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Abstract 

Low-frequency microwave brightness temperature is  strongly affected by near-surface soil moisture; 
therefore, i t  can be assimilated into a land surface model to  improve modeling of  soil moisture and the 
surface energy budget. This study presents a new variational land system used to assimilate AMSR-E 
brightness temperature of vertical polarization of  6.9 GHz and 18.7 GHz. The system consists of a land 
surface model (LSM) used to calculate surface fluxes and soil moisture, a radiative transfer model (RTM) 
to estimate the  microwave brightness temperature, and an optimization scheme to search for optimal 
values of  soil moisture by minimizing the difference between modeled and observed brightness tempera- 
ture. The  LSM is  an improved simple biosphere model for sparse vegetation modeling and the RTM is a 
Q-h model tha t  can account for the effects of  surface roughness and vegetation. Several parameters i n  
the LSM and RTM can significantly affect the  outputs of  the  land data assimilation system but  their 
values are either highly variable or unavailable. To  solve this problem, we developed a dual-pass assim- 
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ilation technique. Pass 1 inversely estimates the optimal values of the model parameters with long-term 
(-months) forcing data and brightness temperature data, while Pass 2 estimates the near-surface soil 
moisture in a daily assimilation cycle. This system is driven by well-established reanalysis data and 
global data sets of leaf area index, precipitation, and surface radiation, and was tested at  a CEOP (Coor- 
dinate Enhanced Observing Period) reference site on the Tibetan Plateau. The system not only detected 
the effect of precipitation events that were missing in the forcing data, but also led to a significant im- 
provement in modeling of the surface energy budget. 

1. Introduction 

Land-atmosphere interactions are realized 
via exchanges of water, energy, and carbon at  
the land surface. Estimating the surface energy 
budget is a topic of great importance for studies 
of hydrological and atmospheric processes. The 
energy budget can be observed a t  a patch scale 
or estimated for a regional scale by combining 
satellite infrared data with surface meteorolog- 
ical data for clear sides (Ma et al. 2002; Ma 
et  al. 20031, but it is difficult to produce contin- 
uous temporal and spatial variations without 
referring to soil moisture. 

As a controller of surface energy partitioning 
between sensible heat and latent heat, soil 
moisture plays an important role in land- 
atmosphere interactions (Entekhabi et al. 
1996; Betts et al. 1996; Betts 2004). This is es- 
pecially true in semi-arid regions where soil 
moisture memory may affect precipitation a t  a 
seasonal scale (Koster et al. 2004); however, 
the high degree of spatial variability in soil 
moisture makes it extremely difficult to observe 
its spatial distribution. Soil moisture simulated 
by state-of-the-art land surface models is 
model-dependent even when driven by identical 
forcing data, as demonstrated by the Global 
Soil Wetness Project (Dirmeyer et al. 1999), 
the Project for Inter-comparison of Land- 
Surface Parameterization Schemes (Pitman 
et  al. 1999), and the Coordinated Enhanced Ob- 
serving Period (CEOP) model inter-comparison 
study (Yang et al., this issue). 

Soil moisture can also be remotely sensed 
from satellite infrared data (Wetzel et al. 1984; 
Gillies and Carlson 1995) i n  areas where 
surface temperature is controlled by thermal 
inertial. Soil moisture is also retrievable from 
low-frequency microwave data (Jackson 1993; 
Wigneron et al. 1995; Njoku and Entekhabi 
1996; Burke and Simmonds 2001; Owe et 
al. 2001; Paloscia 2001), as high-frequency 

(>I9 GHz) passive microwave polarization dif- 
ferences are sensitive to vegetation but not soil 
moisture (Prigent et al. 2005; Virmikov et al. 
1999). 

Land data assimilation (the merging of infor- 
mation from satellites, ground-based stations, 
and models) is perhaps the only effective way 
to obtain estimates of soil moisture and surface 
energy fluxes with the accuracy and coverage 
required for hydrologic and meteorological ap- 
plications (Margulis et al. 2002). Previous 
studies have demonstrated that satellite- 
retrieved soil moisture can add skill to the fore- 
casting of the land-surface response to precipi- 
tation (Pauwels et al. 2001; Crow et al. 2005). 
Reichle and Koster (2005) also demonstrated 
that the assimilation product is superior to 
both satellite data and model data when these 
data sets are considered in isolation. A land 
data assimilation system can assimilate a vari- 
ety of data into land surface models, including 
surface skin temperature (van den Hurk 2001; 
Meng et al. 2003), near-surface soil mois- 
ture (Parada and Liang 2004; Zhang et al. 
2006), and microwave brightness temperature 
(Houser et al. 1998; Crosson et al. 2002). Re- 
cently, mathematical methods such as varia- 
tional and sequential data assimilation have 
been widely addressed and applied (e.g., 
Reichle et al. 2001; Pathmathevan et al. 2003; 
Dunne and Entekhabi 2005). 

Soil moisture and the surface energy budget 
are sensitive to model parameters for both 
land-surface models (Yang et al. 2005) and 
data assimilation systems (Robock et al. 2003). 
Although this sensitivity to parameters has 
been widely addressed for land surface model- 
ing, few studies have considered this issue in 
terms of land-data assimilation. The North 
American Land Data Assimilation System 
(NLDAS; Mitchell et al. 2004) and the Global 
Land Data Assimilation System (GLDAS; Ro- 
dell et al. 2004) use available data sets of soil 
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parameters, and the applicability of these data 
sets requires justification. 

In this study, we present a variational land- 
data assimilation system developed a t  the Uni- 
versity of Tokyo (LDAS-UT). The system assim- 
ilates AMSR-E low-frequency data into a land 
surface model to estimate the soil moisture 
and the surface energy budget. LDAS-UT em- 
beds a dual-pass technique: the first pass 
estimates model parameters using long-term 
-months) satellite data and forcing data, and 
the second pass estimates soil moisture and 
the surface energy budget by assimilating daily 
satellite data. 

The remainder of this paper is organized as 
follows. Section 2 provides a description of 
LDAS-UT, and Section 3 introduces the driving 
data. A case study undertaken a t  a CEOP 
(Koike 2004) reference site is described in Sec- 
tion 4, and a summary of the study is presented 
in Section 5. 

2.  LDAS-UT 

LDAS-UT consists of a land surface model 
(LSM) used to calculate fluxes and soil mois- 
ture, a radiative transfer model (RTM) to esti- 
mate microwave brightness temperatures (Tb) 
from surface temperature and soil moisture, 
and an optimization scheme to search for opti- 
mal values of parameters and near-surface soil 
moisture by minimizing the difference between 
modeled and observed brightness temperatures. 

2.1 Algorithm 
Figure 1 shows the LDAS-UT algorithm, 

which includes a dual-pass assimilation tech- 
nique. Both passes assimilate observed bright- 
ness temperatures of the vertical polarization 
a t  a lower frequency (6.9 GHz) and a higher 
frequency (18.7 GHz). This choice is critical in 
terms of producing stable and reliable esti- 
mates of soil moisture. The vertical polariza- 
tion is more desirable than the horizontal po- 
larization because it is relatively insensitive 
to vegetation coverage (this conclusion can be 
drawn from the measurements and modeling 
results of Fujii 2005). As the lower frequency 
Tb is much more sensitive to near-surface soil 
moisture than the higher frequency, their 
difference is correlated with soil wetness 
(Koike et al. 2000). A soil wetness index (SWI) 
is then defined by SWI = 2(T,18.7V - T2-9v)/ 

(T,18.7V + T6.9V). A high SWI value corresponds 
to a wet surface, and a low value to a dry sur- 
face. 

Estimating brightness temperatures using 
RTM requires the input of near-surface soil wa- 
ter content (wl),  ground temperature (Tg), can- 
opy temperature (Tc), vegetation water content 
(VWC), canopy parameters, surface roughness 
parameters, and soil texture (see Section 2.3). 
The simulation of surface variables (wh Tg , Tc) 
using a LSM also requires a number of soil 
and vegetation parameters (see Section 2.4). 
The modeled Tb is thus sensitive to several pa- 
rameters used in the LSM and RTM. In Pass l, 
these parameters are obtained by minimizing a 
cost function that accounts for the difference 
between modeled and observed long-term 
brightness temperatures (tpassl; scale of 
Â¥-months) The cost function includes an obser- 
vation error term and a background error term. 
The observation error term is defined by 

where the subscript obs denotes the observed 
value and est is the modeled value. 

In Pass 1, the background error term is not 
directly accounted for in the cost function; 
instead, i t  is realized via an adjustment of 
near-surface soil water content (wi) a t  each ob- 
serving time such that the recalculated SWI 
value, which depends on wl, is close to 
(SWIest + SWIobs)/2. Note that this adjustment 
is implemented after (rather than before) add- 

2 .  ing the bias term (Thest - Tb,obs) into Eq. (1) 
(see details in Fig. 1). The existence of model 
deficiencies and errors in the forcing data 
mean that simulated soil moisture may become 
unrealistic without this adjustment, resulting 
in the absence of a correlation between Tb,est 
and TbObs regardless of how the parameter 
values are tuned. Accordingly, this adjust- 
ment is critical in terms of optimizing the 
parameters. 

The optimal parameter values are then 
transferred into Pass 2 for retrieving soil mois- 
ture and the surface energy budget by assimi- 
lating the brightness temperature into the 
LSM. Pass 2 only optimizes the near-surface 
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1 forcing data, satellite data, and ancillary data (soil and vegetation parameters) 1 
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Fig. 1. Algorithm used in LDAS-UT. t is the time; Tg, Tc, and wl are the ground temperature, 
canopy temperature, and near-surface soil water content, respectively; Tb is  the brightness temper- 
ature; and SWI is the soil wetness index. The subscript 0 denotes the initial value, obs denotes the 
observed value, est is the estimated value, and bg is the background value. SCE is a global minimi- 
zation scheme (Duan e t  al. 1993). 

soil moisture, and its assimilation window 
(tnoss2; -1 day) is much shorter than that for 
Pass 1. The cost function for Pass 2 is defined 
by 

where TbObg and Tbo are the simulated bright- 
ness temperature at  the initial time of each as- 
similation cycle using the background value of 
w1,o (i.e., w1,bg) and the renewed w1,o value, re- 
spectively. 

Pass 1 requires just a single execution be- 
cause the optimized parameters only include 
static model parameters and initial soil water 
conditions. I t  can be implemented using pre- 
vious data prior to the real-time assimilation of 
satellite data in Pass 2. 

2.2 Land surface model 
The land surface model is a simple biosphere 

model (SiB2) developed by Sellers et al. 
(1996a). This model includes one canopy layer 
and three soil layers and describes canopy radi- 
ative transfer, aerodynamic canopy transfer, 
and conductance-photosynthetic processes. The 
model is a typical dual-source model that pa- 
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rameterizes heat transfer from both the canopy 
and the ground. Although SiB2 succeeds in 
describing dense-canopy processes, i t  requires 
farther improvements to successfully model 
sparse-canopy processes. 

For a sparse canopy, the heat transfer from 
the ground can be a dominant term in the total 
heat fluxes. Therefore, it is important to appro- 
priately parameterize the ground heat fluxes. A 
number of studies have recorded significant dif- 
ferences between momentum transfer resis- 
tance and heat transfer resistance; i t  is there- 
fore necessary to discriminate the aerodynamic 
roughness length ZQ and the thermal roughness 
length ZT. In this study, the following scheme 
was introduced to SiB2 for modeling ground 
heat fluxes: 

where /I = 7.2 m-It2 sIt2 K-174, uÃ [m s-I] is the 
friction velocity, T,  [K] is a temperature scale 
defined as -H/pcpu,, and v [m2 s l ]  is the air 
kinematic viscosity. H [W m 2 1  is the sensible 
heat flux, LJ [kg" m 3 1  is the air density, . , - 

1.754' 

c p = 1 0 0 4 J  kg-' K - ,  V=VO(:)(&) , 

vo = 1.328 x m2 s-l, po = 1.013 x lo5 Pa, 
and To = 273.15 K. 

Equation (3) is a revised version of the 
scheme proposed by Yang et al. (2002). The 
original scheme uses potential temperature to 
calculate heat fluxes, but SiB2 uses tempera- 
ture. Accordingly, we adjusted /I in Eq. (3) from 
10 to 7.2. We recently evaluated this scheme 
and several other commonly quoted formulas 
using flux data derived from eight field experi- 
ments in arid and semi-arid regions; the fluxes 
parameterized using Eq. (3) were generally in 
good agreement with observations. 

A further improvement is the canopy model 
used for heat and momentum transfer. Theo- 
retically, the value of the aerodynamic rough- 
ness length for a very sparse canopy (i.e., leaf 
area index or vegetation coverage 4 0) should 
approach the roughness length of the ground 
beneath the canopy; however, the SiB2 model 
produces a much smaller length than that of 
the ground beneath the canopy because the 
model is incompatible with traditional mixing- 
length theory. For an improved description of 
sparse-canopy processes, we replaced the SiB2 

canopy model with a new model (Watanabe 
and Kondo 1990) that is compatible with 
mixing-length theory. 

2.3 Radiative transfer model 
Microwave brightness temperature is given 

by 

where the subscript p denotes polarization 
(vertical or horizontal), is soil reflectivity, T~ 
is the optical thickness of the vegetation, and co 
is the single-scattering albedo of the vegetation. 

The soil reflectivity can be calculated using 
a Q-h model (Wang and Choudhury 1981) or a 
Q-p model (Shi et al. 2005); we chose to use a 
Q-h model: 

where the subscripts p and q denote vertical 
and horizontal polarization, respectively, Q 
and h are empirically determined surface 
roughness parameters, and R is the Fresnel 
power reflectivity that describes the soil reflec- 
tivity of a smooth surface. 

The horizontal (Rh) and vertical (R,,) Fresnel 
power reflectivity are calculated by 

where 0 is the incident angle and er is the soil 
dielectric constant. 

The soil dielectric constant follows Dobson 
et  al. (1985): 

where wg is the soil porosity, w is the soil water 
content, ~g = (4.7,O.O) is the dielectric constant 
of a very dry soil, e f i  is the dielectric constant 
of free water, a = 0.65, and /I is a soil-texture- 
dependent coefficient. 

The coefficient /I is determined from the soil 
texture (Ulaby et  al. 1986): 
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where %sand and %clay are the percentage of 
sand and clay in the soil, respectively. 

The model parameters in Eqs. (4) and (5) are 
frequency-dependent and are given by 

h = (k . S) d t i G z  , (9) 

Q = Qo (k . s) 0'975, ( 10) 

where A [m] is the wavelength, k is the wave 
number defined a s  27~1/1., s is the standard devi- 
ation of surface height, wC [kg m 2 ]  is the vege- 
tation water content, and Qo, b', and y are em- 
pirical coefficients. 

Equation (9) follows Wegmuller and Matzler 
(1999), while Eq. (11) follows Jackson and 
Schmugge (1991). Equations (10) and (12) were 
fitted from the limited measurements provided 
by Fujii (2005). The value of y depends on vege- 
tation type (leaf dominated, stem-dominated, 
or grasses), and Jackson and Schmugge 
(1991) suggested values of -1.08 for wheat 
(stem-dominated) and -1.38 for soybean (leaf- 
dominated). 

The vegetation water content is estimated by 
(Paloscia and Pampaloni 1988) 

wC = exp(LAI13.3) - 1, (13) 
where LAI [m2 m 2 1  is the leaf area index. 

2.4 Model parameters 
The system imports several global data sets 

to provide the parameters required in the LSM 
and the RTM. The default values of soil param- 
eters (thermal and hydraulic properties) are 
derived from lo x lo ISLSCP (International 
Satellite Land Surface Climatology Project) Ini- 
tiative I1 soil data (Global Soil Data Task 
2000), and values of vegetation parameters 
(classification and coverage) are derived from 
1' x lo ISLSCP Initiative I1 vegetation data 
(Loveland et  al. 2001). Other vegetation param- 
eters are taken directly from Sellers et  al. 
(1996b). 

The high spatial variability of soil properties 
means that ISLSCP soil data can only provide 
a background value for soil texture and soil 
parameters. In addition, RTM parameters 
(surface roughness parameters and vegetation 
optical parameters) and values of initial soil 
moisture are usually unavailable. These values 
are determined in Pass 1. Considering the in- 

stability of the solutions and computational 
cost, i t  is important to reduce the number of op- 
timized parameters by considering the follow- 
ing empirical relationships between soil texture 
and soil parameters: 

where w is the soil water content; pscs 
[J K 1  m 3 ]  is the soil heat capacity; 2, 
[W m 1  K 1 ]  is the thermal conductivity of the 
soil; Kg [m s l l ,  !//s [ml, and b are the hydraulic 
parameters of Clapp and Hornberger (1978); 
pd [kg m 3 1  is the bulk density of a dry 
soil calculated using pd = ps(l - ws) and 
ps = 2650 kg m-3; and pu, = 1000 kg m-3. 

Equations (14), (15), and (16-18) follow the 
Global Soil Data Task (2000), the formula pro- 
posed by Johansen (1975) and revised by Yang 
et  al. (2005), and Cosby et al. (1984), respec- 
tively. As all of the soil thermal and hydraulic 
parameters can be estimated from soil texture 
using Eqs. (14-18), the parameters to be opti- 
mized include soil porosity (ws), soil texture 
(%sand, %clay), surface roughness parameters 
(s and Qo), the vegetation parameter (b'), and 
the initial water content of the three soil layers 
w1 ,  w2, w3). These values are optimized by 
minimizing the cost function (Eq. 1) using the 
effective and efficient Shuffled Complex Evolu- 
tion method developed by Duan et  al. (1993). 
The upper and lower bounds required for this 
optimization are sourced from Global Soil Data 
Task (2000). 

3. LDAS-UT driving data 

The LDAS-UT grid size is set to 0.5' x 0.5', 
which is comparable to the footprint of the 
lowest-frequency AMSR-E data. Driving a land 
data assimilation requires a comprehensive set 
of atmospheric forcing data a t  consistent tem- 
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poral and spatial scales. A major effort of 
GLDAS and NLDAS is to improve the forcing 
data, whose quality crucially affects LDAS out- 
put (Luo et al. 2003; Berg et al. 2003). LDAS- 
UT is driven by three data sets: 1' x 1' GPCP 
(Global Precipitation Climatology Project) 
precipitation data (Huffman et al. 2001), 
2.5' x 2.5' ISCCP downward radiation data 
(Zhang et al. 2004), and 1.5' x 1.5' NCEP (Na- 
tional Centers for Environmental Prediction) 
reanalysis data (wind, temperature, and hu- 
midity). The existence of biases in certain 
regions means that the NCEP data require cor- 
rection using in situ data before being interpo- 
lated to LDAS-UT grids. Leaf area index data 
is sourced from MODIS 0.25' x 0.25' gridded 
8-day leaf area index products (Knyazikhin 
et al. 1999). 

4. Case study at a CEOP reference site 

The BJ CEOP reference site in East Tibet 
was established by the CEOP Asia-Australia 
Monsoon Project in Tibet (CAMP-Tibet) in 
2003. The site is located within the assimila- 
tion grid centered at 91.75OE, 31.25ON. For con- 
venience of description, the grid is herein 
termed a CEOP grid. The site is relatively flat 
and covered with sparsely distributed short 
grass during the rainy season (June-August). 
The CAMP-Tibet Project collected a large 
amount of data in this 0.5' x 0.5' grid in 2003. 
The stations are shown in Fig. 2, and items 
measured for the case study are listed in Table 
1. To evaluate the capability of LDAS-UT, we 
compared the results of two case studies with 
in situ data for the period from May (pre- 
monsoon) to September (post-monsoon). One of 
the case studies is a dual-pass assimilation 
case and the other is a free-run case. The free- 
run is a pure LSM simulation without assimi- 
lating satellite data, but its model parameter 
values and forcing data are identical to the as- 
similation case. In principle, it is also necessary 
to compare the dual-pass assimilation case 
with a default-parameter-based assimilation 
case, but this was not conducted because of the 
difficulties involved in determining default pa- 
rameters for the RTM. 

4.1 Precipitation and soil water content 
As near-surface soil moisture is strongly re- 

lated to precipitation, errors in the input pre- 

Fig. 2. Mesoscale map of the site of the 
CAMPITibet experiments. BJ is a 
CEOP reference site. The bold grid 
(hereafter termed the CEOP grid) is 
centered a t  (91.75OE, 31.25ON). 

Table 1. Parameters measured a t  the 
CEOP East-Tibet reference site (BJ) in 
2003. S-AWS1, S-AWS3, and SSMTMS 
are three stations located close to the 
BJ station. 

Items 
-- 

Station (depth) 

Precipitation B J 

Radiation B J 

Surface BJ, MS3608 
temperature S-AWS1, S-AWS3 

Near-surface BJ, MS3608 (4 cm) 
soil moisture S-AWS1, S-AWS3 (0-5 cm) 

SSMTMS (0-3 cm) 

Turbulent fluxes BJ  (3 m, 20 m) 

cipitation inevitably affect the accuracy of 
simulated soil moisture. Figure 3a shows nu- 
merous precipitation events in both the input 
GPCP data and observations at the BJ site 
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Fig. 3. (a) Daily mean precipitation in terms of both measurements and LDAS-UT input (GPCP); (b) 
Accumulated precipitation from Day 120; (c) Daily mean near-surface soil water content measured 
a t  five stations, LDAS-UT output, and free-run output for the CEOP grid from May to September 

during Days 170-230; however, GPCP greatly 
underestimated the precipitation frequency 
and amount prior to Day 170 (June 19): the 
accumulated GPCP amount prior to Day 170 
is 68 mm, whereas the measured amount is 
104 mm (Fig. 3b). Figure 3c shows a compari- 
son of the daily mean near-surface soil water 
content between the assimilation, the free-run, 
and observed measurements. Soil moisture was 
measured a t  five stations, which show sign& 
cant variability in soil moisture within the 
CEOP grid. The values of soil moisture derived 
from the assimilation and the free-run show 
similar variations from Day 170 but differ for 
the period prior to Day 170. The free-run 
clearly shows a dry bias that lies outside the 

range of the variability during Days 150-170; 
this is the response of the LSM to the reduced 
precipitation input. In contrast, the soil mois- 
ture derived from the assimilation is situated 
within the observed range throughout the en- 
tire study period. In particular, LDAS-UT pro- 
duced an increase in near-surface soil moisture 
during Days 150-170 in response to the mea- 
sured precipitation, even though the measured 
precipitation was not included in the input 
data. In this way, the soil moisture derived 
from the assimilation system was corrected to 
some extent by assimilating microwave data. 
This makes the assimilation system less sensi- 
tive to the negative biases in input precipita- 
tion data than the free-run case. 



February 2007 K. YANG et al. 237 

(a) Monthly-mean d w l  change oftotal downward radhtion 

, I I -- 

Fig. 4. (a) Comparison of monthly mean diurnal change in total downward radiation between values 
measured a t  the CEOP site and LDAS-UT input (ISCCP) for the CEOP grid; (b) Comparison of 
monthly mean diurnal change in surface temperature measured at four stations, LDAS-UT output, 
and free-run output for the CEOP grid from May to September 2003. 

4.2 Downward radiation and surface 
temperature 

Downward shortwave radiation and long- 
wave radiation are important input parameters 
that affect the surface temperature (Tsfc) and 
surface energy partition. Figure 4a shows the 
monthly-mean diurnal variation in total 
(shortwave + longwave) downward radiation. 
The five-month mean value derived from 
ISCCP (528 W m-2) is similar to measured 
values (531 W m-2), but ISCCP yields a higher 
peak value in May and lower values in other 
months than observed data. Figure 4b shows 
the monthly mean diurnal variation in surface 
temperature. The diurnal change in Tsfc during 
May was overestimated by both the assimila- 
tion and the free-run. This overestimation re- 
suited from a reduction in input precipitation, 
high input radiation, and the inability of the 
LSM to model freeze-thaw processes in soil. In 
June, the diurnal change in Tsfc continued to be 
overestimated because of the low amount of in- 
put precipitation, but LDAS-UT yielded much 
smaller errors than the free-run case. During 
July-September, both LDAS-UT and the free- 
run yielded surface temperatures that were 
similar to observed data. 

4.3 Brightness temperature 
Figures 5a,b shows the brightness tempera- 

ture of 6.9 and 18.7 GHz vertical polarization, 
respectively. The root mean square error 
(RMSE) for the assimilation case and free case 
is also shown in the figure. The free-run yielded 
much stronger biases prior to Day 170, during 
which time precipitation data were missing in 
the input and the free-run produced a drier sur- 
face and higher brightness temperatures. In 
contrast, LDAS-UT yielded a wetter surface 
and more reasonable brightness temperature. 

4.4 Surface energy budget 
Sensible and latent heat fluxes at the study 

site were measured using the eddy-covariance 
method during an intensive observation period 
(Days 151-181) in 2003. Figures 6a-c show 
comparisons of net radiation, sensible heat, 
and latent heat, along with mean bias error 
(MBE) and root mean square error (RMSE). 

The net radiation was basically reproduced 
in the assimilation and free-run cases, but 
peak values of net radiation were often under- 
estimated; consequently, RMSE was as high as 
89 W m 2  for both cases. This outcome is not 
unexpected, however, as the input ISCCP radi- 
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Fig. 5. Comparison of microwave brightness temperature derived from AMSR data, LDAS-UT out- 
put, and free-run output for the  CEOP grid from May to September 2003. (a) 6.9 GHz vertical po- 
larization; (b) 18.7 GHz vertical polarization. RMSE: root mean square error. 

ation is a three-hourly mean in very large grids 
(2.5O x 2.Ei0), meaning that the input radiation 
is effectively smoothed. The surface-emitted 
longwave radiation was better simulated in 
the assimilation case because of superior esti- 
mates of Tsfc (Fig. 4b). Accordingly, the net ra- 
diation was simulated more successfully in the 
assimilation than in the free-run. 

In terms of the sensible and latent heat 
fluxes, the assimilation clearly produced better 
results than the free-run. In the assimilation 
case, the RMSE in hourly sensible heat fluxes 
(39 W m 2 )  is much smaller than that for the 
free-run case (53 W m"2), and the R M S E  in la- 
tent heat fluxes (38 W m 2 )  is also smaller than 
that for the free-run case (45 W m 2 ) .  In addi- 
tion, the monthly mean Bowen ratio (0.89) in 
the assimilation case is similar to the observed 
value (0.661, whereas that in the free-run case 
(1.22) is nearly double the observed value. In 
particular, when the observed precipitation 
was missing from the input data during Days 
150-170, the free-run produced much higher 
sensible heat fluxes and much lower latent 
heat fluxes than observed values, while the as- 

similation produced much better surface energy 
partition. The relatively large errors in the 
free-run case result directly from the dry bias 
of soil moisture shown in Fig. 3(c). This result 
indicates that assimilating microwave data 
into a LSM can indirectly improve modeling of 
the surface energy budget by directly improv- 
ing estimates of near-surface soil moisture. 

5. Conclusions 

The estimation of continuous regional soil 
moisture and the surface energy budget is cru- 
cial for studies of agricultural, hydrological, 
and atmospheric processes, as well as applied 
research. This study presented a land data as- 
similation system developed at The University 
of Tokyo that assimilates AMSRIAMSR-E low- 
frequency (6.9 and 18.7 GHz) brightness tem- 
perature into a LSM to improve the modeling 
of soil moisture and the surface energy budget. 
The data-assimilation system involves an em- 
bedded dual-pass technique. In Pass 1, key 
model parameters are automatically calibrated 
using satellite data and forcing data; Pass 2 
produces the near-surface soil moisture and 
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Fig. 6. Comparison of surface energy fluxes derived from measured values, LDAS-UT output, and 
free-run output for the CEOP grid in June 2003. (a) Net radiation; (b) Sensible heat flux; (c) Latent 
heat flux. MBE: mean bias error, RMSE: root mean square error. 

surface energy budget by assimilating satellite 
data. As the system integrates well-established 
global products of soil, vegetation, precipita- 
tion, radiation, and other meteorological pa- 
rameters, it is easily applied. 

The system was evaluated using in situ data 
at a CEOP reference site. The results demon- 
strate that simulations of soil moisture and the 
surface energy budget were improved compared 
with the case with no assimilation. In partic- 
ular, the soil moisture and energy partition 
simulated using the assimilation system is 
less contaminated by negative biases in input 
precipitation data than the case with no assim- 
ilation. This result is encouraging in terms 
of producing reliable surface-energy budgets 
in remote regions such as Tibet where 
precipitation-monitoring networks are sparse 
and input precipitation data are prone to large 
errors. 

Although we presented clear evidence that 

the assimilation system is able to provide im- 
proved estimates of soil moisture and the sur- 
face energy budget, the system can be further 
improved in many respects. The following 
points are the major issues in terms of system 
performance. (1) The employed forcing data 
can be improved, as the system currently uses 
ISCCP coarse-resolution radiation data; these 
data can be replaced with radiation products 
with a higher spatial resolution once they are 
available and proven to be reliable. (2) The 
RTM only describes surface scattering, and it 
may fail for dry soil for which soil volumetric 
scattering makes a substantial contribution to 
the satellite-received radiance. This issue is 
currently under investigation; initial results 
can be found in Lu et al. (2006). (3) The LSM is 
unable to model soil freeze-thaw processes and 
should therefore be improved for applications 
in cold regions. (4) The future assimilation of 
remotely sensed surface temperature into the 
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system is likely to result in improved modeling 
of the surface energy budget. Efforts in these 
respects will contribute to improved system 
performance. 
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