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Abstract

The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge
in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC)
measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI),
photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate
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moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function
of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled
by air temperature or soil moisture, whichever is most limiting. The EC-LUEmodel was calibrated and validated using 24,349 daily
GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of
forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration
and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer
(MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was
predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the
beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP
over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can
be derived from remote sensing data or existing climate observation networks.
# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Predicting the gross primary productivity (GPP) of
terrestrial ecosystems has been a major challenge in
quantifying the global carbon cycle (Canadell et al.,
2000). Among all the predictive methods, the light use
efficiency (LUE) model may have the most potential to
adequately address the spatial and temporal dynamics
of GPP because of its theoretical basis and practicality
(Running et al., 2000). The LUE model is built upon
two fundamental assumptions (Running et al., 2004):
(1) that ecosystem GPP is directly related to absorbed
photosynthetically active radiation (APAR) through
LUE, where LUE is defined as the amount of carbon
produced per unit of APAR and (2) that realized LUE
may be reduced below its theoretical potential value by
environmental stresses such as low temperatures or
water shortages (Landsberg, 1986). The general form of
the LUE model is:

GPP ¼ fPAR" PAR " emax " f (1)

where PAR is the incident photosynthetically active
radiation (MJ m#2) per time period (e.g., day or month),
fPAR is the fraction of PAR absorbed by the vegetation
canopy, emax is the potential LUE (g C m#2 MJ#1

APAR) without environment stress, and f is a scalar
varying from 0 to 1 and represents the reduction of
potential LUE under limiting environmental conditions,
the multiplication of emax and f is realized LUE.

Independently and as a part of integrated ecosystem
models, the LUE approach has been used to estimate
GPP and net primary production (NPP) at various
spatial and temporal scales (Potter et al., 1993; Prince
and Goward, 1995; Landsberg andWaring, 1997; Coops
et al., 2005; Running et al., 2000; Xiao et al., 2004; Law
and Waring, 1994a).

The CASA model (Potter et al., 1993) combines
AVHRR satellite data, monthly temperature, precipita-
tion, soil attributes, and a biome-independent potential
LUE of 0.389 g C m#2 MJ#1 APAR to estimate global
terrestrial NPP.

The Global Production Efficiency Model (GLO-
PEM) (Prince and Goward, 1995) simulates both global
GPP and global NPP by retrieving APAR directly from
satellite data, along with environmental variables that
affect the utilization of APAR.

The 3-PG model (Physiological Principles in Pre-
dicting Growth) (Landsberg and Waring, 1997) calcu-
lates forest GPP from APAR and LUE, and takes into
consideration the effects of freezing temperatures, soil
drought, atmospheric vapor pressure deficits, soil
fertility, carbon allocation, and stand age. A model
output is NPP, where the NPP/GPP ratio is assumed to be
fairly constrained (Waring et al., 1998). A spatial version
of 3-PG, is based on spatially derived climatology, soil
surveys, and remote sensing estimates of fPAR.

MODIS-GPP algorithms (Running et al., 1999,
2000) also rely heavily on the LUE approach, with
inputs from MODIS LAI/fPAR (MOD15A2), land
cover, and biome-specific climatologic data from
NASA’s Data Assimilation Office. Light use efficiency
(e) is calculated from two factors: the biome-specific
maximum conversion efficiency emax, a multiplier that
reduces the conversion efficiency when cold tempera-
tures limit plant function, and a second multiplier that
reduces the maximum conversion efficiency when
vapor pressure deficit (VPD) is high enough to inhibit
photosynthesis. It is assumed that soil water deficit co-
varies with VPD and that VPD will account for drought
stress. The GPP algorithm was tested with flux datasets
from a range of biomes (Heinsch et al., 2006).

In the Vegetation Production Model (VPM) (Xiao
et al., 2004), the potential LUE is affected by
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temperature, land surface moisture condition and leaf
phenology. The model C-Fix (Veroustraete et al., 2002)
is driven by temperature, radiation and fPAR.

Although these LUE models have been used to
estimate global or regional patterns of GPP or NPP, the
LUE values on which they are based need to be
calibrated rigorously because they greatly impact the
accuracy of the model. The C-Fix model assumes a
value of 1.1 g C m#2 MJ#1 APAR as the invariant
realized LUE value for the calculation of GPP, while
other models are based on the concept of potential LUE
regulated by environmental conditions (Table 1). GLO-
PEM calculates the potential light use efficiency for C3

plants (Table 1), while the potential LUE value for C4

plants is fixed at 2.76 g C m#2 MJ#1 APAR. The
MODIS-GPP algorithm relies on BIOME-BGC to
compute the LUE of the MODIS-GPP product based
on the standard global 1-km biome classification for
Earth Observation Systems. Some LUE models apply a
value for universal mean realized LUE taken from the
literature sources as model inputs for various ecosys-
tems, but some research suggests that realized LUE is
not a universal constant (Russell et al., 1989).

Another important parameter in the LUE model is
fPAR. In general, fPAR can be derived from remotely
sensed data because of the connection between
absorbed solar energy and satellite-derived spectral
indices of vegetation (Myneni and Williams, 1994).
This connection is usually realized by the implementa-
tion of Beer’s law that defines light absorption as a

factor of leaf area index (Bondeau et al., 1999; Running
et al., 2004). A few studies have also shown that fPAR is
linearly related to the normalized difference vegetation
index (NDVI) across different biomes (Ruimy and
Saugier, 1994; Myneni and Williams, 1994; Law and
Waring, 1994b). It would be very useful if the linear
relationship between fPAR and NDVI could be
implemented in the LUE model to address the spatial
and temporal variability of GPP.

Eddy covariance (EC) measurements recorded by
the increasing number of EC towers offer the best
opportunity for estimating GPP and developing LUE
models. The concurrent measurements of meteorolo-
gical variables such as temperature and vapor pressure,
as well as water balance variables including evapo-
transpiration and soil water status, provide unprece-
dented datasets for investigating the dynamics and
driving variables of GPP. The CO2 EC flux data now
play a growing role in evaluating process- and satellite-
based models (Law et al., 2000b). The network of EC
towers (e.g., AmeriFlux) now covers a wide range of
biomes in contrast to most previous efforts, which
focused on individual sites or biomes (van Wijk and
Bouten, 2002; Xiao et al., 2005a,b; Braswell et al.,
2005;Williams et al., 2005; Dufrene et al., 2005). It is of
clear value to understand the similarities and differences
of GPP across time, space and biomes. The overarching
goal of this study is to develop a LUE model (EC-LUE)
for predicting daily GPP across biomes based on EC
flux data. Specific objectives are to (1) derive consistent
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Table 1
The structure and inputs of common light use efficiency models

Model eg or en (g C m#2 MJ#1 APAR) e0 (g C m#2 MJ#1 APAR) Reference

Net primary production

CASA en = e0 " Ts " SM 0.389 Potter et al. (1993)

Gross primary production

GLO-PEM eg = e0 " Ts " SM " VPD 55.2aa Prince and Goward (1995)

eg = e0 " Ts " SM " VPD 2.76b Prince and Goward (1995)
MODIS-PSN eg = e0 " Ts " VPD 0.604–1.259c Running et al. (2000)

3-PG eg = e0 1.8d Landsberg and Waring (1997)

VPM eg = e0 " Ts "W 2.208e Xiao et al. (2005a)

eg = e0 " Ts "W 2.484f Xiao et al. (2005b)
C-Fix model eg = e0 1.1 Veroustraete et al. (2002)

EC-LUE eg = e0 " Ts " SM 2.14 This study

NPP = en " fPAR " PAR or GPP = eg " fPAR " PAR, where en is realized light use efficiency for calculating NPP, and eg for GPP. Downward
regulation scales for light use efficiency include: temperature (Ts), soil moisture index (SM), water vapor pressure deficit (VPD) and canopy water
content (W). e0 is the potential light use efficiency in a few models.
a For C3 plants, and a is quantum yield.
b For C4 plants.
c For 11 standard global biome classes.
d For forest ecosystems.
e For evergreen needleleaf forests.
f For moist tropical evergreen forests. An approximate conversion of 4.6 betweenMJ (106 J) and mol PPFD (Aber et al., 1996) is used in this study.



daily GPP values from EC flux measurements collected
from various forests, grasslands, and savannas, (2)
develop a LUE model and optimize the parameters
based on daily GPP estimates from EC measurements
across biomes, (3) compare EC-LUE GPP predictions
with MODIS products, and (4) investigate the major
controlling factors of GPP during the growing season
across major biomes.

2. Methods and materials

2.1. Description of the EC-LUE model

The algorithms for calculating fPAR and realized
LUE, two important variables in the EC-LUE model
(Eq. (1)), are described below. APAR combines the
meteorological constraint of howmuch sunlight reaches
a site with the ecological constraint of the amount of
leaf area absorbing the solar energy, thus avoiding many
complexities of canopy micrometeorology and carbon
balance theory. Using a radiative transfer model,
Myneni andWilliams (1994) found a linear relationship
between fPAR and NDVI for a large set of different
vegetation-soil-atmosphere conditions:

fPAR ¼ a" NDVIþ b (2)

where a and b are empirical constants. The intercept of
the relationship between fPAR and NDVI is generally
negative, and the ratio of a to b indicates bare soil NDVI
when fPAR is zero. In our study, a and b are set to 1.24
and #0.168 according to Sims et al. (2005), and NDVI
is obtained directly from 1-km MODIS data.

The magnitude of LUE and its relationship to
controlling factors are of crucial importance in the EC-
LUE model. It is assumed in the EC-LUE model that a
universal invariant potential LUE (emax, g C m#2 MJ#1

APAR) exists across all the sites and biomes. The
potential LUE is reduced by non-optimal temperature or
water stress:

e ¼ emax "minðT s;W sÞ (3)

where Ts and Ws are the downward-regulation scalars
for the respective effects of temperature andmoisture on
LUE of vegetation. Ts andWs vary between 0 and 1 with
smaller values indicating a stronger negative impact.
Min denotes the minimum value of Ts andWs. It should
be noticed that in Eq. (3) we assumed that the impacts of
temperature and moisture on LUE follow Liebig’s law,
i.e., LUE is only affected by the most limiting factor at
any given time. Most other approaches assume that the
impacts of temperature and moisture are multiplicative.

Ts is estimated based on the equation developed for
the Terrestrial Ecosystem Model (TEM) (Raich et al.,
1991):

T s ¼
ðT # TminÞðT # TmaxÞ

½ðT # TminÞðT # TmaxÞ( # ðT # ToptÞ2
(4)

where Tmin, Tmax and Topt are minimum, maximum and
optimum air temperature (8C) for photosynthetic activ-
ity, respectively. If air temperature falls below Tmin or
increases beyond Tmax, Ts is set to zero. In this study,
Tmin and Tmax are set to 0 and 40 8C, respectively, while
Topt will be determined using nonlinear optimization.

Defining a function for quantifying the control of
moisture availability on plant photosynthesis (Ws) has
long been a challenge. Traditionally, soilmoisture (Potter
et al., 1993) and vapor pressure deficit (VPD) (Running
et al., 2000) have been used to define the response
function. However, these variables have their weak-
nesses. For example, it is difficult to characterize soil
moisture conditions over large areas from either
modeling or remote sensing. This limits the predictive
power of any spatial GPP model that relies on soil
moisture. On the other hand, VPD is not a good indicator
of the spatial heterogeneity of soil moisture conditions
across the landscape (e.g., slope versus valley) and it is
not likely to be linearly related to soil water availability
for which it is often used as a proxy. Here, we explore an
alternative approach that uses the evaporative fraction
(EF) to define the impact of moisture on photosynthesis:

EF ¼ LE

LEþ H
(5)

where LE is EC-measured latent heat flux (W m#2), and
H is sensible heat flux (W m#2). The Bowen ratio (b) is
the ratio of energy available for sensible heating to
energy available for latent heating (Lewis, 1995) and is
related to EF by:

EF ¼ 1

bþ 1
(6)

In this study, the water stress factorWs equals EF. EF is a
very good indicator of soil or vegetation moisture con-
ditions because decreasing amounts of energy partitioned
into latent heat flux suggests a stronger moisture limita-
tion. A number of studies have used EF to represent
moisture conditions of ecosystems (Kurc and Small,
2004; Zhang et al., 2004; Suleiman and Crago, 2004).
In addition, EF can be derived from remotely sensed
vegetation indices and land surface temperature products
from satellites such as AVHRR and MODIS (Venturini
et al., 2004), a major advantage of this approach.
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2.2. EC flux data

The EC flux data used in this study were downloaded
from the AmeriFlux Internet site (http://public.ornl.gov/
ameriflux; AmeriFlux, 2001) and EuroFlux site (http://
www.fluxnet.ornl.gov/fluxnet/index.cfm; Valentini,
2003). Twenty-eight EC flux tower sites were included
in this study (Table 2), from five major terrestrial
biomes: deciduous broadleaf forest, mixed forest,
evergreen needleleaf forest, grassland and savanna.
Detailed information on the vegetation, climate, and
soils at these sites is available at the AmeriFlux and
EuroFlux Internet sites.

Eddy covariance systems directly measure net
ecosystem exchange (NEE) rather than GPP. In order
to estimate GPP, it is necessary to estimate daytime
respiration (Rd):

GPP ¼ Rd # NEEd (7)

where NEEd is daytime NEE. Daytime ecosystem
respiration Rd is usually estimated by using daytime
temperature and an equation describing the temperature
dependence of respiration, and the latter is usually
developed from nighttime NEE measurements. Night-
time NEE represents nighttime respiration (autotrophic
and heterotrophic) because plants do not photosynthe-
size at night. The following model (Marshall and Bis-
coe, 1980; Falge et al., 2002; Saito et al., 2005) was used
to describe the effects of temperature on night-time
NEE:

NEEnight ¼ g " ekT (8)

where NEEnight is night-time ecosystem respiration, T is
average air temperature at night time. The parameters g
and k were determined using nonlinear optimization.
Eq. (8) and daytime temperature were subsequently
used to estimate daytime respiration (Rd). Because
nighttime CO2 flux can be underestimated by eddy
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Table 2

Name, location, annual mean temperature (AMT), annual precipitation (AP), and other characteristics of the study sites used for model calibration

and validation

Site Latitude, longitude Vegetation type AMT

(8C)
AP

(mm)

Stand age

(year)

Reference

Model calibration sites

Morgan Monroe 39.328N, 86.418W Deciduous broadleaf forest 12.42 1030.5 60–90 Schmid et al. (2000)
Sarrebourg 48.678N, 7.088E Deciduous broadleaf forest 9.20 820 30 Granier et al. (2000)

Duke Hardwood 35.978N, 79.108W Deciduous broadleaf forest 14.35 1154 80–100 Pataki and Oren (2003)

Donaldson 29.758N, 82.168W Evergreen needleleaf forest 21.70 1330 11–13 Gholz and Clark (2002)

Metolius Young 44.448N, 121.578W Evergreen needleleaf forest 7.68 403 15 Law et al. (2000a)
Metolius 44.498N, 121.628W Evergreen needleleaf forest 8.37 577 250 and 50 Law et al. (2000b)

Howland Forest 45.208N, 68.748W Evergreen needleleaf forest 6.65 523–1032 95–140 Hollinger et al. (1999, 2004)

Tharandt 50.978N, 13.638E Evergreen needleleaf forest 7.50 824 140 Kramer et al. (2002)
Boreas NSA 55.878N, 98.488W Evergreen needleleaf forest #3.55 420 120 and 90 Goulden et al. (1998)

Walnut River 37.528N, 96.868W Grassland 13.10 1045.4 Song et al. (2005)

Sylvania 46.248N, 89.358W Mixed forest 6.14 408 1–350 Desai et al. (2005)

Vaira Ranch 38.418N, 120.958W Grassland 15.90 498 Baldocchi et al. (2004)

Model validation sites

Goodwin Creek 34.258N, 89.978W Deciduous broadleaf forest 16.10 700–1800

Willow Creek 45.918N, 90.088W Deciduous broadleaf forest 5.13 703 60–80 Bolstad et al. (2004)
Austin Cary 29.738N, 82.228W Evergreen needleleaf forest 21.70 1330 81 Gholz and Clark (2002)

Blodgett Forest 38.898N, 120.638W Evergreen needleleaf forest 10.40 1290 6–7 Goldstein et al. (2000)

Boreas NSA 1930 55.918N, 98.528W Evergreen needleleaf forest #2.88 499.82 76 Goulden et al. (2006)

Boreas NSA 1963 55.918N, 98.388W Evergreen needleleaf forest #2.87 502 43 Goulden et al. (2006)
Boreas NSA 1981 55.868N, 98.498W Evergreen needleleaf forest #2.86 500.34 Goulden et al. (2006)

Metolius Mid 44.458N, 121.568W Evergreen needleleaf forest 7.00 418 56 Law et al. (2004)

Hyytiala 61.858N, 24.288E Evergreen needleleaf forest 3.50 640 30 Kramer et al. (2002)

Niwot Ridge 40.038N, 105.558W Evergreen needleleaf forest 2.40 800 100 Monson et al. (2002)
Duke Pine 35.988N, 79.098W Evergreen needleleaf forest 14.35 1154 17 Stoy et al. (2006)

Fort Peck 48.318N, 105.108W Grassland 5.13 500

Duke Grass 35.978N, 79.098W Grassland 14.35 1154 Novick et al. (2004)
Lost Creek 46.088N, 89.988W Mixed forest 5.02 648.5 Davis et al. (2003)

UMBS 45.568N, 84.718W Mixed forest 6.20 750 90 Curtis et al. (2005)

Tonzi Ranch 38.438N, 120.978W Savanna 15.4 494 Baldocchi et al. (2004)

http://public.ornl.gov/ameriflux
http://public.ornl.gov/ameriflux
http://www.fluxnet.ornl.gov/fluxnet/index.cfm
http://www.fluxnet.ornl.gov/fluxnet/index.cfm


covariance measurements under stable conditions (Bal-
docchi, 2003), the data included in this study were
limited to conditions when the friction velocity (u*)
exceeded 0.25 m s#1. On average, 48% of the nighttime
data was rejected due to insufficient turbulence. The
data rejected varied among sites from 76% (Duke
hardwood) to 16% (Boreas 1930). Although many
variants of Eq. (8) have been proposed (Wang et al.,
2003; Gilmanov et al., 2005), our results indicated that
Eq. (8) was the most reliable and robust across all sites
because regressions of other methods sometimes tended
to yield unstable parameters.

MODIS data used in the model were MODIS ASCII
subset data generated with Collection 4 or later
algorithms, and were downloaded directly from the
AmeriFlux web site. MODIS NDVI 16-day composites
at 1-km spatial resolution were the basis for calculating
the fPAR for the flux sites. Only the NDVI values of the
pixel containing the tower were used. Quality control
(QC) flags, which signal cloud contamination in each
pixel, were examined to screen and reject NDVI data of
insufficient quality. Daily NDVI values were derived
from two consecutive 16-day composites by linear
interpretation.

2.3. Nonlinear optimization and statistical analysis

The nonlinear regression procedure (Proc NLIN) in
the Statistical Analysis System (SAS, SAS Institute
Inc., Cary, NC, USA) was applied to two calculations:
(1) to determine the parameter values in the equation
describing the temperature dependence of ecosystem
respiration (i.e., Eq. (8)), and (2) to optimize the values
for Topt and emax in the EC-LUE model across all the
calibration sites.

Four metrics were used to evaluate the performance
of the EC-LUE model in this study, including these
four:

(1) The coefficient of determination, R2, representing
how much variation in the observations was
explained by the model.

(2) Absolute predictive error (PE), quantifying the
difference between simulated and observed values.

(3) Relative predictive error (RPE), computed as:

RPE ¼ S̄# Ō

Ō
" 100 (9)

where S̄ and Ō are mean simulated and mean
observed values, respectively.

(4) Kendall’s coefficient of rank correlation t (Kanji,
1999), which was used to quantify the agreement

between the simulated and estimated from EC
measurements seasonal patterns of GPP. The
Kendall coefficient measured the tendency coher-
ence between predicted and observed GPP by
comparing the ranks assigned to successive pairs. If
Oj # Oi and Sj # Si have the same sign (i.e., positive
or negative), the pair would be concordant.
Otherwise, the pair would be discordant. With n
observations, we can form n (n # 1)/2 pairs. Let C
stand for the number of concordant pairs and D
stand for the number of discordant pairs, then the
Kendall concordance coefficient can be calculated
as follows:

t ¼ C # D

nðn# 1Þ=2
(10)

From the definition, it can be seen that the Kendall
coefficient varies from #1 (when C = 0) to 1 (when
D = 0). A preponderance of concordant pairs would
result in a value close to 1, indicating a strong
positive relationship between the seasonal patterns
of observed and simulated GPP; a preponderance of
discordant pairs would result in a negative value
close to #1, indicating a strong negative relation-
ship between the seasonal patterns.

3. Results

3.1. Model calibration

Twelve sites were selected to develop the EC-LUE
model. These sites spanned from the subtropical to
boreal regions, covered several dominant natural
ecosystem types including: evergreen needleleaf
forest, mixed forest, deciduous broadleaf forest,
grassland and savanna (Table 2). The calibrated values
for optimal temperature (Topt) and potential LUE
(emax) were 20.33 8C and 2.14 g C m#2 MJ#1 APAR,
respectively.

Fig. 1 shows the range of predicted GPP and
estimated GPP from EC measurements at the 12
calibration sites. Collectively, the EC-LUE model
explained about 85% of the variation of daily GPP
estimated across all these sites (Fig. 2). There were no
significant systematic errors in model predictions.
Individually, the coefficients of determination (R2)
varied from 0.63 at Donaldson site to 0.93 at the Walnut
River site, with all of them being statistically significant
at p < 0.05 (Table 3). Although the EC-LUE model
explained significant amounts of GPP variability at the
individual sites, large differences between predicted
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GPP and estimated GPP values from EC measurements
still existed at a few sites. The model underestimated
GPP at Donaldson, Metolius young and Tharandt with
the relative predictive errors being #25%, #25% and
#30%, respectively (Table 3). The discrepancies
between predicted GPP and estimated GPP from EC
measurements values occurred mainly in the initial
stages of the growing seasons of 2001 and 2002 at

Donaldson (Fig. 1). At Tharandt, although the EC-LUE
model explained 89% of the GPP variation, the GPP
values were consistently underestimated throughout the
growing season (Fig. 1). Predicted values were higher
than estimated GPP at Metolius and Vaira Ranch
with PE values being 0.63 g C m#2 day#1 and
0.81 g C m#2 day#1 and RPE values being 22% and
38%, respectively. Specifically, the EC-LUE model
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Fig. 1. Daily variation of predicted GPP and estimated GPP from EC measurements at model calibration sites. The black solid lines represent the

predicted GPP, and the open circle dots represent estimated GPP.



overestimated GPP during the mid-growing season at
Metolius (Fig. 1). At the other seven sites, the EC-LUE
model gave good predictions with RPE values lower
than 20% (Table 3).

The predicted GPP and estimated GPP from EC
measurements time series at the calibration sites
demonstrated distinct seasonal cycles and matched
well (Fig. 1). At most sites, GPP values were near zero
in thewinter season because low temperature and frozen
soil inhibited photosynthetic activities. The evergreen
needleleaf forest at Donaldson still maintains high
ecosystem production in winter because it is located at
low latitude with adequate temperature. The starting
and end dates of the predicted GPP and estimated GPP
from EC measurements agreed well across all sites. The
average Kendall’s correlation coefficient for the 12
calibration sites was 0.91, indicating strong seasonal
concordance between the simulated and estimated GPP
from EC measurements (Table 3).

3.2. Model validation

We added 16 sites, including various ecosystem
types, to check the performance of the EC-LUE model
(Table 2). The EC-LUE model successfully predicted
the magnitudes and seasonal variations of the estimated
GPP from EC measurements at these new sites (Fig. 3).
Model performance was similar to that at the calibration
sites and explained 77% of the GPP variations across all
16 sites (Fig. 4). No significant systematic errors were
found in the EC-LUE model across the validation sites.

At individual sites, the EC-LUE model explained 59–
96% of the GPP variability with no apparent biases in
any one biome (Table 3).

However, large differences between predicted and
estimated GPP still existed in a few sites, including the
three Boreas NSA burn sites, Lost Creek, Fort Peck and
Tonzi Ranch. At the three Boreas NSA burn sites, the
RPE varied from#44% to#23%. Predicted GPP values
were higher than estimated GPP at Fort Peck, Lost
Creek and Tonzi Ranch with RPE values of 41%, 46%
and 31%, respectively. At the other 10 sites, the RPE
values were lower than 15%.

The predicted seasonal patterns as well as beginning
and end of growing seasons agreed well with the
estimated values fromECmeasurements at all validation
sites (Fig. 3). The average Kendall’s correlation
coefficient from the 16 validation sites was 0.88,
indicating that predicted GPP had a strong seasonal
coherence with estimated GPP from EC measurements.

3.3. Comparison with the MODIS-GPP product

The MOD17 GPP products were level-4, 1-km
global data collections, downloaded from the FLUX-
NET sites directly. We compared results generated from
the EC-LUE model and MODIS-GPP products at 28
sites. The EC-LUE results were summed over 8-day
periods to match the time scale of MODIS-GPP
products. Comparison was performed only when all
three estimates of GPP were available: estimated GPP
from FLUXNET sites, predicted GPP by the EC-LUE
model and MODIS-GPP products.

Overall, the EC-LUEmodel performed better than the
MODIS algorithms at these sites according to the values
of R2, PE and RPE (Table 4). The EC-LUE model could
explain 82% of the variation in the 8-day GPP compared
with just 44% by the MODIS-GPP product (Fig. 5). The
PE values of the EC-LUE model and MODIS-GPP were
significantly correlated with the estimated GPP from EC
measurements (Fig. 5). However, it is apparent that the
correlation of EC-LUE was strongly affected by one
extreme value (GPP = 66.69 at Donaldson). Without this
point, PE values of the EC-LUEmodel were independent
of estimated GPP fromECmeasurements. As to the RPE
values, significant correlation with the estimated GPP
from EC measurements was only found in the MODIS-
GPP product. However, the slopes of EC-LUE in the
regression equation of PE and RPE with estimated GPP
from EC measurements were closer to zero, with lower
R2 and intercepts that were comparable to the MODIS-
GPP product. Overall, the EC-LUE model offered better
predictions of GPP than the MODIS-GPP product.
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Fig. 2. Predicted vs. the estimated GPP at the model calibration sites

in Table 1. The short dash line is 1:1 line and the solid line is linear

regression line.



3.4. Environmental controls on daily GPP

The relationship of estimated GPP from EC
measurements to APAR at 12 calibration sites during
the growing season was a strong linear relationship.
However, the amount of GPP variation explained by
APAR variation was site-dependent. For example,
APAR can explain 78% of GPP variation at Walnut
River and only 26% at Boreas NSA.

At all sites, the temperature and moisture indexes
had distinct seasonal patterns (Figs. 6 and 7). The values
of thermal index were close to zero in the winter, except
for some sites located in lower latitudes or with a
Mediterranean climate such as Goodwin Creek,
Donaldson, Austin Cary, Tonzi Ranch and Vaira Ranch.
Compared with the thermal index, the moisture index
demonstrated more diverse and complex variations. The
moisture index at most sites had a similar seasonal trend
to that of thermal index, characterized by very low

values in the winter and higher values during the
growing season. At some sites such as Metolius Young
and Metolius Mid, higher values of moisture index
appeared during the winter rather than during the
growing season because of the warm and dry summers
and wet and cool winters (Law et al., 2001). For sites
with a Mediterranean climate (e.g., Vaira Ranch and
Tonzi Ranch), the growing season was from winter to
the following spring, and the moisture index was close
to zero during summer and autumn, opposite of the
seasonality of the thermal index.

At most sites, water availability was the controlling
factor of LUE except at the beginning and end of the
growing season when temperature affected LUE
(Figs. 6 and 7). For example, the thermal index was
lower than the soil moisture index only at the beginning
and end of the growing season at Metolius Young,
suggesting that temperature rather than moisture was
the controlling factor on LUE during these time periods.
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Table 3

Predicted results of the EC-LUE model for calibration and validation sites

Site R2 Preda Estb PE RPE (%) t Nc

Model calibration sites

Morgan Monroe 0.82 4.11 3.51 0.60 0.17 0.90 777

Sarrebourg 0.83 5.72 6.03 #0.31 #0.05 0.91 239

Duke Hardwood 0.91 5.36 5.31 0.05 0.01 0.95 1845
Donaldson 0.63 6.29 8.36 #2.07 #0.25 0.79 738

Metolius Young 0.81 2.03 2.72 #0.69 #0.25 0.89 1044

Metolius 0.85 3.50 2.87 0.63 0.22 0.92 298

Howland Forest 0.90 3.19 3.75 #0.56 #0.15 0.94 1393
Tharandt 0.89 2.92 4.17 #1.25 #0.30 0.94 368

Boreas NSA 0.83 1.51 1.39 0.12 0.09 0.91 1303

Walnut River 0.93 3.84 3.46 0.38 0.11 0.96 1160

Sylvania 0.89 3.22 3.19 0.03 0.01 0.94 945
Vaira Ranch 0.80 2.93 2.12 0.81 0.38 0.89 1147

Model validation sites

Goodwin Creek 0.77 4.71 4.54 0.17 0.04 0.88 822
Willow Creek 0.73 3.81 3.47 0.34 0.10 0.85 1161

Austin Cary 0.72 5.08 5.48 #0.41 #0.07 0.84 283

Blodgett Forest 0.60 4.87 5.48 #0.61 #0.11 0.77 1352
Boreas NSA 1930 0.79 1.84 3.04 #1.20 #0.39 0.89 107

Boreas NSA 1963 0.96 0.90 1.62 #0.72 #0.44 0.97 211

Boreas NSA 1981 0.60 1.80 2.35 #0.55 #0.23 0.77 62

Metolius Mid 0.64 2.94 3.03 #0.09 #0.03 0.79 998
Hyytiala 0.94 2.42 2.50 #0.08 #0.03 0.97 328

Niwot Ridge 0.87 2.39 2.39 0.00 0.00 0.93 1429

Duke Pine 0.78 6.00 6.85 #0.85 #0.12 0.88 2168

Fort Peck 0.90 2.93 2.07 0.85 0.41 0.94 159
Duke Grass 0.83 2.11 2.34 #0.23 #0.10 0.91 1108

Lost Creek 0.87 3.55 2.43 1.11 0.46 0.93 1285

UMBS 0.92 5.75 5.72 0.03 0.00 0.96 681

Tonzi Ranch 0.59 2.76 2.10 0.65 0.31 0.77 938

a Average predicted GPP (g C m#2 day#1).
b Average estimated GPP from EC flux tower data (g C m#2 day#1).
c Total days.
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Fig. 3. Daily variation of predicted GPP and estimated GPP from EC measurements at model test sites. The black solid lines represent predicted

GPP, and the open circle dots represent estimated GPP.



However, because Tonzi Ranch and Vaira Ranch share a
Mediterranean climate, they were biologically active
during the winter and early spring and became dormant
during the summer as temperature was out of phase with
precipitation. Moisture was the controlling factor not
only for initiating the beginning of the growing season at
Tonzi Ranch and Vaira Ranch but also for the length of
the whole growing season. Thermal resources were

always ample at the low-altitude sites such as Donaldson
and Goodwin Creek, and moisture was the only limiting
factor for the realization of the potential LUE.

4. Discussion

4.1. fPAR

fPAR in the EC-LUE model is calculated from the
NDVI. Although this algorithm was empirically based
on ground measurements (Sims et al., 2005), it has a
strong theoretical basis (Myneni and Williams, 1994).
This study used MODIS/Terra NDVI products of 1-km
resolution, directly downloaded from the FLUXNET
sites. No attempt was made to improve the quality of the
NDVI data. Any noises or errors in the NDVI values,
therefore, would have been transferred to GPP
predictions. MODIS/Terra NDVI products were gener-
ated from MODIS Terra surface reflectance after
correcting for the effects of cloud contamination, ozone
absorption, and aerosols, and adjusted to nadir and
standard sun angles with use of BRDF models (http://
edcdaac.usgs.gov/modis/mod13a2.asp). NDVI noises
and errors are inevitable at the flux tower footprint scale.
These will contribute proportionally to the errors in
fPAR calculation, and ultimately to GPP prediction.
Although NDVI values saturate in multi-layer closed
canopies with LAI values greater than 4–6, the
successful application of the linear relationship between
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Fig. 4. Predicted vs. the estimated GPP at the model test sites in

Table 1. The short dash line is 1:1 line and the solid line is linear

regression line.

Fig. 5. Comparison with estimated 8-day GPP from EC measurements and predicted GPP by the EC-LUE model and MODIS-GPP product.

http://edcdaac.usgs.gov/modis/mod13a2.asp
http://edcdaac.usgs.gov/modis/mod13a2.asp


NDVI and fPAR in the EC-LUE model across these
various test sites suggested that NDVI saturation is not a
limitation for estimating fPAR, when compared to the
traditional approach discussed below.

Another very commonly used method for calculating
fPAR is based on the Beer–Lambert law (Ruimy et al.,
1999):

fPAR ¼ 0:95" ð1# expð#k " LAIÞÞ (11)

where k is the light extinction coefficient (k = 0.5), and
LAI is the leaf area index (m2 m#2). It is worthwhile to
compare the similarity anddifferences of the fPARvalues
derived from NDVI and LAI. Because LAI data were
scarce, comparison was only possible at a few sites.
According to Granier et al. (2000), the averaged LAI
value at the Sarrebourg site was 4.9) 0.4 m2 m#2 over
the growing season of 1996–1997. Based on the Beer–
Lambert law, the fPAR value of Sarrebourg would be
0.87. The fPAR value for Morgan Monroe would also be

0.87 with a LAI of 4.9 m2 m#2 (Curtis et al., 2002). The
fPAR values at Sarrebourg and Morgan Monroe derived
from LAI were very close to those derived fromNDVI in
this study (0.89 and 0.86, respectively for Sarrebourg and
MorganMonroe, Table 5). Similarity of the fPAR values
derived from these two methods can also be seen at the
Metolius Young and old stands, two evergreen needleleaf
forest ecosystems. The Metolius Young ponderosa pine
forest was clear-cut in 1978 and had not yet reached its
maximum canopy cover. The LAI of theMetolius Young
forest was 2.0 m2 m#2, only about half of that of the
Metolius mature ponderosa pine forest (4.3 m2 m#2)
(Law et al., 2001). The corresponding LAI-derived fPAR
values were 0.60 and 0.83 for the Metolius Young and
mature stands, respectively, which are very similar to the
NDVI-derived values of 0.58 and 0.75 from this study.
The slightly higher LAI-derived fPAR values might be
explained by the time period they cover: LAI values from
Lawet al. (2001)weremeasured in July 1999, the peak of
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Table 4

Comparison between the EC-LUE model and MODIS-GPP product

Site Esta Nb EC-LUE model MODIS-GPP

Predc R2 PE RPE Predd R2 PE RPE

Morgan Monroe 25.27 108 29.60 0.88 4.34 0.17 33.53 0.71 8.26 0.33
Sarrebourg 43.67 33 41.43 0.89 #2.24 #0.05 21.23 0.81 #22.44 #0.51

Donaldson 66.69 92 50.23 0.66 #16.47 #0.25 47.62 0.65 #19.07 #0.29

Metolius Young 21.68 131 16.18 0.84 #5.49 #0.25 25.23 0.76 3.56 0.16

Metolius 21.36 40 26.07 0.91 4.71 0.22 29.66 0.76 8.30 0.39
Howland Forest 29.33 178 24.99 0.94 #4.35 #0.15 26.41 0.85 #2.92 #0.10

Tharandt 33.33 46 23.34 0.92 #9.99 #0.30 20.17 0.77 #13.16 #0.39

Boreas NSA 10.68 131 11.20 0.87 0.52 0.05 16.43 0.78 5.75 0.54
Walnut River 25.06 111 26.49 0.96 1.43 0.06 15.11 0.84 #9.95 #0.40

Duke Hardwood 42.09 138 44.09 0.93 2.01 0.05 38.98 0.79 #3.11 #0.07

Sylvania 24.06 99 25.07 0.95 1.02 0.04 27.02 0.83 2.96 0.12

Vaira Ranch 16.35 147 22.61 0.84 6.26 0.38 22.81 0.02 6.46 0.40
Goodwin Creek 30.61 65 36.38 0.84 5.77 0.19 24.07 0.53 #6.54 #0.21

Willow Creek 23.59 171 25.87 0.82 2.28 0.10 27.73 0.71 4.14 0.18

Austin Cary 41.91 37 38.79 0.86 #3.11 #0.07 26.71 0.69 #15.20 #0.36

Blodgett Forest 41.88 176 37.32 0.71 #4.57 #0.11 23.90 0.17 #17.98 #0.43
Boreas NSA 1930 20.34 16 12.31 0.92 #8.03 #0.39 14.53 0.33 #5.81 #0.29

Boreas NSA 1963 11.40 30 6.36 0.98 #5.05 #0.44 13.29 0.82 1.88 0.17

Boreas NSA 1981 13.22 11 10.13 0.90 #3.09 #0.23 23.23 0.37 10.01 0.76
Metolius Mid 24.00 62 19.75 0.77 #4.26 #0.18 27.84 0.78 3.83 0.16

Hyytiala 19.55 42 18.91 0.96 #0.64 #0.03 17.99 0.90 #1.56 #0.08

Niwot Ridge 19.07 179 19.08 0.90 0.01 0.00 25.35 0.86 6.27 0.33

Fort Peck 14.98 22 21.16 0.94 6.18 0.41 11.28 0.82 #3.70 #0.25
Tonzi Ranch 26.65 122 21.11 0.66 #5.54 #0.21 23.56 0.32 #3.09 #0.12

Lost creek 17.42 142 26.22 0.90 8.79 0.50 25.68 0.82 8.26 0.47

UMBS 40.16 97 40.35 0.95 0.19 0.00 35.08 0.81 #5.07 #0.13

Duke Grass 20.47 46 18.51 0.93 #1.96 #0.10 37.01 0.87 16.54 0.81
Duke Pine 50.11 179 48.07 0.84 #2.03 #0.04 40.01 0.77 #10.09 #0.20

a Estimated GPP from EC flux tower data (g C m#2 8 days#1).
b Total number.
c Average predicted GPP by the EC-LUE model (g C m#2 8 days#1).
d Average predicted GPP of MODIS-GPP products (g C m#2 8 days#1).



the growing season, while the NDVI-derived valueswere
based on the mean NDVI value over the entire growing
season. The fPARvalues of grasslands and savannaswere
lower than those of forest ecosystems because of lower
canopy cover. The fPAR values were 0.57 for Walnut
River, 0.62 for Vaira Ranch, and 0.47 for Tonzi Ranch.
The seasonal trend of the fPAR values at Vaira Ranch

found in this study was similar to that found by Xu and
Baldocchi (2004).

4.2. Environmental controls on daily GPP

Our study’s finding of a strong linear relationship
between daily GPP and APAR at all sites differs from
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Fig. 6. Daily dynamics of temperature and moisture indices with estimated GPP. The gray shadows represent temperature index. The black solid

lines represent moisture index. The black filled dots represent GPP. aDeciduous broadleaf forest; bMixed forest; cEvergreen needleleaf forest.



previous works (Williams et al., 1998; Rayment and
Jarvis, 1999; Oechel et al., 2000; Saigusa et al., 2002;
Turner et al., 2003). For example, Turner et al. (2003)
found that the relationship was nonlinear in forest
ecosystems because of the saturation of photosynthesis
with increasing photosynthetic photon flux density

(PPFD). In this study, moisture and thermal factors were
considered as the factors affecting LUE. A number of
studies have suggested that water balance should be a
major factor in determining terrestrial production and its
spatial pattern. A close relationship between plant
productivity and evapotranspiration was previously
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Fig. 7. Daily dynamics of temperature and moisture indices with estimated GPP. The gray shadows represent temperature index. The black solid

lines represent moisture index. The black filled dots represent GPP. dSavanna; eGrassland.

Table 5

Comparison of fPAR based on measured LAI and fPAR of this study

Site LAI fPARa Measured time fPAR Reference

Sarrebourg 4.9 0.87 Growing season of 1996–1997 0.89b Granier et al. (2000)

Morgan Monroe 4.9 0.87 Background value 0.86b Curtis et al. (2002)

Metolius Young 2.0 0.6 July 1999 0.58b Law et al. (2001)
Metolius 4.3 0.83 July 1999 0.75b Law et al. (2001)

Vaira Ranch 1.0 0.37 DOY 25–40, 2002 0.54c Xu and Baldocchi (2004)

1.8 0.56 DOY 71–80, 2002 0.63c

2.4 0.66 DOY 96–105, 2002 0.71c

a Calculated fPAR values from Beer–Lambert law based on measured LAI.
b The average values of fPAR over growing season at this study.
c The values at same time with measured time.



shown by Rosenzweig (1968), and mean annual
precipitation was used to estimate NPP of those
ecosystems that are not limited by low temperature
(Lieth, 1975). Plant-available water appears to be the
dominant control on leaf area index and NPP of the
forests in the northwestern United States (Gholz, 1982).
Stephenson (1990) and Neilson et al. (1992) illustrated
the high correlation between the distribution of North
American plant formations and water-balance para-
meters. In our study, we used evaporative fraction (EF) to
evaluate moisture availability to plants. At most sites,
water availability was the controlling factor of LUE for
the entire growing season except at the beginning and the
end when temperature was controlling in some ecosys-
tems (Figs. 6 and 7), a result consistent with a number of
phenological studies. In boreal ecosystems, there was a
very good relationship between accumulated tempera-
ture summed above a given threshold and the timing of
bud break (Hannerz, 1999; Linkosalo, 2000). Some
authors have also stressed the role of soil temperature as
the prime factor determining the timing of the onset of
boreal, deciduous forests and temperate conifer photo-
synthesis (Schwarz et al., 1997; Jarvis and Linder, 2000;
Baldocchi et al., 2005). Chen et al. (2005) found that the
spatial patterns of beginning and end dates of growing
season correlated significantlywith the spatial patterns of
mean air temperatures in spring and autumn, respec-
tively, in temperate eastern China, and temperature
during the growing season usually did not reach the level
that incurred strong negative temperature effects on
photosynthesis. In our study, temperature index had little
impact on GPP during the growing season, in agreement
with field observations (Polley et al., 1992; Bassow and
Bazzaz, 1998).

We found that under the Mediterranean climate (e.g.,
Tonzi Ranch and Vaira Ranch), soil moisture was the
dominant control factor during the growing season and
temperature only occasionally limited the LUE after
germination in the winter. These results were consistent
with field phenological observations at Tonzi Ranch and
Vaira Ranch that closely followed soil moisture fluctua-
tions (Xu andBaldocchi, 2004). These authors found that
grass seed germination normally occurs in the autumn, 1
week after amajor rain eventwith total precipitation of at
least 15 mm. After germination, due to low soil and air
temperature and occasional frosts, the grasses undergo a
period of slow vegetative growth in the wintertime.

4.3. Realized light use efficiency (LUE)

Light use efficiency was the primary controlling
factor in the LUE model for predicting GPP. Large

discrepancies have arisen in previous studies because
realized LUE has been determined using inconsistent
methods due to different research objectives. LUE has
represented the total NPP or aboveground NPP in most
studies, but rarely to GPP (Gower et al., 1999).
Whichever method is used, LUE is calculated as:

LUE ¼ P

APAR
(12)

wherePmay beNPP, abovegroundNPP or GPP. If either
NPP or aboveground NPP is chosen, there would be
several effects on LUE variability. First, some photo-
synthates are immediately used for maintenance and
growth respiration, and respiration has a different depen-
dence on temperature and factors other than LUE (Gower
et al., 1999). Hunt (1994) found that published LUE
values ranged from 0.2 to 1.5 g C MJ#1 for woody
vegetation, and hypothesized that this was the result of
respiration from the 6% to 27% of living cells in the
sapwood of woody stems. Second, the exclusion of
important components of production (e.g., understory,
ground cover, and fine roots) was an important source of
error in most LUE estimates (Gower et al., 1999). Most
LUE estimates were based on aboveground components
of the overstory layer because few measurements of
belowground primary production are available. Biomass
allocation to belowground ranges from 20% to 75% of
NPP in terrestrial biomes and therefore cannot be
ignored. Many researchers calculate total NPP from
measured aboveground primary production. However,
the task of estimating the allocation fraction between
aboveground and belowground primary production is
complicated because of the limited understanding of
the physiological controls on allocation constraints (Frie-
dlingstein et al., 1999). The fraction of total NPP allo-
cated to root production differs among plant functional
groups, different environmental conditions, and with
forest age (Law et al., 2001). Eddy covariance flux towers
offer the best opportunity for estimating GPP at the
ecosystem scale, and improving the calculation of
LUE from GPP and APAR. In this study, GPP estimates
from EC measurements were used to calculate realized
LUE based on Eqs. (1) and (12).

Our study indicated that the mean daily realized LUE
during the growing season was lowest at the boreal forest
sites, highest at the deciduous broadleaf forests, and
intermediate at the grasslands and mixed forests. This
pattern was consistent with other studies (e.g., Turner
et al., 2003; Gower et al., 1999). The LUE of deciduous
forest ecosystems was highest because of ample thermal
resources and moisture. For example, average air
temperature and annual precipitation from 1999 to
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2003 were 12.42 8C and 1030.5 mm at Morgan Monroe,
respectively (http://www.modis.ornl.gov/modis/index.
cfm). The LUE values, 0.62 g C m#2 MJ#1 APAR for
Metolius Mid, 0.68 g C m#2 MJ#1 APAR for Metolius
Young and 0.86 g C m#2 MJ#1 APAR for Metolius-old,
were lower than the realized LUE at other sites because
most of the precipitation in the region occurred between
October and June, with the summer months lacking
effective precipitation (normally 0 ) 20 mm July
through August) (Law et al., 2001). The values of EF
were lower during the growing season than in the
wintertime at these sites (Figs. 6 and 7), consistent with
the precipitation pattern. In general, grasslands are
sensitive to soil drought (Nouvellon et al., 2000), but in
this study, the LUE value at Walnut River was
1.38 g C m#2 MJ#1 APAR, second only to the LUE
values of deciduous forest ecosystems. The higher LUE
value at Walnut River was probably related to the
presence of C4 plants (http://www.modis.ornl.gov/
modis/index.cfm) that can maintain a given rate of
photosynthesis with less water and nitrogen compared to
C3 plants (Chapin et al., 2002).

5. Summary

The light use efficiency (LUE) daily GPP model
developed in this study, with a biome-independent
invariant potential LUE, relies on only four driving
variables: PAR, NDVI, air temperature, and evaporative
fraction. Model calibration and validation at 28
FLUXNET sites in North America and Europe
suggested that the model was robust and reliable across
biomes and geographic regions. Comparison with
MODIS-GPP suggested that the EC-LUEmodel offered
better GPP predictions. The model can be a good
candidate for mapping GPP at the regional to global
scales because it is independent of land cover types, and
all driving variables can be retrieved from satellites or
standard weather observation networks. The suitability
of the EC-LUE model for crop systems should be
investigated in the future. In addition, the causes of
large errors at several FLUXNET sites should be
analyzed especially with regard to the quality of the
input data such as NDVI.
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