.37 0.26 - 0.28 (0.002) 

 

5.5.3 Comparing GPPEC with GPPMODIS and GPPlidar 
Airborne lidar provided reasonable estimates of canopy fractional cover (based on annulus rings 

1-9) at 40, 40, and 30 DHP locations within OJP, HJP75, and HJP94, respectively. Correlations 

(r2) between measured vs. lidar fcover were 0.86 for all DHP plots combined. Due to reduced 

variance for individual forest cover types, however, the site-specific (OJP, HJP75, and HJP94 

(HJP02 has been excluded)) lidar and DHP fractional cover correlations were not as strong (r2 = 

0.22 (p = 0.01), 0.09 (p < 0.1), and 0.21 (p = 0.01), respectively). This indicates that the fcover 

method works well over variable canopy structures, but not as well within a single ecosystem of 

little variability. Average percent differences between measured and lidar-estimated fcover were 

19% (standard deviation (stdev.) = 9%, OJP), 15% (stdev. = 9%, HJP75) and 36% (stdev. = 22%, 
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HJP94). Comparisons between plot-averaged measured tree height and lidar canopy heights, 

based on the 90th percentile of the return distribution, were strong (r2 = 0.99) and followed an 

almost 1:1 relationship. Site-specific correlations were also strong at OJP (r2 = 0.88) and HJP75 

(r2 = 0.83), but were weak at HJP94 (r2 = 0.18, p = 0.32). This was due to the low height of the 

trees at HJP94 resulting in reduced probability of multiple returns and increased penetration of 

pulses into surrounding tall grasses and shrubs (Hopkinson et al. 2005). From the results 

presented here and elsewhere, lidar can provide a map of the spatial variability of canopy height 

(e.g. Hopkinson et al. 2005) and fcover (e.g. Morsdorf et al. 2006) for use in the Landsberg-based 

GPP model over large areas.  

 

Direct comparisons between GPPEC, GPPMODIS, and GPPlidar are shown in Figure 5.4. Adjacent 

MODIS pixels provide maximum and minimum ranges (as error bars) of GPP and were used as 

bounds for geo-location errors that occur as a result of sensor geometry, earth curvature, and 

ground surface topography (e.g. Wolfe et al. 2002; Turner et al. 2004).  
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Figure 5.4. Eight-day cumulative average GPP comparisons between GPPEC, GPPMODIS, and 
GPPlidar at a) OJP; b) HJP75; and c) HJP94. Error bars on MODIS data indicate the range of GPP 
recorded for eight adjacent pixels (to the centre one, nine in total). 
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Mixed pixels may have had some influence on the relationships between GPPEC, GPPlidar, and 

GPPMODIS (Figure 5.4). Table 5.6 provides Pearson�s r correlation coefficients between GPPEC, 

GPPlidar and GPPMODIS and the average percent difference when compared with each other for all 

sites examined. OJP is relatively homogeneous throughout the entire MODIS pixel. Lidar 

estimated average (1 km x 1 km area surrounding the EC) fcover was 0.62 (slightly higher than 

measured, 0.59) and average canopy heights were much lower than that measured at plots (11.2 

m) (Table 5.1). At OJP, GPPlidar undestimated eight-day total GPPEC by 11%, whereas GPPMODIS 

underestimated eight-day total GPPEC by 6%, on average (Figure 5.4, Table 5.6). The differences 

may have been due, in part, to shorter average vegetation heights within the larger MODIS pixel 

as opposed to taller trees within the footprint of the EC system.  

 

At HJP75, average lidar canopy height and fcover (5.67 m, 0.47) were lower than plot 

measurements (Table 5.1), which may have caused some underestimation of GPPlidar (6%) when 

compared with GPPEC (Figure 5.4, Table 5.6). MODIS underestimated GPPEC by 9%, on average. 

When GPPMODIS was compared with GPPlidar, average differences of 6% were found. The standard 

deviation of differences were greatest between GPPEC and remote sensing estimates (GPPlidar, and 

GPPMODIS) (16% and 24%, respectively), but were less when comparing between GPPlidar and 

GPPMODIS (14%).  

 

At HJP94, the footprint area of the EC covers approximately 50% of the MODIS pixel for the 

site. The remaining 20% and 30% of the pixel contains older jack pine stands with average tree 

heights of 12 m and 6.5 m, respectively. Tree heights and fcover within the MODIS pixel area 

were also greater (5.2 m, 0.32) than those measured within plots near the tower (Table 5.1). 

Average GPPlidar underestimated GPPEC by 6%, especially towards the end of the growing season, 
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whereas GPPMODIS overestimated GPPEC by 17% and GPPlidar by 18% (Figure 5.4, Table 5.6). The 

standard deviation of the differences were also smallest when comparing GPPlidar with GPPMODIS 

(17%) but larger when comparing between GPPEC and GPPMODIS (31%).  

 

Table 5.6. Pearson�s r correlations between GPPEC, GPPlidar, and GPPMODIS including p-values (in 
brackets). Average percent differences are shown for eight-day composite periods (where data 
were available) over the growing season, 2005.  

Site Pearson�s r 
correlation 
GPPEC and 

GPPlidar 

Average %  
difference = 

GPPEC - 
GPPlidar  

Pearson�s r 
correlation GPPEC 

and GPPMODIS 

Average % 
difference = 

GPPEC -
GPPMODIS 

Pearson�s r correlation 
GPPlidar and GPPMODIS 

Average % 
difference: = 

GPPlidar -
GPPMODIS 

OJP 0.71 (0.003) 11% 0.64 (0.030) 6% 0.77 (0.003) 8% 

HJP75 0.70 (0.004) 6% 0.39 (0.270) 9% 0.81 (0.004) 6% 

HJP94 0.63 (0.280) 6% 0.64 (0.100) -17% 0.59 (0.04) -18% 

 

5.5.4 Assessing the Influence of Site Heterogeneity - Scaling GPP from 1m to 
1000m 

From the results of the previous section, it is evident that differences between GPPLidar, GPPMODIS 

and GPPEC may depend, in part, on the location and distribution of �patches� of vegetation within 

mixed pixels. Individual MODIS pixels may include areas of diverse vegetation cover, ranging 

from recent clearcuts and grasslands, to older and/or more productive forests, wetlands, and 

agricultural areas (Milne and Cohen, 1999). It is not clear if within-pixel patches have influenced 

pixel average GPPlidar and GPPMODIS when compared with GPPEC. To examine the influences of 

spatial heterogeneity in vegetation structure, 1 m resolution GPPlidar, estimated for a single day, 

was aggregated by averaging to 25 m, 250 m, 500 m, and 1000 m pixel resolutions and then 

subtracted from 1 m pixels to demonstrate where GPP differences may exist between adjacent 

patches of vegetation types (Figure 5.5). 
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Figure 5.5. Differences between GPPlidar on June 16, 2005 (as an example) at 1 m resolution and 
a) 25 m b) 250 m; c) 500 m; and d) 1000 m pixels. Maps of GPPlidar illustrate more and less 
productive parts within 1 km x 1 km MODIS pixel areas. Low resolution pixels were subtracted 
from 1 m resolution pixels at each site. Positive differences indicate that lower resolutions 
underestimate GPP compared with 1 m resolution, whereas negative differences indicate that 
lower resolutions over-estimate GPP when compared with 1 m resolution. Gray areas equal 
missing data due to short vegetation. 
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After aggregating 1 m GPPlidar to lower resolutions, and subtracting them from the original 1 m 

GPPlidar dataset, GPPlidar was found to vary by almost 10% at the heterogeneous HJP94 site when 

lower resolutions were used (Table 5.7). We can start to see the effects of aggregation in Figure 

5.5a, (3rd panel) at HJP94. Differences between 1 m and 25 m resolutions along the outer edges of 

the HJP94 site (rectangular area located in the centre of the pixel) were over-estimated by 25 m 

resolution pixels compared with 1 m resolution pixels, due to edge effects and averaging between 

taller and shorter vegetation. A t-test confirms that significant differences between 1 m and 25 m 

resolution pixels exist at HJP94 (p = 0.000, n = 1600), and to a lesser extent between 1 m and 250 

m resolutions (p = 0.10, n = 16).  The greatest deviations were found at HJP94 at pixel resolutions 

between 25 m and 500 m, which underestimated average GPP (when compared with 1 m 

resolution) by up to 10% over the 1 km pixel, and by as much as 5 g C m-2 d-1 (140%) when 

compared with 1 m resolutions. These results exemplify the averaging of GPP that occurs as 

resolution decreases. At HJP75, as pixel resolution decreased to 500 m, pixel average GPP also 

decreased indicating that short vegetation surrounding the site had some influence on average 

GPP at lower (e.g. 500 m) resolutions. Slight edge effects at 25 m resolution can be found at 

HJP75 (Figure 5.5 a, 2nd panel) between shorter vegetation along the outer edges of the site, and 

taller vegetation within the site, however, differences between higher and lower pixel resolutions 

were not significant. Systematic over- and under-estimation of GPPlidar was not found at OJP and 

average differences between high and low resolution pixels were less than 1.5%. Significant 

differences at OJP exist between 1 m and 25 m resolution pixels (p = 0.05, n = 1600), but not at 

lower resolutions. The effects of pixel averaging at OJP and HJP75 were not great as at HJP94 

because these sites are relatively homogeneous and were not subject to large pixel differences as 

a result of structural heterogeneity. Similar observations have been found in Reich et al. (1999) 
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who show that differences in photosynthetic capacity of vegetation patches can affect the 

averaging of pixels at lower resolutions.  

 

Table 5.7. Summary statistics (percent differences) between GPP estimated at 1 m spatial 
resolution and lower resolutions per site. Negative signs represent underestimation of GPP by 
lower resolution pixels.  

Pixel Resolution (subtracted from 1 m) Site Difference statistics due to pixel 
resolution 

1 m x 1 m 25 m x 25 m 250 m x 250 
m 

500 m x 
500 m 

1000 m x 
1000 m 

OJP Average pixel GPP (g C⋅m-2⋅d-1) 4.22 4.21 4.27 4.26 4.22 

 Mean % difference from 1 m 0 -0.2 1.2 0.9 0 

 Pixel (GPP) standard deviation 0.30 0.24 0.19 0.17 0 

HJP75 Average pixel GPP (g C⋅m-2⋅d-1) 4.54 4.55 4.55 4.41 4.54 

 Mean % difference from 1 m 0 0.2 0.2 -2.8 0 

 Pixel (GPP) standard deviation 0.44 0.46 0.59 0.57 0 

HJP94 Average pixel GPP (g C⋅m-2⋅d-1) 3.65 3.29 3.31 3.31 3.56 

 Mean % difference from 1 m 0 -9.9 -9.3 -9.3 -2.5 

 Pixel (GPP) standard deviation 1.53 1.52 1.25 1.5 0 

 

The results of Figure 5.5 and Table 5.7 provide a good rationale for using low resolution MODIS 

vegetation products within homogeneous sites, and higher resolution products (e.g. 25 m) within 

heterogeneous sites. Depending on the location of patches within pixels, the averaging that occurs 

within decreasing resolutions may be prone to large and compounding errors in GPP (e.g. 

Kimball et al. 1999).  

5.6  Discussion 

5.6.1 Influence of Site Heterogeneity 

Low standard deviations in the range of differences between GPPlidar and GPPMODIS indicate the 

importance of comparing MODIS GPP products over homogeneous pixels where EC systems 

exist. HJP94 and to a lesser extent, HJP75 are considered �mixed pixels� because they contain 
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some areas of taller and shorter vegetation and variable canopy fractional cover. If applied over 

an entire MODIS pixel, we expect that GPPlidar and GPPMODIS would be similar because the same 

pixel area containing the same average vegetation characteristics was used to estimate GPP. In 

principle, greater differences should exist when comparing predicted GPP (MODIS or lidar) with 

GPPEC because EC samples only part of the mixed pixel and, therefore, does not represent other 

landcover types within that pixel. If EC provides only partial coverage of the pixel, then it may be 

more appropriate to apply a lidar-based or ecosystem model approach over the entire pixel to 

reduce differences that may be caused by mixed pixels. Alternatively, the spatially variant 

footprint can be modeled and within footprint lidar-based canopy attributes extracted to scale 

from point to landscape scales (e.g. Chasmer et al. accepted). 

5.6.2 Other Influences Affecting MODIS vs. EC GPP 

Differences between EC, MODIS and lidar-modeled GPP may also be due to energy balance 

closure, and biome-specific estimates of LUE and fPAR used by MODIS. EC is prone to 

underestimating CO2 fluxes, and differences between GPPEC and GPP estimated using lidar and 

MODIS may be affected by this. Barr et al. (2006) found that energy balance closure at OJP was 

0.86% (±0.003) for daytime periods when friction velocity was greater than 0.35 m s-1. Lack of 

energy balance closure is sometimes believed to lead to deficits in measured fluxes (Barr et al. 

2006; Baldocchi 2008). This uncertainty is minimized, in part, by applying an energy balance 

correction to the measured fluxes so that deficits are reduced. Baldocchi (2008) suggest that 

adjusting for energy balance closure may not be appropriate because underestimates in the energy 

balance may not be manifest in underestimates in CO2 fluxes. Energy balance correction has been 

applied to all sites examined in this study (Barr et al. 2006), which may have also increased 

differences between GPPMODIS and GPPEC.  

 



 

  151

The use of LUE and estimation of fPAR by MODIS may also introduce additional errors. MODIS 

typically uses a biome-specific look-up table of LUE, varied with changes in air temperature 

(Tair) and vapour pressure deficit (VPD) (e.g. Heinsch et al. 2002). However, LUE between 

vegetation species, age classes, previous disturbance, and meteorological drivers tends to vary 

greatly (e.g. McCrady and Jokela, 1998; Lagergren et al. 2005; Jenkins et al. 2007; Pereira et al. 

2007; Schwalm et al. 2006; Chasmer et al. 2008), despite the simple application of LUE in the 

MODIS GPP algorithm (Turner et al. 2003). With respect to meteorological driving mechanisms, 

Jenkins et al. (2007) found that PAR had the greatest influence on measured gross carbon 

exchanges, whereas Tair and VPD had only weak influences. Lagergren et al. (2005), on the other 

hand, found the opposite to be true. Chasmer et al. (2008) found that the importance of 

meteorological drivers on LUE varied with forest age, as did LUE. When applying the MODIS 

biome-specific estimate for LUE, linearly varied with measured Tair and VPD, Chasmer et al. 

(2008) found that average growing season LUE was underestimated by 40% at a mature jack pine 

forest, and between 14% and 16 % within younger jack pine stands when compared with 

measured LUE. 

 

The estimation of fPAR by MODIS could also increase differences between EC-measured GPP 

and that of MODIS. For example, Turner et al. (2006) found that MODIS underestimated 

measured GPP in highly productive sites and overestimated measured GPP in low productivity 

sites. Heinsch et al. (2006) also found that MODIS often over-estimates fPAR, which is used as a 

multiplier with LUE to estimate GPP. Therefore, low biome-specific estimates of LUE may be 

used to offset over-estimates of fPAR by the MODIS algorithm (e.g. Zhao et al. 2003; Turner et 

al. 2006; Heinsch et al. 2006). When compared over an entire watershed (99 MODIS pixels), 

Chasmer et al. (accepted b) found that MODIS overestimated fPAR when compared with lidar 
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estimates of the same in approximately 22% of the watershed, especially where pixels contained 

mixed vegetation with low biomass (e.g. cleared areas). However, in 30% of the watershed, that 

which contained areas of high biomass, MODIS slightly underestimated fPAR when compared 

with lidar. These results may also have contributed to the differences between GPPMODIS and 

GPPEC. 

5.6.3 Implications of Research 

The results of this study indicate that airborne scanning lidar is a useful tool for scaling between 

EC measurements and lower resolution satellite products. Whilst it does not measure the 

reflective properties of the canopy, which may be directly applicable to MODIS, it does provide 

information on three-dimensional vegetation structure. The ability to accurately estimate canopy 

fractional cover and leaf area from lidar within one to many MODIS pixels has many benefits. 

These include, but are not limited to, continuous scaling of leaf area over varying pixel 

resolutions, significantly reduced time and costs associated with extensive LAI measurements 

within and beyond pixels, and the ability to map and discretize the three-dimensional foliage area 

with depth into the canopy. Running et al. (1999) provide a list of measurements that are useful 

for validating MODIS using ecosystem models. Several of these can be accurately obtained from 

airborne lidar and may be incorporated into ecosystem models. These include: a) light 

transmission (e.g. Solberg et al. 2006; Thomas et al. 2006; Hopkinson and Chasmer, 2007); b) 

above ground biomass (Patenaude et al. 2004; Omasa et al. 2007); c) leaf area index (Magnussen 

and Boudewyn, 1998; Morsdorf et al. 2006; Hopkinson and Chasmer, in review); d) canopy 

height (Naesset and Bjerknes, 2001; Hopkinson et al. 2005); e) aerodynamic roughness length 

and zero plane displacement (Chasmer et al. accepted); and f) above-ground growth increment 

(Yu et al. 2004; Hopkinson et al. 2007). The increasing popularity of lidar, and vast lidar data 

collection and archiving projects (e.g. the USGS CLICK project, and the Canadian LIMERIC 
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data archive) have made lidar an accessible tool for the evaluation of lower resolution remote 

sensing products. Repeat surveys and small-area monitoring strategies are also gaining focus 

(Hopkinson et al. 2007). 

 

Lidar estimates of fractional cover at high resolutions may be combined with incoming PAR (e.g. 

in this study) and other meteorological driving mechanisms to produce spatial and temporal maps 

of GPP. If ecosystem production models (e.g. SVAT, Running et al. 1999; Biome BGC, Thornton 

et al. 2002; 3PGS, Coops et al. 2007), were combined with airborne lidar, the results may provide 

more appropriately scaled estimates of GPP for MODIS evaluation than EC within mixed pixels. 

In this study, differences between GPPMODIS and GPPlidar were not as large as differences between 

GPPEC. This was due, in part, to the same area being compared between MODIS and lidar. Within 

mixed MODIS pixels, EC samples the ecosystem of interest, and may or may not provide an 

accurate description of GPP for the entire MODIS pixel (Rahman et al. 2002). If the forest is 

homogeneous and extends beyond the MODIS pixel, then comparisons between MODIS and EC 

should be similar, as was shown in this study.  

5.7 Conclusions 

In summary, this study describes the application of a canopy structure-based GPP model within 

both homogeneous and mixed pixels for comparison with the MODIS GPP product. First, canopy 

height and foliage fractional cover were compared with inputs used in Landsberg light response 

curves during the growing season of 2004. Pmax was positively, but non-linearly, related to canopy 

height. Similar relationships were also found between the canopy structure and both the scaling 

factor (a) and Icomp. A GPP model was created based on the strong relationships found between 

canopy structure and Landsberg inputs. GPPLandsberg approximated GPPEC at HJP75 and HJP94, 

but over-estimated GPPEC at OJP and under-estimated GPPEC at HJP02.  
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Second, we used lidar inputs into the GPPLandsberg model (instead of measured: i.e. GPPlidar) with 

GPPEC and the GPPMODIS within 1 km x 1 km MODIS pixel areas surrounding the EC. When 

compared over eight-day cumulative periods throughout the 2005 growing season, the standard 

deviation of differences between GPPlidar and GPPMODIS were less than differences between GPPEC 

at all sites. Although OJP and HJP75 were relatively homogeneous surrounding the EC system, 

lower canopy heights and leaf area may have resulted in lower estimates of GPP by lidar and 

MODIS than measured. At HJP94, MODIS overestimated GPP when compared with EC, 

possibly due to taller trees with higher leaf area surrounding the site, but outside of the fetch of 

the EC system. Differences in canopy cover and tree height within and beyond the site did not 

have the same affect on GPPlidar, which was slightly underestimated towards the end of the 

growing season.  

 

Finally, we examined the influence of coarser resolutions and within-pixel averaging on GPPlidar 

at OJP, HJP75, and HJP94. We found that the largest differences occurred at HJP94, especially 

when aggregating pixels beyond 25 m. This provides a good rationale for using high resolution 

spatial data in heterogeneous environments. Further, the use of airborne scanning lidar greatly 

reduces the need for extensive field validation, and is an appropriate method for scaling between 

EC estimates of GPP and MODIS products. 

5.8  Acknowledgements 

We would like to thank the Fluxnet-Canada Research Network and the Boreal Ecosystem 

Research and Monitoring Sites (BERMS) Project and all those individuals involved for collection 

and processing of flux data. We appreciate all of the efforts of Dr. Chris Hopkinson, the Applied 

Geomatics Research Group, and C-CLEAR for collecting and processing at-cost lidar data. Also 



 

  155

we appreciate help from the National Water Research Institute (NWRI) and the Climate Research 

Division, Atmospheric Sciences and Technology Directorate, Environment Canada for financial 

support for the lidar survey. Field data collection was performed with the aid of Chris Hopkinson, 

Bruce Davison, Chris Beasy, and Jordan Erker, and their efforts are appreciated. Jessika Töyra is 

acknowledged for her assistance with field validation and logistics. Also, thank-you to the late 

Werner Bauer (site manager) for his help and support. MODIS data were obtained with many 

thanks from the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL 

DAAC). 2005 MODIS subset land products are available on-line [http://www.daac.ornl.gov/ 

MODIS/modis.html] from ORNL DAAC, Oak Ridge, Tennessee, U.S.A. Funding for this project 

has been provided by CFCAS, NSERC, PREA, the BIOCAP Canada Foundation, and the Climate 

Research Division of Environment Canada. Laura has been generously supported by graduate 

student scholarships from NSERC and OGSST and research assistantships from CRESTech. 

5.9 References 

Arain, A., and N. Restrepo-Coupe, 2005. Net ecosystem production in a temperate pine plantation 

in southeastern Canada. Agricultural and Forest Meteorology. 128:223-241. 

Baldocchi, D., 2008. Turner Review No. 15: �Breathing� of the terrestrial biosphere: lessons 

learned from a global network of carbon dioxide flux measurement systems. Australian 

Journal of Botany. 56:1-26.  

Baldocchi, D.D., C.A. Vogel, and B. Hall, 1997. Seasonal variation of carbon dioxide exchange 

rates above and below a boreal jack pine forest. Agricultural and Forest Meteorology. 

83:147-170. 

Baldocchi, D., and T. Meyers, 1998. On using eco-physiological, micrometeorological and 

biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over 

vegetation: a perspective. Agricultural and Forest Meteorology. 90:1-25. 

Barr, A.G., T.A. Black, E.H. Hogg, N. Kljun, K. Morgenstern, and Z. Nesic, 2004. Inter-annual 

variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem 

production. Agricultural and Forest Meteorology. 126:237-255. 



 

  156

Barr, A.G., K. Morgenstern, T.A. Black, J.H. McCaughey, and Z. Nesic, 2006. Surface energy 

balance closure by the eddy-covariance method above three boreal forest stands and 

implications for the measurement of the CO2 flux. Agricultural and Forest Meteorology. 

140:322-337. 

Burns, R. and B. Honkala, 1990. Silvics of Forest Trees of the United States Supersedes 

Agriculture Handbook 271. US Department of Agriculture, Forest Service, Washington DC. 

PDF copies available on website: http://na.fs.fed.us/pubs/ 

Chasmer, L., C. Hopkinson, B. Smith, and P. Treitz, 2006: Examining the influence of changing 

laser pulse repetition frequencies on conifer forest canopy returns. Photogrammetric 

Engineering and Remote Sensing. 17(12):1359-1367. 

Chasmer, L., H. McCaughey, A. Barr., A. Black, A. Shashkov, P. Treitz, and T. Zha, 2008. 

Investigating light use efficiency (LUE) across a jack pine chronosequence during dry and 

wet years. Tree Physiology. 28 (9):1395-1406. 

Chasmer L., A. Barr, A. Black, C. Hopkinson, N. Kljun, H. McCaughey, P. Treitz, (accepted) 

Vegetation structural and elevation influences on CO2 uptake within a mature jack pine forest 

in Saskatchewan Canada. Canadian Journal of Forest Research. 

Chasmer, L., C. Hopkinson, P. Treitz, H. McCaughey,  A. Barr, A. Black, (accepted b). A lidar-

based hierarchical approach for assessing MODIS fPAR. Submitted to Remote Sensing of 

Environment. 

Chapin III, F.S., P. Matson, and H. Mooney, 2002. Principles of Terrestrial Ecosystem Ecology. 

Springer-Verlag New York, Inc. 436 pgs. 

Chen, J., M. Falk, E. Euskirchen, K.T. Paw U., T.H. Suchanek, S. Ustin, B. J. Bond, K.D. 

Brosofske, N. Phillips, and R. Bi, 2002. Biophysical controls of carbon flows in three 

successional Douglas-fir stands based on eddy-covariance measurements. Tree Physiology. 

22:169-177. 

Chen, J.M., A. Govind, O. Sonnentag, Y. Zhang, A. Barr, and B. Amiro, 2006. Leaf area index 

measurements at Fluxnet-Canada forest sites. Agricultural and Forest Meteorology. 140:257-

268. 

Cohen W. B. and C. O. Justice, 1999. Validating MODIS terrestrial ecology products: Linking in 

situ and satellite measurements. Remote Sensing of Environment. 70:1-3. 



 

  157

Coops, N.C., T.A. Black, R. S. Jassal, J.A. Trofymow, and K. Morgenstern, 2007. Comparison of 

MODIS, eddy covariance determined and physiologically modeled gross primary production 

(GPP) in a Douglas-fir forest stand. Remote Sensing of Environment. 107:385-401. 

Eriksson, H.M., L. Eklundh, A. Kuusk, and T. Nilson, 2006. Impact of understory vegetation on 

canopy reflectance and remotely sensed LAI estimates. Remote Sensing of Environment. 

103:408-418. 

Falge, E., D. Baldocchi, J. Tenhunen, M. Aubinet, P. Bakwin, P. Berbigier, C. Bernhofer, G. 

Burba, R. Clement, K. Davis, J. Elbers, A. Goldstein, A. Grelle, A. Granier, J. Guomundsson, 

D. Hollinger, A. Kowalski, G. Katul, B. Law, Y. Malhi, T. Meyers, R. Monson, J. W. 

Munger, W. Oechel, K. T. Paw U, K. Pilegaard, U. Rannik, C. Rebmann, A. Suyker, R. 

Valentini, K. Wilson, S. Wofsy, 2002. Seasonality of ecosystem respiration and gross 

primary production as derived from FLUXNET measurements. Agricultural and Forest 

Meteorology. 113:53-74. 

Fluxnet-Canada, 2003. Fluxnet-Canada measurement protocols. Working draft version 1.3. 

Fluxnet-Canada Network Management Office, Laval, Quebec. Available online: 

http://www.fluxnet-canada.ca. 

Griffis, T.J., T.A. Black, K. Morgenstern, A.G. Barr, Z. Nesic, G.B. Drewitt, D. Gaumont-Guay, 

and J.H. McCaughey, 2003. Ecophysiological controls on the carbon balances of three 

southern boreal forests. Agricultural and Forest Meteorology. 117:53-71. 

Heinsch, F.A., M. Zhao, S.W. Running, J.S. Kimball, R.R. Nemani, K.J. Davis, P.V. Bolstad, 

B.D. Cook, A.R. Desai, D.M. Ricciuto, B.E. Law, W.C. Oechel, H.Luo, S.C. Wofsy, A.L. 

Dunn, J.W. Munger, D.D. Baldocchi, L. Xu, D.Y. Hollinger, A.D. Richardson, P.C. Stoy, 

M.B.S. Siqueira, R.K. Monson, S.P. Burns, and L.B. Flanagan, 2006. Evaluation of remote 

sensing based terrestrial productivity from MODIS using regional tower eddy flux network 

observations. IEEE Transactions on Geoscience and Remote Sensing. 44(7):1908-1925. 

Hopkinson, C., L. Chasmer, G. Sass, I. Creed, M. Sitar, W. Kalbfleisch, and P. Tretiz, 2005. 

Vegetation class dependent errors in lidar ground elevation and canopy height estimates in a 

boreal wetland environment. Canadian Journal of Remote Sensing. 31(2):191-206. 

Hopkinson, C. and L. Chasmer (in review). Testing a lidar intensity based model of canopy 

fractional cover across multiple forest ecozones. Remote Sensing of Environment. 

Hopkinson, C. and L. Chasmer, 2007. Using discrete laser pulse return intensity to model canopy 

transmittance. The Photogrammetric Journal of Finland. 20(2):16-26. 



 

  158

Hopkinson, C., L. Chasmer, and R. Hall, 2007. Using airborne lidar to examine forest growth. 

Remote Sensing of Environment. 112(3):1168-1180. 

Jenkins, J.P., A.D. Richardson, B.H. Braswell, S.V. Ollinger, D.Y. Hollinger, and L.-L. Smith, 

2007. Refining light-use efficiency calculations for a deciduous forest canopy using 

simultaneous tower-based carbon flux and radiometric measurements. Agricultrual and 

Forest Meteorology. 143-64-79. 

Jin, Z, Q. Tian, J. M. Chen, and M. Chen, 2007. Spatial scaling between leaf area index maps of 

different resolutions. Journal of Environmental Management. 85: 628-637. 

Kljun, N., T.A. Black, T.J. Griffis, A.G. Barr, D. Gaumont-Guay, K. Morgenstern, J.H. 

McCaughey, and Z. Nesic, 2006. Response of net ecosystem productivity of three boreal 

forest stands to drought, 2006. Ecosystems.9:1128-1144.  

Kimball, J.S., S.W. Running, and S.S. Saatchi, 1999. Sensitivity of boreal forest regional water 

flux and net pimary production simulations to sub-grid scale landcover complexity. Journal 

of Geophysical Research. 104:27789-27801. 

Lagergren, F., L. Eklundh, A. Grelle, M. Lundblad, M. Molder, H. Lankreijer and A. Lindroth. 

2005. Net primary production and light use efficiency in a mixed conifer forest in Sweden. 

Plant, Cell, and Environment. 28:412-423. 

Landsberg, J.J., and R.H. Waring, 1997. A generalized model of forest productivity using 

simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest 

Ecology and Management. 95:209-228. 

Law, B.E., E. Falge, L. Gu, D. Baldocchi, P. Bakwin, P. Berbigier, K. Davis, A. Dolman, M. 

Falk, J. Fuentes, A. Goldstein, A. Granier, A. Grelle, D. Hollinger, I. Janssenss, P. Jarvis, N. 

Jensen, G. Katul, Y. Mahli, G. Matteucci, T. Meyers, R. Monson, W. Munger, W. Oechel, R. 

Olson, K. Pilegaard, K.T. Paw U, H. Thorgeirsson, R. Valentini, S. Verma, T. Lesala, K. 

Wilson, S. Wofsy, 2002. Environmental controls over carbon dioxide and water vapor 

exchange of terrestrial vegetation. Agricultural and Forest Meteorology. 113:97-120. 

Leblanc, S.G., J.M. Chen, R. Fernandes, D. Deering, and A. Conley, 2005. Methodology 

comparison for canopy structure parameters extraction from digital hemispherical 

photography in boreal forests. Agricultural and Forest Meteorology. 129:187-207. 

Leuning, R., H.A. Cleugh, S.J. Zegelin, D. Hughes, 2005. Carbon and water fluxes over a 

temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and 



 

  159

comparison with MODIS remote sensing estimates. Agricultural and Forest Meteorology. 

129:151-173. 

Magnussen, S. and P. Boudewyn, 1998. Derivations of stand heights from airborne laser scanner 

data with canopy-based quantile estimators. Canadian Journal of Forest Research. 

28:1016-1031. 

Margolis, H., L. Flanagan, and B. Amiro, 2006. The Fluxnet-Canada Research Network: 

Influence of climate and disturbance on carbon cycling in forests and peatlands. Agricultural 

and Forest Meteorology. 140:1-5. 

Massman, W.J. and X. Lee, 2002. Eddy covariance flux corrections and uncertainties in long term 

studies of carbon and energy exchange. Agricultural and Forest Meteorology. 113:121-144. 

McCrady, R.L. and E. Jokela. 1998. Canopy dynamics, light interception and radiation use 

efficiency of selected loblolly pine families. Forest Science. 44:64-72. 

Milne, B.T., and W. B. Cohen, 1999. Multiscale assessment of binary and continuous landcover 

variables for MODIS validation, mapping, and modeling applications. Remote Sensing of 

Environment. 70:82-98. 

Middleton, E. M., J. Sullivan, B. Bovard, A. Deluca, S. Chan, and T. Cannon, 1997. Seasonal 

variability in foliar characteristics and physiology for boreal forest species at five 

Saskatchewan tower sites during the 1994 Boreal Ecosystem-Atmosphere Study. Journal of 

Geophysical Research. 102(D24):28831-28844. 

Morisette, J.T., J. L. Privette, and C. O. Justice, 2002. A framework for the validation of MODIS 

Land products. Remote Sensing of Environment. 83:77-96. 

Morsdorf, F., B. Kötz, E. Meier, K. Itten, and B. Allgöwer, 2006. Estimation of LAI and 

fractional cover from small footprint airborne laser scanning data based on gap fraction. 

Sensing of Environment. 104:50-61.  

Myers, D.E., 1994. Spatial interpolation: an overview. Geoderma. 62:17-28. 

Naesset, E. and K-O Bjerknes, 2001: Estimating tree heights and number of stems in young forest 

stands using airborne laser scanner data. Remote Sensing of Environment. 78:328-340. 

Omasa, K., F. Hosoi, and A. Konishi, 2007. 3D lidar imaging for detecting and understanding 

plant responses and canopy structure. Journal of Experimental Botany. 58(4):881-898. 

O�Sullivan, D. and D. Unwin, 2003. Geographic Information Analysis. Wiley, New Jersey. 



 

  160

Patenaude, G., R.A. Hill, R. Milne, D. Gaveau, B. Briggs, and T. Dawson, 2004. Quantifying 

forest above ground carbon content using LiDAR remote sensing. Remote Sensing of 

Environment. 93:368-380. 

Pereira, J.S., J.A. Mateus, L.M. Aires et al. 2007. Net ecosystem carbon exchange in three 

contrasting Meterranean ecosystems � the effect of drought. Biogeosciences. 4:791-802. 

Rahman, A., J. Gamon, D. Fuentes, D. Roberts, and D. Prentiss, 2001. Modeling spatially 

distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS 

imagery. Journal of Geophysical Research. 106(D24):33579-33591. 

Reich, P.B., D. P. Turner, and P. Bolstad, 1999. An approach to spatially distributed modeling of 

net primary production (NPP) at the landscape scale and its application in validation of EOS 

NPP products. Remote Sensing of Environment. 70:69-81. 

Running, S.W., R. Nemani, J. Glassy, P. Thornton, 1999. MODIS daily photosynthesis (Psn) and 

annual net primary production (NPP) product (MOD17). Theoretical basis document, 

Version 3. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. Available 

online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod17.pdf  

Running, S.W., R.R. Nemani, F.A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto, 2004. A 

continuous satellite-derived measure of global terrestrial primary production. BioScience. 

54(6):547-560. 

Rymph, S.J. 2004. Modeling growth and composition of perennial tropical forage grasses. Ph.D. 

Thesis, University of Florida. 330 pgs. 

Schwalm, C.R., T.A. Black, B.D. Amiro, M.A. Arain, A.G. Barr, C.P.-A. Bourque, A.L. Dunn, 

L.B. Flanagan, M.-A. Giasson, P.M. Lafleur, H.A. Margolis, J.H. McCaughey, A.L. 

Orchansky, and S.C. Wofsy, 2006. Agricultural and Forest Meteorology. 140:269-286. 

Solberg, S., E. Naesset, K. H. Hanssen, and E. Christiansen, 2006. Mapping defoliation during a 

severe insect attack on Scots pine using airborne laser scanning. Remote Sensing of 

Environment. 102:364-376. 

Thomas, V., D.Finch, J.H. McCaughey, T. Noland, L. Rich, and P. Treitz, 2006. Spatial modeling 

of the fraction of photosynthetically active radiation absorbed by a boreal mixedwood forest 

using a lidar-hyperspectral approach. Agricultural and Forest Meteorology. 140:287-307. 

Thornton, P., B.E. Law, H. Gholz, K. Clark E. Falge, D. Ellsworth, A. Goldstein, R. Monson, D. 

Hollinger, M. Falk, J. Chen, and J. Sparks, 2002. Modelling and measuring the effects of 



 

  161

disturbance history and climate on carbon and water budgets in evergreen needle leaf forests. 

Agricultural and Forest Meteorology. 113(1-2):185-222. 

Tian, Y., C. Woodcock, Y. Wang, J. Privette, N. Shabanov, L. Zhou, Y. Zhang, W. Buermann, J. 

Dong, B. Veikkanen, T. Häme, K. Andersson, M. Ozdogan, Y. Knyazikhin, and R. Myneni, 

2002. Multiscale analysis and validation of the MODIS LAI product 1. Uncertainty 

assessment. Remote Sensing of Environment. 83:414-430. 

Turner, D.P., S.T. Gower, W.B. Cohen, M. Gregory, T.K. Maiersperger, 2002. Effects of spatial 

variability in light use efficiency on satellite-based NPP monitoring. Remote Sensing of 

Environment. 80:397-405. 

Turner, D.P., S. Urbanski, D. Bremer, S.C. Wofsy, T. Meyers, S.T. Gower, and M. Gregory, 

2003. A cross-biome comparison of daily light use efficiency for gross primary production. 

Global Change Biology. 9:383-395. 

Turner, D.P., S. Ollinger, and J. Kimball, 2004. Integrating remote sensing and ecosystem process 

models for landscape- to regional-scale analysis of the carbon cycle. BioScience. 54(6):573-

584. 

Turner, D.P., W.D. Ritts, W.B. Cohen, S.T. Gower, S. W. Running, M. Zhao, M. H. Costa, A. A. 

Kirschbaum, J.M. Ham, S.R. Saleska, D.E. Ahl, 2006. Evaluation of MODIS NPP and GPP 

products across multiple biomes. Remote Sensing of Environment. 102:282-292. 

Wolfe, R.E., M. Nishihama, A.J. Fleig, J.A. Kuyper, D.P. Roy, J.C. Storey and F.S. Patt, 2002. 

Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote 

Sensing of Environment. 83:31-49. 

Woolard, J., and J. Colby, 2002. Spatial characterization, resolution, and volumetric change of 

coastal dunes using airborne lidar: Cape Hatteras, North Carolina. Geomorphology. 48(1-

3):269-287. 

Xu, S. J. M. Chen, R. Fernandes and J. Cihlar. 2004. Effects of subpixel water area fraction on 

mapping leaf area index and net primary productivity in Canada. Canadian Journal for 

Remote Sensing, 30: 797-804. 

Yu, X., J. Hyyppä, H. Kaartinen, and M. Maltamo, 2004. Automatic detection of harvested trees 

and determination of forest growth using airborne laser scanning. Remote Sensing of 

Environment. 90451-462. 

Zhang, Y., J. Chen, and J. Miller, 2005. Determining digital hemispherical photograph exposure 

for leaf area index estimation. Agricultural and Forest Meteorology. 133:166-181. 



 

  162

Zhao, M., F.A. Heinsch, R.R. Nemani, and S. Running, 2005. Improvements of the MODIS 

terrestrial gross and net primary production global data set. Remote Sensing of Environment. 

95:164-176. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  163

Chapter 6 

Discussion 
 

The research presented has provided new methodologies for using airborne lidar for MODIS 

product validation, and has improved understanding of ecosystem processes within a four-site 

jack pine chronosequence. This has been achieved through the integration of: (i) high temporal 

resolution micrometeorological and carbon cycle methods; (ii) high resolution three-dimensional 

lidar data; and (iii) low resolution 2-D spatial and temporal data from MODIS. The following 

discussion outlines the current state of knowledge and future research within the areas of remote 

sensing and CO2 flux exchanges within ecosystems.  

6.1  Observing LUE and the Ability of Chronosequence Jack Pine Forests to 
Sequester CO2 During Dry and Wet Years 

Light use efficiency (LUE) is an important parameter used in remote sensing to scale localized 

processes at the ecosystem level to larger regions (e.g. Turner et al. 2003; Heinsch et al. 2006). 

LUE can be described simply as the slope of the relationship between gross primary productivity 

(GPP) and absorbed photosynthetically active radiation (APAR) (e.g. Dewar et al. 1998; Turner 

et al. 2003). Despite its wide application for remote sensing-based vegetation production 

estimates (e.g. GPP and net primary production [NPP]), within-biome variability in LUE is not 

well understood. Some biases that currently exist within remote sensing GPP products are a 

function of the LUE multiplier, as well as the methods used to reduce biome-specific maximum 

LUE using meteorological variables (Zhao et al. 2005; 2006). The LUE term is also problematic 

because it is not a direct function of vegetation functional type, leaf area, or age (e.g. Schwalm et 

al. 2006). Therefore, it cannot easily be varied with leaf area or stand structural characteristics 

using remote sensing.  
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Although Chapter 2 focused mainly on variability of LUE within different ages of jack pine, 

much can be learned from this study when applying it within the context of remote sensing-based 

GPP models. In this study, comparisons were made using a variety of methods to estimate LUE, 

including a MODIS-based maximum LUE approach. When comparing between sites, LUE 

differences between stand ages can vary greatly, especially with changes in growing season 

average soil moisture and APAR (Schwalm et al. 2006; Chapter 2). Also, canopy structure, and 

the ability of jack pine to use light during diffuse and direct radiation conditions has a significant 

influence on average and daily LUE estimates. Hence, the proportion of diffuse versus direct 

radiation conditions (per day) should be incorporated within 8-day cumulative remote sensing-

based GPP models.  

 

When using a biome-specific maximum LUE (e.g. used in MODIS algorithms), the variability 

between stand age and species type is generalized. Biome-specific LUE is underestimated when 

compared with site averages in Chapter 2, and does not vary with age. However, MODIS also 

tends to over-estimate fPAR, which when multiplied by low estimates of LUE, typically provides 

GPP estimates that approximate those from EC within homogeneous pixels (Heinsch et al. 2006; 

Chapter 5). MODIS GPP products are not highly biased over large areas, but become problematic 

when compared over local areas. Combining remote sensing and other spatial datasets (e.g. 

airborne and space-borne lidar data, Landsat data, and forestry maps) can improve MODIS 

estimates of GPP by describing better and classifying species and biome types as well as 

heterogeneous areas in the landscape. This is important for the application of species-specific 

LUE estimates within ecosystem models.  
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The results of this study indicate that forest age-since-disturbance has a significant impact on 

LUE estimates used in scaling GPP over broader areas. LUE will affect the accuracy of remote 

sensing GPP and NPP models if a biome-specific maximum (e.g. that which is used in MODIS 

algorithms) is used instead of an age-based LUE. Sub-pixel characterization of forests could 

greatly improve remote sensing estimates of GPP and NPP within mixed pixels. 

6.2 Investigating the Influence of Canopy Structure on CO2 Fluxes within a 
Mature Jack Pine Forest 

It has been demonstrated that canopy structure and elevation are important factors affecting CO2 

fluxes within ecosystems (e.g. Middleton, et al. 1997; Leuning, et al. 2004). Several studies have 

discussed how within-ecosystem variability in NEP, GPP, and Re have been influenced by 

variations in upland versus lowland areas (e.g. Baldocchi et al. 1996), leaf chemistry (e.g. 

Middleton et al. 1997) and canopy structure (Baldocchi and Meyers, 1998; Gower et al. 1999). 

Methods for examining the influences of vegetation biomass and elevation on mass exchanges 

(e.g. CO2 and water) have not been well developed. A few studies have examined spatially 

variable influences on CO2 fluxes using footprint model parameterizations. However, these 

studies were unable to resolve adequately the three-dimensional properties of the canopy (Amiro, 

1998; Rahman et al. 2002; Kim et al. 2006). The objectives of Chapter 3 were to first characterize 

canopy structure and elevation using lidar within the contours of half-hourly flux footprint 

maximum area probability density functions (PDF�s) and then to relate variability in canopy 

structure and elevation to NEP and GPP estimated from EC.  

 

The results of this study indicate that vegetation structure, especially fractional cover and canopy 

height, play an important role in the variability in CO2 concentrations. These results are not 

necessarily surprising, but the magnitudes and timing of influence of canopy structural 
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characteristics on the spatial variability of CO2 had not been known previously. During some 

periods, meteorological variables played a more important role on CO2 flux variability than the 

spatial distribution of biomass and elevation, whereas during other periods, they were not as 

important. The application of these methods over a variety of sites containing lidar data, and over 

periods of one or more years has interesting implications for future research. For example, these 

methods are especially useful for determining if EC is adequately representing the fluxes from all 

parts of the ecosystem, and also, if the ecosystem sampled by EC is spatially variable. Several EC 

flux stations within the Fluxnet-Canada Research Network and the Canadian Carbon Program 

currently have lidar data. These include: Old Jack Pine, Harvested-1975, -1994, and -2002 Jack 

Pine sites, Old Black Spruce, and the Fen site (BERMS, Saskatchewan); Groundhog River flux 

station (Ontario); Kennedy Siding (British Columbia); Clayoquot Sound flux station (British 

Columbia); and eastern boreal black spruce sites in Quebec. Application of the methods described 

may reveal interesting relationships between canopy structure, elevation, and CO2 fluxes during 

specific times of the growing season and year.  

 

The methodology developed may also be used to improve footprint model parameterizations. One 

of the shortcomings of the footprint model parameterization is that it is unable to account for the 

spatial heterogeneity in canopy structure or elevation affecting the vertical and horizontal location 

of footprints (Schmid, 2002). Current footprint models use an average roughness length, which 

affects the location and vertical extent of the footprint (Chapter 3). Improvements made to 

footprint models based on three-dimensional canopy structure and elevational variability may be 

used to further refine the flux source areas, and quantify structural and elevation influences, 

especially in areas of complex terrain. Franklin and Waring (1980) state that forests located along 

the Pacific Northwest, especially old growth forests found in mountainous environments, are one 
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of the greatest sinks for atmospheric CO2 in the world. Despite their importance, the use of EC in 

mountain forest environments is problematic because of the influences of topography and the 

drainage flows of air from higher to lower elevations (Massman and Lee, 2002). The combined 

use of airborne lidar and footprint models may be used to improve the EC system methodology in 

these environments because spatial variability in canopy structure and elevation can be described 

more completely. 

6.3 Using Airborne Lidar for the Assessment of MODIS fPAR 

The validation of MODIS vegetation products is currently difficult because many of the products 

are not spatially or temporally measured beyond EC systems (Heinsch et al. 2006). A number of 

research programs have concentrated on the spatial validation of MODIS vegetation products. For 

example, Turner et al. (2003b; 2006) have examined MODIS vegetation products across a 

number of biomes and scales using a spatial sampling methodology within the Bigfoot Program. 

Studies in Australia and the United States (e.g. Hill et al. 2006; Heinsch et al. 2006; Coops et al. 

2007) have used relatively homogeneous areas including EC systems and radiation measurements 

for spatially assessing MODIS products over multiple biomes. Many of the methodologies used 

for spatial sampling are expensive both in time and in human resources. Airborne lidar offers the 

potential for modeling the spatial distribution of fPAR (Chapter 4) and GPP (Chapter 5) if 

meteorological inputs such as incoming PAR are incorporated into the model. The use of lidar for 

validating remote sensing products has been discussed briefly in Hill et al. (2006) and applied to 

Landsat data in Lefsky et al. (2005).   

 

In Chapter 4, spatial estimates of fPAR from airborne lidar were developed based on the ratio of 

canopy to total laser returns within three of four chronosequence jack pine sites studied (OJP, 

HJP75, and HJP94). Previous research on this and similar methods using airborne lidar have been 
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examined by Morsdorf et al. (2006) and Solberg and Naesset (2006). The methods presented here 

have not been examined over open canopies and varying vegetation heights. Further, lidar has not 

been used to evaluate the MODIS fPAR product. Results from Chapter 4 demonstrate that 

airborne lidar can be used to accurately estimate fPAR when compared with spatial estimates 

from digital hemispherical photography (DHP). 

 

There are also some shortcomings for using lidar when evaluating MODIS products. Lidar is not 

able to characterize the fPAR within short vegetation environments. Discrete return lidar 

effectively samples near the top of grasses and shrubs (Hopkinson et al. 2005) but multiple 

returns are not recorded at distances of less than ~1.3 m. Therefore if a return is recorded within 

the understory vegetation (<1.3 m) a ground return will not be recorded, and fPAR will equal 

100%. This results in either large under-estimates or over-estimates of fPAR by MODIS. There is 

also concern expressed within the literature that optical (field) measurements of fPAR and LAI do 

not account for understory vegetation, which is averaged within pixels (Heinsch et al. 2006). 

Airborne lidar, although unable to record multiple returns from within short understory canopies, 

may be used to map the existence of the understory within pixels and may provide more realistic 

estimates of fPAR observed by MODIS.  

 

A second shortcoming of lidar is its use for multiple surveys due to the expensive nature of the 

technology and airborne operations. Airborne lidar is often used to survey an area once, and 

therefore, any models that use airborne lidar data need to assume a non-varying canopy. If the 

lidar survey was performed during maximum leaf conditions, MODIS data could be validated 

during the approximate time period for which the lidar data were collected. Research that has 

concentrated on the application of airborne lidar for forest studies are now contracting repeat 
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surveys (e.g. Hopkinson et al. 2008; Chasmer et al. 2006; Naesset 2004). Also, airborne lidar 

surveys have been flown over many U.S. states, as well as local to regional areas in Canada. 

Many of these datasets are now becoming freely available to the public (for example, the U.S. 

Geological Survey Center for Lidar Information Coordination and Knowledge (CLICK) 

program). These datasets may become important for validating MODIS and other remote sensing 

products using the methodologies developed in this thesis.  

6.4 Modelling and Scaling GPP from Lidar in Comparison with MODIS 
Products 

Land cover heterogeneity is a significant issue in remote sensing, especially when the resolution 

of pixels used to estimate vegetation productivity is unable to capture local variability (Turner et 

al. 2003b). This is certainly the case with MODIS pixels, which estimate approximately weekly 

cumulative GPP at resolutions of 1 km. A large and homogeneous ecosystem�s GPP can be fairly 

accurately estimated on a weekly basis using MODIS remote sensing algorithms (Heinsch et al. 

2006). However, the increased requirement for natural resources and the conversion of forests to 

other land cover types following both harvesting and natural disasters has led to fewer large 

patches of homogeneous vegetated areas (Chen et al. 2002).  

 

In Chapter 5, GPP was estimated using site-specific empirical models of the relationship between 

GPP and incoming PAR. Landsberg light-response curves were used to estimate average GPP at 

each site based on measured canopy height and fractional cover. The same models were then 

applied at the MODIS pixel scale using canopy structure averages from airborne lidar. Vegetation 

fractional cover (fcover) and canopy height were strongly related to the light compensation point, 

the scaling factor, and maximum GPP at saturation at all sites. The GPP models developed in 

Chapter 5 were site-specific, and these methods require testing within a number of other 
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ecosystems. Testing of these relationships does not necessarily require lidar data, but spatial 

application of the GPP models for MODIS GPP product evaluation does. If lidar canopy 

structural metrics can be related to Landsberg model inputs over a variety of forest stand types 

and ages, then this method may be used in combination with incoming PAR to spatially estimate 

GPP. 

 

In the second part of Chapter 5 and also in Chapters 2 and 4, it was found that mixed pixels could 

introduce significant biases into MODIS vegetation products. The influence of within-pixel 

heterogeneity on modeled GPP estimated from airborne lidar was assessed by subtracting lower 

resolution datasets from a 1 m resolution dataset. This was performed by rasterizing GPP 

estimates determined at 1 m resolutions to lower, 25 m, 100 m, 250 m, 500 m, and 1000 m using 

an inverse distance weighting approach. The results of the final analysis chapter show how errors 

in GPP can be compounded at coarse resolutions within heterogeneous environments. This 

provides important justification for using moderate-resolution satellites, such as Landsat, for 

landscape classification. The classification of landscapes using a decision criteria based on 

landscape heterogeneity offers the possibility for improved MODIS products using higher 

resolution remote sensing datasets. For example, in heterogeneous areas, higher resolution 

MODIS pixels could be used, whereas in homogeneous regions, lower resolution pixels could be 

used. This will reduce computer power and storage limitations, whilst improving the accuracy 

and the validity of MODIS products.     

6.5 Future Research 

The findings of the research presented and the new methodologies developed may be 

incorporated into a number of future studies.  
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6.5.1 Footprint Modelling, Parameterization, and Improvement within Complex 
Canopies 

As demonstrated in Chapter 3, variability in the spatial distribution of vegetation heights, leaf 

area, elevation and other variables not examined (e.g. photosynthetic capacity) will influence the 

extent of the flux source/sink area. Geographic information systems (GIS) are both user-friendly 

and have great potential for spatial and temporal modeling. Footprint model parameterizations 

may be improved or developed to incorporate three-dimensional canopy structural variability and 

characteristics of the ground surface topography. They may also include a variety of other user-

defined metrics and indices. For example, the estimation of roughness length used within 

footprint models may be improved by incorporating elevation, the spatial distribution of the 

understory, canopy height, and fractional cover. Other indices may also be examined to determine 

the probability of more or less water flux within footprints using elevation (e.g. by using a 

�topographic wetness index�, slope, and/or aspect, concavity or convexity). Lower resolution soil 

type and distribution maps may also be included. These may be integrated to form more complete 

and possibly more accurate spatial parameterizations of the flux source and sink areas within 

individual sites. 

 

The EC system is also prone to error when examining fluxes over heterogeneous areas (Baldocchi 

and Meyers, 1998; Massman and Lee, 2002). The methods developed here may lead to further 

insights on EC measurement measurement and theory. Current EC methodologies remove terms 

related to the structural and elevational heterogeneity of the ecosystem. Therefore, sites that use 

EC should be uniform and homogeneous so that fluxes originating from one part of the site are 

generally representative of all areas, so as not to introduce bias. Airborne lidar provides measured 

canopy structure and elevation within and beyond EC flux footprints and has the potential to 



 

  172

improve EC methods that currently avoid the influences of large elevation gradients. The EC 

system also often underestimates mass exchanges because homogeneity in wind speed and 

turbulence is assumed (e.g. Sun et al. 2007). Application of EC over relatively flat surfaces 

allows for simplifying assumptions of wind speed and turbulence to be made. In mountainous 

environments, the simplifying assumptions do not apply because the vertical (mean) advective 

CO2 fluxes are not accounted for. In these cases, fluxes are pushed upward due to down slope 

drainage flows towards the tower and EC system (Sun et al. 2007; R. Monson, presentation at 

NCAR, June 2007). Perhaps lidar could be used to model or at least understand better the effects 

of down-slope drainage flows of cool mountain air and the influences on vegetation growth and 

CO2 fluxes. 

 

Finally, the methods developed in Chapter 3 could be applied over a series of sites and over 

periods of one or more years to determine how canopy structure and elevation affect fluxes for 

multiple species types and temporal periods. Comparisons between the influences of canopy 

structure and topography during specific periods of interest (e.g. shoulder periods versus growing 

season), could provide important insights for ecosystem models. For example, some parts of the 

ecosystem may commence photosynthesis earlier than other parts, depending on slope 

orientation, snow depth and thaw. These insights could be used to help validate models that 

include topographic influences on CO2 fluxes (e.g. Biome-BGC) (Thorton and Running, 1999).  

6.5.2 MODIS Vegetation Product Validation and Improvement 

Lidar canopy structure metrics, such as canopy height and fractional cover, show promise for 

spatial prediction of GPP when used in Landsberg equations. Spatial estimates of GPP at high 

resolutions may be used additionally to EC systems to validate the MODIS GPP product beyond 

the footprint of the EC system. This would effectively scale between local measurements of the 
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EC system and the wider area covered by one to many MODIS pixels. However, relationships 

between canopy structure and Landsberg model inputs should be examined at other sites. The 

influences of meteorological driving mechanisms could also be incorporated into the model to 

make it more physically based and to reduce the variability in daily estimates.  

 

The development of a national or international satellite validation project using available airborne 

lidar would add insight to many of the current problems faced by lower resolution remote sensing 

products. Simple extraction methodologies within specified study areas or pixels of individual 

vegetation types would provide a wealth of information whilst also being statistically relevant. 

These could be incorporated with field validation campaigns and EC systems. 

6.5.3 Spatial Scaling and the Influences of Vegetation Patches on MODIS Product 
Biases  

One of the greatest challenges facing MODIS algorithm and product development is within-pixel 

heterogeneity. Average radiances from a number of vegetation types, clearings, or water bodies 

within pixels can lead to large and mixed influences on vegetation products (Milne and Cohen, 

1998). The results found in Chapter 5 show the importance of patch distribution and scaling on a 

variety of resolutions from 1 m up to 1 km. Patch location, size, and the influence of edges 

between patches may be used to assess their influences on spectral radiance. Incorporation of 

higher resolution datasets within the classification scheme used by MODIS will help to resolve 

patch distribution issues within pixels and will likely improve estimates of fPAR, LAI, and GPP. 

For example, if recent Landsat 25-m-resolution datasets were used within the land classification 

scheme, MODIS algorithms could be adjusted to account for the transmissive properties of pixels 

at 25 m as opposed to 250 m or 1 km. Improvements made to land cover classification and LUE 

would likely lead to an improved MODIS dataset, especially in heterogeneous areas.   
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The combined use of meteorological and hydrological measurements, CO2, water, and energy 

fluxes, high resolution lidar data, and low resolution spectral remote sensing data has provided an 

excellent basis from which to understand local influences on fluxes. Methods used to scale results 

from local sites to the region using MODIS have also been developed. It is hoped that these 

activities will progress as there appears to be much scope for continued research into both an 

understanding of the roles that disturbed ecosystems have within the national and global carbon 

balance as well as the methodologies used to understand these processes. 
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Chapter 7 

Summary and Conclusions 

 

In this thesis, four research objectives have been examined for the purposes of improving our 

understanding of canopy structure influences on light use efficiency (LUE) and CO2 exchanges. 

LUE is especially of interest because it is used to aggregate CO2 flux processes within the 

terrestrial biosphere from local to global scales using remote sensing. This thesis focused on four 

previously-harvested jack pine sites within the southern part of the Canadian boreal forest.  

 

Disturbed and regenerating forests are an important part of the terrestrial biosphere. The ability to 

quantify changes in biomass, vegetation health and productivity, and then to map these accurately 

across space and through time is of great importance for understanding the effects of forests on 

atmospheric CO2 concentrations and climate change. In this thesis, we have gained a better 

understanding of the influences of canopy structure and age on CO2 fluxes and LUE. 

Observations were then used to improve remote sensing-based vegetation production models and 

to determine biases associated with mixed pixels. In order to achieve these goals, a combination 

of meteorological data, CO2 flux measurements, plot level field mensuration data, high resolution 

airborne lidar data, and low resolution Moderate Resolution Imaging Spectroradiometer 

(MODIS) data were employed. 

 

A number of key findings were presented. These key findings extend current research and 

knowledge regarding CO2 flux exchanges within a boreal jack pine chronosequence subject to 

both average conditions (according to the World Meteorological Organization 30-year normal 
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average precipitation and air temperature) and extreme (above and below WMO normal) dry and 

wet conditions. What has been discovered here is that LUE varies both between different ages 

and structural characteristics of sites, and also as a result of unique dry and wet soil moisture 

conditions. Therefore, it is not appropriate to apply a single estimate of maximum LUE within 

specific biomes (as is used to estimate GPP from MODIS). It would be more appropriate to apply 

LUE within a range of forest stand ages, species types, and structural classifications determined 

from Landsat, for example. This would likely improve national and global GPP estimates from 

MODIS, especially within heterogeneous environments, and would reduce the uncertainty caused 

by low resolution remote sensing products and spatially discrete measurements made by EC.  

 

The key findings of this thesis also push current remote sensing analysis methods forward, 

especially within the realm of airborne lidar and passive spectral remote sensing. The results 

presented are original and are based on a physical understanding of foliage cover and radiation 

penetration through the canopy rather than more typically applied empirical models examined 

within the literature. Observations and specific relationships were used to create models of fPAR 

from airborne lidar for the validation of MODIS vegetation products within and beyond sites. The 

feasibility of the models was tested using mensuration plots, digital hemispherical photography 

(DHP) of leaf area, and PAR data available at each site. The output from these models was then 

compared with MODIS estimates, for the first time using airborne lidar. The methods used 

provide a sound and simple methodology for accurately mapping the spatial and temporal 

variability in fPAR at individual sites and across larger areas using airborne lidar.  

 

Canopy structure and ground surface elevation played a key role in this thesis, whereby direct 

comparisons were made between CO2 fluxes and the structural and elevational characteristics of 
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the ecosystem (Chapter 3). This was then expanded to relate structural characteristics to inputs 

into Landsberg�s light response curves used to estimate GPP in Chapter 5. These results provide 

an effective new methodology for evaluating MODIS vegetation products using a combination of 

airborne lidar and incoming PAR at the sites studied. Finally, the GPP model was applied at 

resolutions of 1 m to 1 km to examine the influence of within-pixel heterogeneity and aggregation 

on modelled GPP. Again, this was the first time that a model of GPP developed from high 

resolution three-dimensional lidar was used to estimate the influences of vegetation patches on 

low resolution pixels. The results of the final analysis indicated that MODIS estimates of GPP 

were similar to estimates made by EC within homogeneous ecosystems (Chapter 5), but require 

further refinement to 25 m resolutions within heterogeneous pixels.  

 

It is likely that the combination of moderate resolution (e.g. Landsat) land classifications used to 

create detailed forest maps for the application of maximum LUE estimates will improve MODIS 

products in heterogeneous forests. The difficulties associated with evaluating remote sensing data 

products within heterogeneous environments has been emphasized, illustrating the importance of 

using combined EC and airborne lidar or moderate resolution remote sensing data for the 

evaluation of global low resolution products from MODIS and future satellite programs. 
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Appendix A 

Definitions and Concepts 
 

There are several definitions and concepts that require explanation within the context of this 

research. Concepts are defined for a) site level measurements of local fluxes observed using the 

eddy covariance method, and meteorology definitions; and for b) large area remote sensing and 

modelling. 

A.1 Site-Level Eddy Covariance and Meteorology Definitions and Concepts 

A.1.1 Eddy Covariance Method 

The EC system can be used to measure the net ecosystem exchange (NEE) of CO2, water and 

energy exchanges into and out of the ecosystem. EC systems combine flux measurements with 

post-processing of high frequency data. Typically, EC systems located on tall towers tend to have 

longer integration times and sample much larger source areas compared to systems located on 

shorter towers that have much faster measurement times and smaller source areas. EC systems are 

currently the standard method for measuring and understanding carbon, water, and energy cycles 

within terrestrial ecosystems (e.g. Barr et al. 2006). Inclusion of night-time air temperature or soil 

temperature allows for partitioning of NEE into ecosystem respiration and photosynthesis (e.g. 

Falge et al. 2002; Griffis et al. 2003), which aid in the validation of ecosystem and remote 

sensing-based top-down and bottom-up models. Despite widespread use, EC systems also have 

inherent errors, which lead to deficits in NEE (e.g. Massman and Lee, 2002). These tend to be 

related to a) differences between instrument types and limitations, b) deficits in NEE during 

periods of atmospheric stability (e.g. Goulden et al. 1996); c) differences in data processing 
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procedures, and d) land surface influences, such as advection and drainage. The reader is referred 

to Massman and Lee (2002) for a thorough discussion of these issues. 

A.1.2 Net Ecosystem Exchange (NEE), Net Ecosystem Production (NEP) and Net 
Biome Production (NBP)  

Net ecosystem exchange (NEE) is a direct measure of the exchange of CO2 between the terrestrial 

biosphere and the atmosphere. NEE is measured using the EC system, and is approximately the 

integration of gross primary production (GPP) and ecosystem respiration (Re) (which includes 

heterotrophic and autotrophic respiration) (Chapin et al. 2002). NEE also makes up a large 

component of the net ecosystem production (NEP), where the inverse of NEE is approximately 

equal to NEP in ecosystems that are not prone to removal of CO2 via leaching and disturbance 

(Chapin et al. 2002). At the regional scale, NEP incorporates more heterogeneous ecosystems, 

and is therefore termed net biome production (NBP) (Chapin et al. 2002; 2006). However, at the 

local scale, Chapin et al. (2006) suggest that NEP is not the net carbon accumulation rate, and 

therefore, NEP should equal the balance between GPP and Re. NEE is negative within the 

atmospheric literature, meaning that CO2 is being removed from the atmosphere and is used by 

ecosystems for photosynthesis. Where NEE is positive, CO2 is being transferred from the 

ecosystem to the atmosphere via Re. NEE�s sign convention is reversed within the ecological 

literature. The units for NEE are µmol!m-2!s-1, but to be consistent with the remote sensing 

literature, in this thesis the units are g or kg of C!m-2!d-1.   

A.1.3. Gross Primary Production (GPP) and Gross Ecosystem Production 

Gross primary production (GPP) is the net accumulation of carbon by photosynthesis during 

daytime periods per unit area and per unit time. It can be approximately determined as GPP = 

NEP +Re. GPP is not measured, and is therefore estimated based on the relationship between Re 

and air temperature (Chapin et al. 2002). During daytime periods, GPP is often greater than Re in 
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many vegetated ecosystems (Chapin et al. 2006). GPP and gross ecosystem production (GEP) are 

often used interchangeably within the literature, however Hymus and Valentini (2007) note that 

they do vary slightly where GEP contains a photorespiratory component that GPP does not. In 

this thesis GEP is measured by eddy covariance. The units for GPP and GEP are typically 

µmol!m-2!s-1 but in the context of remote sensing, we have kept the naming conventions of GPP 

(e.g. interchanged GEP with GPP) and have converted units to g or kg of C!m-2!d-1 to remain 

consistent with the literature.   

A.1.4 Net Primary Production (NPP)  

Net primary production per unit area and per unit time is calculated from the difference between 

GPP and autotrophic (or plant) respiration (Chapin et al. 2006). Autotrophic respiration includes 

production via biomass growth, above- and below-ground turnover of tissues, and transfer of 

carbon beyond the plant to herbivores, root symbionts, etc. (e.g. Chapin et al. 2006). The units for 

NPP are typically µmol!m-2!s-1. 

A.1.5 Ecosystem Respiration (Re), Autotrophic Respiration (Ra), and 
Heterotrophic Respiration (Rh)  

Ecosystem respiration is the total integrated respiration throughout the ecosystem and includes 

both autotrophic respiration (Ra) and heterotrophic respiration (Rh). Ra is respiration associated 

with plant tissues, whereas Rh is the total respiration from animals and microbes. Re can be 

modeled from NEE during night-time periods where NEE = Re and during day-time periods as a 

function of air or soil temperature (e.g. Barr et al. 2004). All are cumulative over a specified area 

and period of time. The units for Re are typically µmol!m-2!s-1. 
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A.1.6 Photosynthetically Active Radiation (PAR), Absorbed PAR (APAR), the 
fraction of PAR absorbed by a plant canopy (fPAR), and Intercepted PAR (IPAR) 

Photosynthetically active radiation (PAR) is shortwave radiation ranging from 400 to 700 nm, 

and is used by vegetation for photosynthesis (e.g. Schwalm et al. 2006). Chlorophyll is especially 

adapted to absorption of blue and red light within the PAR spectrum, whereas carotenoids and 

xanthophylls use some green light and reflect the remainder (e.g. Nichol et al. 2000). Longer 

wavelengths (e.g. in the near infrared and beyond) are reflected by many plants within the 

terrestrial biosphere to limit over-heating of the leaf. Plants are not able to respond to increasing 

levels of solar radiation because of resource limitations to chemical reactions, resulting in light 

saturation and reduced efficiency of photosynthesis (e.g. Chapin et al. 2002; Turner et al. 2003). 

The contrast in reflectance between PAR used for photosynthesis and longer wavelengths (i.e. 

shortwave infrared) is fundamental for remote sensing of vegetation health and change across 

large land areas. PAR is often measured along with meteorology and atmospheric CO2, water, 

and/or sometimes other fluxes (e.g. methane) both above and below the canopy. The incoming 

and reflected (from canopy) PAR measured above the canopy, and the incoming and reflected 

(from ground) PAR measured below the canopy can be used to estimate the amount of PAR 

absorbed by the canopy (APAR) and the fraction of PAR absorbed when compared to total 

incoming PAR (fPAR) (Gower et al. 1999).  The intercepted PAR (IPAR) is the ratio between 

incoming PAR above the canopy and incoming PAR below the canopy and is similar to APAR in 

closed canopies (Gower et al. 1999). The units for all terms related to PAR are typically in 

µmol!m-2!s-1 but in the context of remote sensing, have been converted to MJ!m-2!d-1. 
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A.1.7 Light Use Efficiency (LUE) 

LUE (g C⋅MJ-1 of APAR), defined as the ratio of gross ecosystem productivity (GEP) (gC⋅m-2⋅d-1) 

to absorbed photosynthetically active radiation (APAR) (MJ⋅m-2⋅day-1), describes the ability of 

vegetation to use light in combination with atmospheric carbon dioxide (CO2) for photosynthesis. 

LUE is generally constant during vegetation growth when water supply is non-limiting. Further, 

the amount of carbon used for gross photosynthesis tends to remain constant across vegetation 

species (Dewar et al. 1998). These observations enable aggregation of LUE and vegetation 

productivity (e.g. NPP and GPP) from local to global scales using remote sensing-based land-

cover types or ecosystem models (Turner et al. 2002; Drolet et al. 2005). 

A.1.8 Leaf Area Index (LAI), Effective LAI (LAIe), Plant Area Index (PAI), and 
fractional cover 

LAI is defined as one half of the total leaf area per unit ground area (Chen and Black 1992; Chen 

et al. 2006) (m2⋅m-2) and is a key parameter for estimating CO2, water, and energy exchanges 

between the terrestrial biosphere and the atmosphere. Other definitions pertaining to leaf area 

include the projected LAI, which is the leaf area projected onto a horizontal plane; and the total 

LAI, including both sides of the leaf (or the spherical surface of pine needles). LAIe and PAI 

appear to be used synonymously within the literature and include both the leaf and wood area 

(Leblanc et al. 2005; Chen et al. 2006). The specific leaf area (SLA) is the ratio of green foliage 

surface area to dry foliage mass (Gower et al. 1999). Leaf area indices are often estimated based 

on the probability that a beam of light will penetrate through the canopy. In the case where all 

light is incident on the ground surface, and no canopy is visible, the canopy gap fraction may be 

assumed to be one (1) (fractional cover = zero). On the other hand, the canopy gap fraction will 

have a maximum value of zero (0) for a completely closed canopy where all light is intercepted 

by the canopy (fractional cover = 1).  
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A.2 Remote Sensing Terms 

A.2.1 Remote Sensing  

Remote sensing is defined as the ability to obtain ��information about an object, area, or 

phenomenon through the analysis of data acquired by a device that is not in contact with the 

object, area, or phenomenon under investigation� (Lillesand and Kiefer, 1994). Remote sensing 

uses reflected or emitted radiation to collect information related to the surface properties of the 

object. Reflected or emitted radiation may be passively or actively observed, where variations in 

electromagnetic energy that are either reflected or emitted by features are recorded by a sensor 

(e.g., camera). On the other hand, active remote sensing involves the emission of electromagnetic 

energy towards the object of interest, and then recording a portion of the signal that is reflected 

back towards the sensor. Active remote sensing systems include sonar (sound navigation and 

ranging), radar (radio detection and ranging) and lidar (light detection and ranging).  

A.2.2 The Moderate Resolution Imaging Spectroradiometer (MODIS) 

MODIS is a passive remote sensing instrument that was launched by NASA in 1999 on the Terra 

satellite and again in 2002 on the Aqua satellite. MODIS is able to retrieve reflectance 

information in 36 narrow electromagnetic bands and at various resolutions ranging from 250 m to 

500 m or 1000 m. The sensors are able to record spectral information over the entire earth surface 

every one to two days. The sensors are primarily used to understand variability in cloud cover, 

terrestrial ecosystem processes, radiation, land surface meteorology, and ocean processes (e.g. 

http://www.daac.ornl.gov/MODIS/modis.html; Running et al. 2004).  

A.2.3 Airborne Lidar / Airborne Laser Scanning (ALS)  

Lidar is a maturing remote sensing and surveying technology that illuminates actively the ground 

surface and any objects above the ground through the rapid emission and reception of laser pulses 



 

  187

across an angular field of view (AFOV) (e.g. Wehr and Lohr, 1999). Lidar systems typically 

record three-dimensional data (i.e., x,y,z) for the location where the laser pulse reflects from the 

intercepted surface. Lidar systems also collect multiple laser pulse reflections, or �returns� per 

laser pulse emitted. This results in a highly accurate and high resolution (e.g. < 1 m) three-

dimensional sampling of the vegetation canopy, understory, and ground surface characteristics. 

A.2.4 Pixels and Laser Returns  

Digital images of the land surface collected using remote sensing methods are comprised of two-

dimensional arrays of pixels or discrete picture elements, making the image appear to be 

continuous and of varying amounts of brightness. Each pixel has an associated average radiance 

that is measured using the remote sensing device, corresponding to the area represented by the 

pixel. Most remote sensing datasets have a specified set of pixel rows and columns making up the 

image. In low resolution datasets, such as MODIS and AVHRR products, pixels cover much 

larger areas and therefore provide an average radiance of one or many different land cover types, 

which are not fully representative of one land cover, thereby increasing the inaccuracy of 

radiance measurements within pixels. Higher resolution datasets, such as Landsat and IKONOS 

collect average radiance information within pixels that are much smaller (e.g. 25 m to 1 m 

resolutions or less), and can therefore resolve ambiguities found in lower resolution products.   

 

Active lidar remote sensing systems do not measure average radiance information within pixels, 

but instead, have discrete elliptical laser pulse �footprints� or �returns� that are formed via a 

Gaussian envelope of reflected radiation that is returned to the sensor optics. In other words, the 

laser pulse footprint is the point of contact of the pulse of laser light of the feature, where laser 

light is scattered from the object and is recorded by the sensor optics. The location of a laser 

return is determined as a range measurement, or the time from which the laser pulse is emitted to 
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the time when it (the back-scatter) is received. Laser returns therefore describe the three-

dimensional surface and some information on the radiometric characteristics of the object (e.g. 

dry or wet, shiny or dull, white or black). They are also different from pixels because they are not 

evenly spaced in x and y directions, and therefore do not form a perfect grid of discrete returns. 

For example, as the aircraft speed changes, laser pulses will be placed either closer together (as 

the aircraft slows down) or further apart (as the aircraft speeds up).  

 

 

 

 


