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Abstract

Two spatially-explicit estimates of gross primary production (GPP) are available for the Northern Great Plains. An empirical piecewise
regression (PWR) GPP model was developed from flux tower measurements to map carbon flux across the region. The Moderate Resolution
Imaging Spectrometer (MODIS) GPP model is a process-based model that uses flux tower data to calibrate its parameters. Verification and
comparison of the regional PWR GPP and the global MODIS GPP are important for the modeling of grassland carbon flux. This study compared
GPP estimates from PWR and MODIS models with five towers in the grasslands. Among them, PWR GPP and MODIS GPP showed a good
agreement with tower-based GPP at three towers. The global MODIS GPP, however, did not agree well with tower-based GPP at two other towers,
probably because of the insensitivity of MODIS model to regional ecosystem and climate change and extreme soil moisture conditions. Cross-
validation indicated that the PWR model is relatively robust for predicting regional grassland GPP. However, the PWR model should include a
wide variety of flux tower data as the training data sets to obtain more accurate results.

In addition, GPP maps based on the PWR and MODIS models were compared for the entire region. In the northwest and south, PWR GPP was
much higher than MODIS GPP. These areas were characterized by the higher water holding capacity with a lower proportion of C4 grasses in the
northwest and a higher proportion of C4 grasses in the south. In the central and southeastern regions, PWR GPP was much lower than MODIS
GPP under complicated conditions with generally mixed C3/C4 grasses. The analysis indicated that the global MODIS GPP model has some
limitations on detecting moisture stress, which may have been caused by the facts that C3 and C4 grasses are not distinguished, water stress is
driven by vapor pressure deficit (VPD) from coarse meteorological data, and MODIS land cover data are unable to differentiate the sub-pixel
cropland components.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Carbon flux; Decision tree; Grassland; Gross primary production (GPP); MODIS GPP; Model comparison; Northern Great Plains

1. Introduction

Numerous studies have been conducted to investigate CO2

exchange between the biosphere and atmosphere at regional,
continental, and global scales. Each method has distinct
advantages and disadvantages. In the mid-1990s, the Interna-

tional Geosphere–Biosphere Programme (IGBP) proposed a
global network of flux towers to monitor long-term and
continuous CO2 fluxes associated with diverse biomes and
climate regions (Baldocchi et al., 2001). At present, more than
300 flux towers are registered on the FLUXNET network that
coordinates regional and global analysis of observations from
micrometeorological tower sites (http://www.fluxnet.ornl.gov/
fluxnet/). Flux towers measure net ecosystem exchange (NEE)
over hourly to daily time scales, and CO2 fluxes can be
integrated into seasonal and yearly estimates for a variety of
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ecosystems (Baldocchi et al., 2001; Goulden et al., 1996). Flux
tower measurements also provide accurate ground-truth data for
calibrating and validating gross primary production (GPP) and
net primary production (NPP) products from predictive models
(Turner et al., 2003, 2005; Xiao et al., 2004). Among the
networks of flux towers, the AmeriFlux and AgriFlux programs
were established to improve understanding of carbon pools and
fluxes in North America. The AmeriFlux network, part of the
FLUXNET program, uses the eddy covariance technique to
measure the exchange of CO2, water vapor, and energy between
terrestrial ecosystems and the atmosphere (http://public.ornl.
gov/ameriflux/). The AgriFlux network, developed by the U.S.
Department of Agriculture (USDA), Agricultural Research
Service (ARS), uses both the Bowen ratio-energy balance
(BREB) and eddy covariance techniques (Raupach, 1988) to
measure the effects of environmental conditions and agricul-
tural management decisions on carbon exchange between land
and atmosphere.

Since the early 1980s, vegetation index data sets have been
produced from a number of sensors, such as the Advanced Very
High Resolution Radiometer (AVHRR), Moderate Resolution
Imaging Spectroradiometer (MODIS), and SPOT VEGETA-
TION. Vegetation index data sets provide the opportunity for
studying and monitoring global vegetation conditions in
terrestrial ecosystems (Tucker, 1996). Models have been
developed for estimating vegetation production at global and
regional scales. These models combine CO2 flux measurements
at flux towers with satellite-based, remotely sensed observa-
tions, and range in complexity from “data-driven” empirical
models to “process-based” biogeochemical models (Parton
et al., 1993; Potter et al., 1993; Turner et al., 2004; Wylie et al.,
2004; Xiao et al., 2004). Predictive models require evaluation of
their performance in comparison with data sets from ground-
based measurements (Amthor et al., 2001; Kramer et al., 2002;
Veroustraete et al., 2002) and other model results (VEMAP
Members, 1995). Goulden et al. (1996) stated that the long-term
carbon flux measurements collected at flux towers are well
suited for developing and testing mechanistic models. However,
validation of estimated GPP is limited by the lack of extensive
flux tower observations over large areas. Model intercompar-
ison has been used as an alternative method for indirect
validation and identification of model weaknesses and incon-
sistencies where ground observations are lacking. A global
terrestrial monitoring network integrating flux tower measure-
ments with carbon-cycle models and National Aeronautics and
Space Administration (NASA) Earth Observing System (EOS)
satellite data has been established to improve the accurate
monitoring and better understanding of global carbon fluxes
and to provide consistent checks and validation of each source
(Running et al., 1999).

Grasslands cover nearly one-fifth of the global terrestrial
surface (Eswaran et al., 1993) and store most of their carbon
below ground (Burke et al., 1997; Connor et al., 2001). The
carbon flux and dynamics on grasslands are important to the
global carbon cycle. However, the contributions of grasslands to
local and regional carbon budgets remain uncertain (Novick
et al., 2004), largely due to the lack of carbon flux data for

grassland ecosystems. We have developed a remote sensing-
based piecewise regression (PWR) model to estimate grassland
and shrubland GPP in the Northern Great Plains and Northern
Kazakhstan (Wylie et al., 2004, in press). This model was
developed to spatially extrapolate local flux tower measure-
ments across landscapes or regions with similar land cover types.

This study continues our efforts to develop a robust
estimation capability of GPP for grassland and shrubland and,
specifically, verifies the grassland GPP estimates from the PWR
model in the Northern Great Plains during the growing season
(April–October). The specific research objectives are to 1)
compare GPP estimates from the PWR and the MODIS models
(Collection 4.5) with GPP derived from measurements at five
flux towers; 2) evaluate the PWR model for predicting GPP for
grasslands in this region; 3) compare the spatial patterns of GPP
estimates for grasslands from the PWR and MODIS models in
the Northern Great Plains; and 4) explore the variables and their
interactions that may explain differences in the GPP estimates
generated by the PWR and MODIS GPP models.

2. Study area and GPP models

2.1. Study area and flux towers

The study area encompasses the Northwestern Glaciated
Plains, Northwestern Great Plains, and Western High Plains, as
defined by Omernik's level III ecoregions (Omernik, 1987),
including parts of North Dakota, South Dakota, Nebraska,
Montana, Wyoming, and the adjacent Canadian area (Fig. 1).
Based on the 30-year (1971–2000) Normals (High Plains
Regional Climate Center, http://www.hprcc.unl.edu/), the mean
annual precipitation in this region ranges from 380 millimeters
(mm) in the west to 640 mm in the southeast. The mean annual
temperature ranges from 4 °C in the north to 13 °C in the south.
Grassland constitutes the major land cover in the Northern Great
Plains. The grasses transit from wheatgrass (Agropyron sp.),
green needlegrass (Stipa spartea), grama grass (Bouteloua sp.),
and buffalo grass (Buchloe dactylides) in the north to grama and
buffalo grass in the south (Omernik, 1987).

There are five flux towers in the grasslands of the Northern
Great Plains (Fig. 1). The two AmeriFlux towers (Lethbridge,
Canada, 2000–2001; Fort Peck, MT, 2000) use the eddy
covariance technique, and the three AgriFlux towers (Mandan,
ND, 2000–2001; Miles City, MT, 2000–2001; and Cheyenne,
WY, 1998) use the BREB technique (Table 1). Both the eddy
covariance and the BREB methods have been shown to provide
accurate measurements of carbon flux in the short stature plant
communities of the Northern Great Plains (Gilmanov et al.,
2005) and in four Southern Plains (Gilmanov et al., 2003),
indicating no substantial differences on the GPP and respiration
estimates generated with eddy covariance and BREB methods.
BREB flux measurements have been used to quantify carbon
dynamics of low stature vegetation in numerous studies
(Emmerich, 2003; Frank, 2004; Sims & Bradford, 2001).
Angell et al. (2001) found that the BREB and closed chamber
measurements showed good agreement and could be used in
concert to obtain reliable estimates of CO2 flux in the Sagebrush
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steppe ecosystem. The latent heat fluxes from the BREB and
eddy covariance methods were in a good agreement with a low
bias and high correlation for the wet sloping grassland (Pauwels
& Samson, 2006). Gilmanov also compared the basic eco-
physiological characteristics obtained using light-response
analysis of flux data from BREB and eddy covariance towers
of this study area, and this comparison does not show any
significant differences in basic ecophysiological parameters.

In this study, we used local measurements of carbon flux
collected at each flux tower to derive GPP for model input and
validation. The tower-based GPP estimates were calculated
from estimated daytime respiration and NEE using light-
response function analysis (Gilmanov et al., 2005). This method
has been applied to flux tower data in the Northern Great Plains

(Gilmanov et al., 2005), Central Asia (Gilmanov et al., 2004),
and four Southern Plains ecosystems (Gilmanov et al., 2003).

2.2. Model descriptions

2.2.1. The empirical PWR model
Empirical models have been developed to relate GPP, NPP,

and NEE to variables that influence plant production. The
Miami model (Lieth, 1975) is the best known empirical model
for estimating NPP from mean annual precipitation and surface
temperature. The PWR model (Wylie et al., 2004; in press) was
developed to extrapolate grassland flux tower measurements to
grassland regions and to reveal relationships between GPP and
multiple environmental variables. Although the PWR model

Fig. 1. Grassland flux towers in the Northern Great Plains.

Table 1
Descriptions of flux tower sites (adapted from Gilmanov et al., 2005)

Site and year Ecosystem Latitude, longitude Elevation (m) Annual precipitation (mm) Mean temperature
January/July (°C)

Sensor Principal investigator

Lethbridge
2000–2001

Northern mixed-short
grass prairie

49°42′ N 112°56′ W 960 378 −8.6 /18.0 Eddy-
covariance

Flanagan, L. B.

Fort Peck
2000

Northern mixed prairie 48°18′ N 105°06′ W 634 310 −11.9 /18.0 Eddy-
covariance

Meyers, T. P.

Mandan
2000–2001

Mixed prairie 46°46′ N 100°55′ W 518 404 −8.7 /23.5 BREB Frank, A. B.

Miles City
2000–2001

Northern mixed prairie 46°18′ N 105°58′ W 719 343 −12.2 /21.2 BREB Haferkamp, M. R.

Cheyenne
1998

Mixed prairie 41°11′ N 104°54′ W 1910 397 −2.5 /17.5 BREB Morgan, J. A.
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does not explicitly model biogeochemical processes, and differs
from other mechanistic models that are based on plant phy-
siological responses, it reveals valuable, implicit insights into
the conditions under which plant productivity is strongly in-
fluenced. The spatial and temporal variation in the flux mea-
surements at towers cannot represent the variability in all
different landscapes, so conclusions drawn from the site flux
data alone should not be extrapolated beyond reasonable
inferences (Wylie et al., 2003).

The PWR model was applied to derive an empirical
relationship between independent variables and tower-based
GPP at the five flux towers in multiple years at 10-day intervals.
A series of rules were produced and regression equations were
fit to the data bounded by the stratified rules. The PWR
equations were then applied through time and space to estimate
10-day GPP across the study area. The inputs are 10-day
composite SPOT VEGETATION (http://free.vgt.vito.be) nor-
malized difference vegetation index (NDVI) data at 1-km
resolution, daily precipitation data at 0.25°resolution and daily
temperature data at 0.5°resolution (the daily meteorological data
(Xie & Arkin, 1996) was summed to 10-day time interval),
phenological metrics at 1-km resolution (Reed et al., 1994), and
proportion of C4 grasses (Tieszen et al., 1997). NDVI, which
has been shown to be quantitatively related to GPP (Gilmanov
et al., 2005), is used as a key input for the PWR model. The
phenological metrics were calculated from a time series of
SPOT VEGETATIONNDVI data. The metrics used in the PWR
model included the day of the start of the growing season
(SOST), NDVI value at the start of the growing season (SOSN),
and seasonally time-integrated NDVI (TIN). Precipitation and
temperature were acquired from the National Oceanic and
Atmospheric Administration (NOAA) Climate Prediction
Center, and photosynthetically active radiation (PAR) was
obtained from NOAA National Environmental Satellite, Data
and Information Service (NESDIS) (http://www.atmos.umd.
edu/~srb/gcip/). The proportion of C4 grasses is derived from
the State Soil Geographic (STATSGO) database at a scale of
1:250,000, which represents the percentage of vegetation using
the C4 photosynthetic pathway.

2.2.2. MODIS GPP model
The MODIS sensors aboard Terra (EOS AM), launched in

December 1999, and Aqua (EOS PM), launched in May 2002,
have provided measurements of spatial and temporal variation
in productivity (Huete et al., 2002; Justice et al., 1998). MODIS
data have been used to estimate 8-day summations of GPP and
annual NPP at 1-km resolution since March 2000 (Heinsch
et al., 2003; Justice et al., 1998; Running et al., 2004). The
MODIS GPP algorithm employs a light use efficiency (LUE)
approach. The major inputs of the MODIS GPP algorithm
include MODIS land cover products (MOD12Q1), MODIS leaf
area index (LAI) and fraction of photosynthetically active
radiation (FPAR) (MOD15A2), meteorological data at
1°×1.25° resolution from the NASA Data Assimilation Office
(DAO), and parameters from the Biome Parameter Look-up
Table (Heinsch et al., 2003). The MODIS GPP product
(Collection 4.5) is available from the Numerical Terradynamic

Simulation Group, College of Forestry and Conservation, The
University of Montana (http://www.ntsg.umt.edu/).

3. Methods

3.1. Regression and agreement analysis

The Pearson's correlation coefficient (r), root mean square
error (RMSE), andWillmott's index of agreement (d ) were used
to quantify model agreement. In this study, RMSE is a measure
of actual difference between two data sets for all samples, which
is given by

RMSE ¼ 1
n

Xn

i¼1

ðXi−YiÞ2 ð1Þ

Willmott's index of agreement (d) (1981, 1982) is defined
as

d ¼ 1−

Xn

i¼1

ðXi−YiÞ2

Pn

i¼1
jXi−X̄jþ jYi−X̄jð Þ2

ð2Þ

where Xi is the observed value, Yi is the estimated value, and X̄
is the mean of observed values. As a non-dimensional measure,
d is bounded below by 0 and above by 1. When two data sets are
in perfect agreement, d equals 1. Willmott's index of agreement
is designed for model validation. It is also capable of measuring
two types of errors, that is, unsystematic and systematic errors.
Unsystematic error quantifies measurement accuracy, which is
associated with random error between the points and the 1:1 line
built from the two data sets. Systematic error quantifies the
precision of the measurement, which can be potentially reduced
by applying regression function to the data sets.

The numerator of the main term of Eq. (2) is the sum of the
squared error (SSE). The mean value of SSE is the mean
square error (MSE). Willmott defined the systematic MSE
(MSEs) as

MSEs ¼
1
n

Xn

i¼1

ðXi−Ŷ iÞ2 ð3Þ

and the unsystematic MSE (MSEu) as

MSEu ¼
1
n

Xn

i¼1

ðYi−Ŷ iÞ2 ð4Þ

where Ŷ is the predicted Y value obtained from regression
model Ŷ=a+bX. The sum of MSEs and MSEu is MSE:

MSE ¼ MSEs þMSEu ð5Þ

The proportion of systematic and unsystematic errors to total
errors can be derived from MSEs/MSE and MSEu/MSE.
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3.2. Comparison of PWR GPP and MODIS GPP with tower-
based GPP

For each flux tower location, we extracted GPP values from
the 1-km PWR GPP maps for each 10-day interval during the
1998 and 2001 growing season and from the 1-kmMODIS GPP
maps for each 8-day interval during the 2000 and 2001 growing
seasons. To keep the temporal resolutions consistent, the tower-
based GPP were integrated to the 10-day interval GPP when
compared with PWR GPP, and integrated to 8-day interval GPP
when compared with MODIS GPP. The PWR GPP and MODIS
GPP were compared with tower-based GPP using Pearson's
correlation coefficient and Willmott's d to verify the ability of
the model estimates to capture the seasonal dynamics of
vegetation productivity measured at the flux towers.

3.3. Cross-validation of PWR GPP at flux tower sites

Cross-validation was applied to evaluate the predictive
accuracy of the PWR model. In cross-validation, data were
divided into two portions: one (training samples) for PWR
model development and the other (testing samples) for model
verification. Each combination of site and year (site-year) was
successively withheld as the testing sample, then GPP was
predicted for the withheld site-year from the data for the
remaining site-years (the training samples). The model
estimates were tested at the withheld site.

3.4. Intercomparison of the PWR GPP and MODIS GPP maps

The two estimated GPP maps were compared to determine
and understand the differences between the two GPP model
estimates. We randomly sampled 2951 pixels within the
grassland pixels, and 1-km GPP values were extracted from
PWR GPP and MODIS GPP maps. We performed Pearson's
correlation coefficient and Willmott's d analyses to evaluate the
agreement of the two GPP estimates.

3.5. Ecosystem characteristics contributing to GPP difference
patterns

Interactions among ecosystem characteristics, including the
proportion of C4 grasses, soil water holding capacity, per-
centage of clay, and percentage of cropland mixed in grassland,
were explored using a decision tree technique. These interac-
tions may contribute to the spatial patterns in a difference image
of the two model estimates of GPP (MODIS GPP minus PWR
GPP).

This analysis was restricted to grasslands as identified by
MODIS land cover (MOD12Q1) Type 2 data. PWR GPP and
MODIS GPP were temporally integrated into total GPP for the
growing seasons of 2000 and 2001. A decision tree method
(Breiman et al., 1984) was used to identify the variables that
could explain the GPP difference patterns and to detect spatial
structure in the relationships between the environmental
variables and the GPP difference patterns. The decision tree is
based on a tree-like structure to determine a set of if–then

logical conditions that permit accurate prediction and classifi-
cation. The number of decision tree nodes, or tree complexity,
was constrained by defining the minimum number of training
cases needed to form a new node. The limited tree segmentation
reduced tree size, simplified tree structure, retained predictive
accuracy, reduced over-fitting, and ignored information that was
not significant. The simplified trees improved the interpretation
and understanding of the relationships between GPP difference
patterns and the ecosystem characteristics.

The decision tree analyses were conducted using See51

(http://www.rulequest.com/) decision tree software. The analy-
sis included those ecosystem characteristics that we determined
to be potentially significant to GPP differences between the two
model estimates. The ecosystem characteristics were 1) soil data
derived from STATSGO, including water holding capacity
(denoted as WHC) and percentage of clay (denoted as Clay)
and, 2) percentage of cropland per pixel (denoted as Crop)
derived from the 30-m National Land Cover Dataset (NLCD
1992; http://www.mrlc.gov/). The spatial patterns represented
by relationships between different ecosystem characteristics and
GPP difference patterns were mapped over the region as defined
by the decision tree rules.

4. Results and discussion

4.1. Comparisons of PWR GPP and MODIS GPP with tower-
based GPP

Fig. 2 shows the relationships between the PWR GPP model
estimates and tower-based GPP. Similarly, Fig. 3 shows the
relationships between the MODIS GPP model estimates and
tower-based GPP. Low unsystematic error (high precision) is
represented by plots that have estimates close to the regression
line. Low systematic error (high accuracy) is represented by
plots that have estimates close to the 1:1 line. All the four sites
have very high r and d values between PWR GPP and tower-
based GPP (Fig. 2 and Table 2). The proportion of the error in
most site-years is mainly dominated by unsystematic error,
suggesting the results are unbiased, whereas the proportion of
error in Miles City 2000 is mainly dominated by systematic
error, suggesting the results may be biased—in this case, the
PWR model underestimates GPP at higher values. At the
Lethbridge site, GPP estimates from PWR model were
unavailable due to the lack of mapped meteorological data in
Canada. The tower-based GPP and meteorological data
measured at Lethbridge tower were used as the training data
for developing the PWR model.

Both Fort Peck and Mandan have high r and d values bet-
ween MODIS GPP and tower-based GPP (Fig. 3 and Table 3).
The proportion of the error in Mandan is mainly dominated by
unsystematic error. At the Lethbridge and Miles City sites, the
estimates appear to have some remnant nonlinear effects, likely
caused by drought-driven hysteresis that is not represented in the

1 Any use of trade, product, or firm names is for description purposes only
and does not imply endorsement by the U.S. Government.
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MODIS model, in which water stress is driven by vapor pressure
deficit (VPD). The proportion of the error is mainly dominated
by systematic error, suggesting the results may be biased in a
consistent way. The PWRmodel used data sets from the five flux
towers to develop the empirical model and produce GPP maps in
the ecoregions. The MODIS GPP model, however, probably did
not use all of these flux tower data sets to calibrate and
parameterize the algorithm, which may cause the estimates to be
less sensitive to local climate variation.

At the Fort Peck and Mandan sites, there was good
agreement for both MODIS and PWR GPP with tower-based
GPP (Fig. 4). Both MODIS and PWR GPP tracked the seasonal
dynamics of tower-based GPP well, but the MODIS model
underestimated GPP from June to July at the Fort Peck site. At
the Lethbridge site, MODIS GPP failed to capture seasonal
dynamics. In 2000, MODIS GPP showed later initiation and
later cessation of the growing season than tower-based GPP. In
2001, MODIS GPP captured the onset of the growing season,
but failed to capture the peak and the end of the growing season.
In both years, tower-based GPP dropped sharply after mid-June,
which was not reflected by MODIS GPP until the end of July.
MODIS GPP had a much lower maximum GPP than the tower-

based GPP. At the Miles City site, PWR GPP had a better
agreement with tower-based GPP than MODIS GPP, which
lagged during the growing season in 2000, but captured
seasonal dynamics well in 2001. MODIS GPP tended to
overestimate GPP in 2000, but underestimated GPP in 2001. At
the Cheyenne site in 1998, PWR GPP captured the onset and
end of the growing season well, but underestimated GPP during
June and July.

The deviation of model estimates from flux tower measure-
ments may be caused by errors from pixel misregistration, flux
tower estimates, and model estimates. The GPP difference was
probably related to mismatch in scale when comparing tower-

Fig. 2. Comparisons between PWR GPP and tower-based GPP during the
growing season at flux towers (10-day interval). The dashed line represents the
regression line. The solid line represents the 1:1 line.

Fig. 3. Comparisons between MODIS GPP and tower-based GPP during the
growing season at flux towers (8-day interval). The dashed line represents the
regression line. The solid line represents the 1:1 line.
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based GPP with the 1-km resolution PWR GPP and MODIS
GPP. Previous studies have found pixel misregistration
problems with MODIS data, but the geolocation error is
approximately 50 m at nadir (Wolfe et al., 2002). Tower-based
GPP represents a small, unfixed footprint that changes in size
and shape as a function of wind speed, wind direction, surface
roughness, and atmospheric stability (Schmid, 2002). The 1-km
pixel of PWR GPP and MODIS GPP may not exactly overlay
the tower footprint. As long as the flux towers are located in the
fairly large and uniform rangelands, the pixel values extracted at
the flux tower sites can represent the environmental conditions
in the surrounding areas.

Tower-based GPP is another source of error. The respiration
estimate may have uncertainties that could propagate to the GPP
estimate (Goulden et al., 1996; Turner et al., 2003). Flux towers
directly measure NEE, while daily GPP is the difference between
NEE and ecosystem respiration during the daylight period
(Gilmanov et al., 2003, 2005). The detailed method to estimate
the daytime ecosystem respiration using the light-response
function analysis and the evaluation of the estimates of daytime
respiration and tower-based GPP, was described by Gilmanov et
al. (2003; 2005). Partitioning net CO2 fluxes into GPP and
respiration based on light-response functions at the BREB and
eddy covariance towers in the Northern Great Plains resulted in
daytime respiration estimates are in good agreement with night-

time measured respiration rates. GPP estimates of Northern Great
Plains ecosystems based on these daytime respiration values also
agree with existing GPP estimates for other ecosystems in the
climatic gradient from shortgrass to tallgrass prairies.

Additional errors could originate from GPP model estimates.
The variability in GPP at the site level could be influenced by
precipitation and water content in soil. At the Miles City site,
precipitation prior to July 2000 was lower than average, but
abundant in June and July 2001. The intense drought in the
spring and early summer of 2000 reduced soil water content and
subsequently reduced total production by 20% to 40%
(Heitschmidt et al., 2005). MODIS GPP was probably incapable
of reflecting the influence of low water content in soil, which
led to higher MODIS GPP than tower-based GPP (Fig. 4). Also,
MODIS GPP had a later end of the growing season than tower-
based GPP. In 2001, reduced water limitation on plant growth
resulted in higher production. Yet this was not reflected by
MODIS GPP, leading to a seasonal underestimate of GPP at the
Miles City site in 2001. At the Lethbridge site, the drought in
2000 and 2001 (Flanagan et al., 2002; Flanagan & Johnson,
2005) caused an early end of the growing season. Soil water was
largely depleted by early July. The global MODIS GPP
algorithm did not reflect the change in soil moisture and
resulted in MODIS GPP having a prolonged growing season at
the Lethbridge site.

Table 3
Agreement analysis of tower-based GPP and MODIS GPP

Parameters Lethbridge 2000 Lethbridge 2001 Fort Peck 2000 Mandan 2000 Mandan 2001 Miles City 2000 Miles City 2001

n (observations) 27 25 27 26 23 23 26
Mean of tower GPP (T̄ ) 1.27 1.51 1.84 1.96 2.49 1.35 1.61
Mean of MODIS GPP (M̄ ) 0.99 1.55 1.49 2.40 2.77 1.88 0.98
Difference of Mean (M̄−T̄ ) −0.28 0.04 −0.36 0.44 0.27 0.53 −0.63
r 0.48 0.75 0.89 0.89 0.81 0.71 0.78
Regressiona slope 0.29 0.37 0.73 0.95 0.98 0.66 0.41
Regressiona intercept 0.63 0.99 0.13 0.53 0.32 0.99 0.30
d 0.62 0.76 0.91 0.92 0.88 0.79 0.67
RMSE (gCm− 2

d−
1

) 0.94 1.18 0.68 0.78 0.82 0.92 0.90
MSEs/MSE (%) 67 79 52 33 11 48 88
MSEu/MSE (%) 33 21 48 67 89 52 12
a Tower-based GPP is the independent variable, and MODIS GPP is the dependent variable.

Table 2
Agreement analysis of tower-based GPP and PWR GPP

Parameters Fort Peck 2000 Mandan 2000 Mandan 2001 Miles City 2000 Miles City 2001 Cheyenne 1998

n (Observations) 21 21 20 19 21 18
Mean of Tower GPP (T̄ ) 1.85 1.90 2.25 1.41 1.57 2.93
Mean of PWR GPP (P̄) 1.73 2.21 2.41 1.31 1.56 2.81
Difference of Mean (P̄ − T̄ ) −0.12 0.31 0.16 −0.11 −0.01 −0.11
r 0.97 0.94 0.93 0.98 0.88 0.84
Regressiona slope 0.97 0.86 0.86 0.79 0.76 0.62
Regressiona intercept −0.08 0.58 0.49 0.19 0.37 1.00
d 0.98 0.95 0.96 0.98 0.93 0.89
RMSE (gCm− 2

d−
1

) 0.32 0.55 0.48 0.29 0.43 1.14
MSEs/MSE (%) 16 43 26 68 27 49
MSEu/MSE (%) 84 57 74 32 73 51
a Tower-based GPP is the independent variable, and PWR GPP is the dependent variable.
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4.2. Cross-validation of PWR GPP at flux tower sites

We compared PWR GPP with tower-based GPP using cross-
validation by withholding each site by year. The cross-
validation showed a good agreement (r=0.82–0.98 and
d=0.71–0.97) between PWR GPP and tower-based GPP
when withholding each site-year (Fig. 5 and Table 4). The
systematic error accounted for the majority of the MSE when
each of the site-years was withheld, except at Lethbridge and
Miles City in 2001. The agreement was relatively lower when
withholding the Mandan and Miles City sites than withholding
other sites (d=0.71 for 2000 and d=0.78 for 2001 at the
Mandan site, and d=0.74 for 2000 at Miles City). The results
indicated that the Mandan and Miles City sites were influential
sites for training the PWR model in this region. Total
precipitation at the Mandan site for the 2000 and 2001 growing
seasons was 406 mm and 437 mm, respectively, while the
highest total precipitation at the other sites was only 342 mm.
The Mandan site represented the climate extreme (wet site) in
the training data sets. Precipitation at the Miles City site was
lower than average before July 2000 (Heitschmidt et al.,
2005). This site in 2000 represented a dry site in the training
data sets.

Comparing Fig. 2 with Fig. 5, and Table 2 with Table 4, the
agreement (d ) between tower-based GPP and PWR GPP
decreased from 0.95 to 0.71 for 2000 and from 0.96 to 0.78
for 2001 by withholding the Mandan site, and the systematic
error accounted for a higher proportion (82%) of total error for
both years. Bywithholding theMiles City site, the agreement (d )
also decreased from 0.98 to 0.74 for 2000, and the systematic
error accounted for a higher proportion (90%) of total error. This
further verifies that the Mandan and Miles City sites improved
the robustness of the PWR model. It is important to use a wide
variety of flux tower data sets as the training data for the
empirical regional PWR model, as were observed in this large
study area over a four-year period. Using different flux tower
data to calibrate model parameters also seems important to the
MODIS GPP model.

4.3. Intercomparison of the PWR GPP and MODIS GPP maps

The comparison in Section 4.1 helped us understand how
GPP estimates compared at locations of known local carbon
flux. In this section, we expanded this analysis to compare GPP
spatial patterns based on PWR and MODIS model estimates for
grasslands in the Northern Great Plains. The total GPP for the
growing season based on the PWR and MODIS models showed
consistently higher GPP in the east and south, and lower GPP in
the west (Fig. 6). The match-paired t-tests indicate that the mean
differences between PWR and MODIS GPP estimates are
significant (p-valueb0.05) for both years. Over the growing
season, the total PWR GPP moderately agreed with the total
MODIS GPP (r=0.71, d=0.79 for 2000, and r=0.77, d=0.80
for 2001) (Fig. 7 and Table 5). The mean of MODIS GPP during
the growing season was 353 and 375 g C m−2 for 2000 and
2001, respectively. The mean of PWR GPP during the growing
season was 402 and 431 g C m−2 for the two years, respectively.

MODIS GPP was 49 g C m−2 lower than PWRGPP on average,
with an RMSE of 88 g C m−2 in 2000, and 56 g C m−2 lower
than PWR GPP on average, with an RMSE of 88 g C m−2 in
2001. The seasonal total MODIS GPP is lower than the seasonal
total PWR GPP, which is consistent with the comparison at the
flux tower sites (Fig. 4). From Fig. 4, the MODIS GPP
underestimated GPP four of seven site-years (Fort Peck 2000,
Miles City 2001, Lethbridge 2000, and Lethbridge 2001), but
overestimated only one time at Miles City 2000.

Fig. 4. Seasonal dynamics of GPP during the growing seasons at flux towers.
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4.4. Ecosystem characteristics contributing to GPP difference
patterns

We calculated difference maps of total GPP during the
growing season between MODIS and PWR model estimates
(Fig. 8). PWR GPP was lower in the southeast and higher in the

west and south than MODIS GPP. The GPP difference patterns
reflect the inconsistency of estimates from the two GPP models,
which may be attributed to differences in the underlying model
structure, model algorithms, and model inputs. An inspection of
the two model algorithms suggests that several variables might
contribute to GPP difference patterns.

Table 4
Cross-validation of PWR GPP by withholding each site in each year

Parameters Withholding sites

Lethbridge
2000

Lethbridge
2001

Fort Peck
2000

Mandan
2000

Mandan
2001

Miles City
2000

Miles City
2001

Cheyenne
1998

n (observations) 35 23 21 21 27 20 24 21
Mean of tower GPP (T̄ ) 0.81 1.29 1.85 1.90 1.74 1.35 1.38 2.52
Mean of PWR GPP (P̄) 0.95 1.32 1.55 3.69 3.25 0.87 1.20 1.60
Difference of mean (P̄−T̄ ) 0.14 0.03 −0.31 1.79 1.51 −0.48 −0.18 −0.92
r 0.89 0.90 0.98 0.91 0.94 0.85 0.82 0.94
Regressiona slope 0.73 0.68 0.95 1.39 1.53 0.40 0.84 0.59
Regressiona intercept 0.36 0.44 −0.22 1.04 0.59 0.33 0.04 0.11
d 0.93 0.93 0.97 0.71 0.78 0.74 0.89 0.86
RMSE (gCm− 2

d−
1

) 0.47 0.74 0.41 2.06 1.86 0.82 0.63 1.36
MSEs/MSE (%) 41 48 59 82 82 90 15 88
MSEu/MSE (%) 59 52 41 18 18 10 85 12
a Tower-based GPP is the independent variable, and PWR GPP is the dependent variable.

Fig. 5. Cross-validation by withholding each site in each year, and comparison between tower-based GPP and PWR GPP at the held-out flux tower (10-day interval).
The dashed line represents the regression line. The solid line represents the 1:1 line.
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A preliminary analysis of the frequency of use and the
relevance in the regression models (a method used in Wylie
et al., 2003) revealed that the variables from the PWR model
that had greater influence on the GPP differences were me-
teorological data (summer precipitation and temperature),
phenological metrics (SOST and SOSN), and proportion of C4

grasses. Precipitation is a critical factor affecting production of
rangeland ecosystems (Heitschmidt et al., 1999). Smart et al.
(2005) found that precipitation from April to June is an
important determinant of grassland production in the Northern
Great Plains. Its significance in explaining model differences
implies that precipitation was not adequately captured by one of
the models. Considering that MODIS GPP had lagged initiation
and cessation relative to tower-based GPP at Lethbridge and
prolonged late seasonal GPP at Miles City in 2000 (Fig. 4), we
suspect the differences were largely attributed to errors in
MODIS GPP estimates. Comparing with the input for PWR
GPP model, the meteorological data for MODIS GPP model

have a coarser resolution that may introduce substantial error
into MODIS GPP estimates (Zhao & Running, 2006).

Other ecosystem characteristics excluded in the inputs of the
PWR and MODIS models might contribute more toward

Fig. 7. Scatter plots of MODIS GPP versus PWR GPP for 2000 and 2001. The
dashed line represents the regression line. The solid line represents the 1:1 line.

Fig. 6. Total GPP during the growing season in the Northern Great Plains based on MODIS and PWR models.
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explaining the GPP difference patterns, including percentage of
clay, water holding capacity, and percentage of crops. In the
decision tree analysis, we focused on these three variables and
the proportion of C4 grasses (denoted as C4). GPP difference
patterns (MODIS GPP minus PWR GPP, g C m−2) were
classified into five categories: 1) less than −100, 2) between
−100 and −50, 3) between −50 and 50, 4) between 50 and 100,
and 5) greater than 100. The 1st, 3rd, and 5th categories were
studied, and the intermediate categories (2 and 4) were
excluded. We implemented the decision tree algorithm with
the four input variables (Fig. 9) and one output variable (Fig. 8)
represented by the 1st, 3rd, and 5th GPP difference categories
defined above. Five hundred random pixels were generated for
each of the three categories from the difference map as training
samples. The decision tree model was then developed from the
combined 1500 training samples.

Two decision trees were formulated from the four spatial
variables (Fig. 9) and were used to predict GPP difference
patterns for 2000 and 2001, separately. The training accuracy
for modeling the three categories of GPP differences was 77.3%

for 2000 and 82.5% for 2001. Three of the four spatial input
variables were derived from the STATSGO database. The
coarse STATSGO data does not correspond to the detail of the
1-km resolution data. Therefore, we did not expect high (N90%)
accuracies from the decision tree predictions.

4.4.1. Spatial relationships between GPP difference patterns
and influential variables for 2000

The interpretation of the decision tree for 2000 showed how
GPP difference patterns might be explained by the four
variables. The decision tree for 2000 had 10 terminal nodes
(Fig. 10), with 3 terminal nodes classified as areas where PWR
GPP was much higher than MODIS GPP (1st category), and 2
terminal nodes classified as areas where PWR GPP was much
lower than MODIS GPP (5th category). The first split was at the
WHC value of 8. The proportion of C4 grasses was the next
dominant splitting variable. C4 and WHC separated two
terminal nodes, 1a and 5a. Further separation at nodes 1b, 1c,
and 5b was dominated by C4, Crop, and Clay. The relative
importance of variables influencing the difference pattern was
inferred by the percentage of utilization of each spatial variable
in the decision tree (Table 6). For 2000, the variable with the
highest influence was C4, with WHC and Crop as the second
and third most influential variables. Clay was the least
influential variable.

The decision tree rules (Fig. 10) were applied to classify the
entire study area. For 2000, five classes were identified in
training rules and mapped for the area (Fig. 11), including three
classes (1a, 1b, and 1c) where PWR was much higher than
MODIS GPP (1st category), and two classes (5a and 5b) where
PWR was much lower than MODIS GPP (5th category). The
higher WHC and lower C4 conditions dominated the north-
western region where PWR GPP was much higher than MODIS
GPP, whereas higher WHC and higher C4 conditions controlled
the southern region.

Fig. 8. Seasonal total GPP difference in the Northern Great Plains between MODIS and PWR GPP (MODIS GPP minus PWR GPP).

Table 5
Agreement analysis of PWR GPP and MODIS GPP

Parameters Year 2000 Year 2001

n (observations) 2951 2951
Mean of PWR GPP (P̄ ) 402 431
Mean of MODIS GPP (M̄ ) 353 375
Difference of mean (M̄−P̄ ) −49 −56
r 0.71 0.77
Regressiona slope 0.70 0.65
Regressiona intercept 72.28 93.73
d 0.79 0.80
RMSE (gCm− 2

) 88 88
a PWR GPP is the independent variable and MODIS GPP is the dependent

variable.
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4.4.2. Spatial relationships between GPP difference patterns
and influential variables for 2001

The interpretation of the decision tree (Fig. 12) for 2001
showed that C4 was the most important variable. The final

simplified decision tree for 2001 had 10 terminal nodes, with
two terminal nodes (1a and 1b) classified as areas where PWR
GPP was much higher than MODIS GPP, which were separated
by C4 and WHC. C4, Crop, and Clay provided another

Fig. 10. Decision tree based on four variables for 2000.

Fig. 9. Four environmental variables used in the decision tree analysis.
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separation for the other two terminal nodes (5a and 5b), which
were classified as areas where PWR GPP was much lower than
MODIS GPP. The rank of the four influential variables indicated
that C4, Clay, Crop, and WHC had the strongest to the weakest
influences on the difference patterns for 2001 (Table 7).

The decision tree rules were applied to map the entire study
area for 2001. Four classes were identified in the training rules
(Fig. 13), including two classes (1a and 1b) where PWR GPP
was much higher than MODIS GPP, and two classes (5a and 5b)
where PWR GPP was much lower than MODIS GPP. The
classes where PWR GPP was much higher than MODIS GPP
occurred at lower C4 with higher WHC in the northwestern
grassland or higher C4 in the southern, southeastern, and central
parts of the study area. The classes where PWR GPP was much
lower than MODIS GPP occurred in the central and
southeastern parts of the study area, showing a spatial
distribution similar to 2000. These areas contained mixed C3/
C4 grasses with the proportion of C4 grasses ranging from 20%

to 40%, which was consistent with the decision tree model for
2000.

4.4.3. Influence of ecosystem characteristics on the GPP
difference maps

The decision tree analysis showed the relative importance
and hierarchical relationship of ecosystem characteristics on
GPP difference patterns between PWR GPP and MODIS GPP
in the Northern Great Plains. The results for both years showed
that the GPP difference patterns have the highest sensitivity to
C4 grasses. Water holding capacity and percentage of clay are
two correlated soil variables for which the ranks were
interchanged across the two years. Percentage of cropland
follows these in importance. The dominant separation of the
GPP difference patterns based on C4 and soil data may indicate
poor characterization of the two variables in the global MODIS
GPP model. The regional PWR model responds closely to local
ecosystem and environmental change, but the global MODIS
GPP model is not sensitive to regional ecosystem change and
extreme soil moisture condition.

4.4.3.1. Proportions of C4 grasses. C3 and C4 grasses are two
major grass functional types with different environmental
requirements, which are distinguished by the photosynthetic
pathway. C4 species, in general, dominate areas that are warmer
and with less available water than C3 grass species. In the
Northern Great Plains, C4 species account for a higher
proportion of production in the south than in the north (Tieszen
et al., 1997). The PWR model used the proportion of C4 species

Fig. 11. Difference patterns represented by the four variables from the decision tree rules for 2000.

Table 6
Rank of the importance of variables in the decision tree for 2000

Variables Utilization for classification (%) Total
utilization
for
classification
(%)

PWR GPP NN
MODIS GPP

PWR GPP ≈
MODIS GPP

PWR GPP bb
MODIS GPP

C4 48 66 60 60
WHC 33 24 30 28
Crop 14 7 10 10
Clay 5 3 0 2
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as an independent variable in the regression training algorithm.
C3 and C4 grasses are not distinguished in the MODIS
algorithm (e.g., the BPLUT from Heinsch et al., 2003), thus
ecosystem responses of C3 and C4 grasses are probably not
captured by the MODIS GPP model. Under the warmer and
drier condition, C4 grasses will produce higher production than
C3 grasses because C4 grasses have higher water use efficiency.
Yet, higher VPD in the MODIS model will probably reduce the
GPP estimates without considering C4 grasses. As we have seen
from Figs. 11 and 13, MODIS GPP was much lower than PWR
GPP in both years in the southern area where is dominated by
the higher proportion of C4 grasses.

4.4.3.2. Soils (water holding capacity and percentage of clay).
Soil moisture and soil texture control vegetation growth
(Churkina et al., 1999). Williams et al. (1997) reported that soil
water availability is a stronger constraint on GPP than vapor
pressure deficit. Neither the PWR model nor the MODIS model
takes into account soil water availability and percentage of clay.
Summer water stress is particularly severe during the late
summer in the Northern Great Plains grasslands. Water stress is
driven by VPD in the MODIS GPP model and the LUE model

does not simulate the water balance, which limits its ability to
detect drought stress (Turner et al., 2005). The 1.00°×1.25°
meteorological data sets used in the MODIS GPP model may
underestimate local VPD under the dry conditions, resulting in
local overestimation of MODIS GPP (Heinsch et al., 2006). The
additional parameter is required to characterize soil water
availability in the MODIS model and thus account for
deficiencies in VPD (Plummer, 2006). Variations in precipitation
have less influence on vegetation vigor in areas where soil has a
higher water holding capacity. This suggests that the PWR GPP
normally would be much higher than MODIS GPP when soil
water storage (WHC or Clay) is high. In this situation, sufficient
water is stored and the vegetation response to lack of
precipitation is somewhat buffered. MODIS GPP may also
ignore the soil impact on vegetation production.

4.4.3.3. Percentage of cropland. The MODIS GPP model
was designed for global land surface monitoring and may have
limitations at the regional scale. For these ecoregions, MODIS
GPP estimates relied on MODIS land cover data that may not
differentiate sub-pixel cropland components in each 1-km2

grassland pixel. The percentage of sub-pixel cropland derived
from the NLCD is unevenly distributed in the Northern Great
Plains grasslands with a high proportion in the north and south
(Fig. 9). MODIS land cover products, however, classified these
regions as grassland, which may be a reason for the disparity
between PWR GPP and MODIS GPP. Bradford et al. (2005)
found a positive relationship between crop intensity and
production. In these regions, the MODIS model may underes-
timate GPP, resulting in lower MODIS GPP than PWR GPP. In
addition, crops can be classified into C3 and C4 types in this
region. The possible incorporation of cropland sub-pixels into
the input of the MODIS model may cause even more
complicated results. Therefore, distinguishing C3 from C4

plant types for Northern Great Plains croplands might provide

Table 7
Rank of the importance of variables in the decision tree for 2001

Variables Utilization for classification (%) Total
utilization
for
classification
(%)

PWR GPP NN
MODIS GPP

PWR GPP ≈
MODIS GPP

PWR GPP bb
MODIS GPP

C4 70 78 56 66
Clay 0 6 26 14
Crop 0 6 19 10
WHC 30 9 0 10

Fig. 12. Decision tree based on four variables for 2001.
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further explanation of the GPP differences generated by the
PWR and MODIS models.

5. Conclusions

Cross-validation in this study indicated the robustness of the
PWR model for predicting grassland GPP in the Northern Great
Plains. The global MODIS GPP model may have three
limitations in predicting GPP for grassland in the Northern
Great Plains: 1) responding to the soil water content in dry
years, 2) differentiating C3 and C4 grasses, and 3) separating
mixed cropland/grassland pixels. The relationships found in this
study may be useful for exploring the influence of soil and
ecosystem characteristics on the modeling of grassland
production. The results reinforce the perception that soils
data, C3/C4 grasses, and land cover data have strong impact on
the prediction of GPP in grassland ecosystems. The impact of
ecosystem characteristics on GPP estimates from different
models cannot be easily assessed because their interactions vary
through space and time. To reduce the uncertainty from input
data sets, more work is needed to evaluate the PWR model in
other grassland ecoregions and other ecosystems to examine the
robustness of the PWR model and its stability in different
environmental and biophysical conditions.
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