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ABSTRACT

1. Rice is an important agricultural production system with more than 80 million ha of irrigated
rice paddies in annual production globally. As water resources become scarcer, the competition
between urban development and agriculture for available water will intensify. Paddy rice cropland
distribution and management intensity will need to evolve over the coming decades to accommodate
increased production demand with decreasing land and water resources.
2. While process-based biogeochemical models can provide important insights into how

agricultural management of rice paddies influences water resources, yields and greenhouse gas
emissions, they require accurate spatial estimates of the extent of paddy rice cropland and cropping
systems. Satellite remote sensing data can provide such spatially explicit information.
3. Data from Synthetic Aperture Radar (SAR) are ideal for mapping rice paddies owing to its

nearly all-weather imaging capabilities and sensitivity to flooded vegetation.
4. This paper presents a framework for combining routine SAR observations, GIS databases and a

process-based biogeochemical model for a decision-support system for mapping and monitoring rice
paddies. This framework is demonstrated for a site in India under a range of alternative water
management strategies.
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INTRODUCTION

Rice is one of the world’s major staple foods, especially in Asia where 94% of the world’s rice is produced.
The area planted to rice accounts for 15% of the world’s arable land (IRRI, 1993). Since Asian rice
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production is projected to rise by 70% in the next 30 years, mostly by increasing yield rather than crop area
(Hossain, 1997), the intensity of farming practices is likely to increase. At present, rice paddies contribute
about 11% of the total methane flux to the atmosphere (Prather et al., 1995). However, future
intensification in rice farming practices could have significant impacts on the emissions of greenhouse gases,
particularly methane and nitrous oxide (Sass et al., 1991, 1992; Li et al., 2002, 2005, 2006). It is evident that
future paddy rice agriculture will be globally significant in terms of future water resources, food security
and climate change.

As urban demand for water increases, water costs will increase and force agriculture to improve its
water-use efficiency. In Asia, agriculture currently accounts for 86% of total annual water withdrawal
(IRRI, 2002). Paddy rice cropland distribution and management intensity (fertilizer use, cultivars, water
management, multi-cropping) will need to evolve to accommodate simultaneously an increase in
production demand and a decrease in available land and water resources. As this occurs, the use of
alternative water regimes, such as mid-season draining or shallow flooding of rice paddies, which require
less water than continual flooding, is likely to increase throughout Asia.

Process-based biogeochemical models can provide important insights into how agricultural management
of rice paddies influences water resources, yields and greenhouse gas emissions. Coupled with spatial data
on soil properties, rice paddy distribution, climate and agricultural management, these models have been
used to simulate greenhouse gas emissions, rice yields and water use under a range of management
alternatives (Li et al., 2002, 2004, 2006).

While official county-scale agricultural census data are often available, they can be problematic owing to
biases in reporting statistics or lack of spatial detail. Census data for China (SSB, 1994), for example, are
known to underestimate actual cultivated area by approximately 20–40% (Smil, 1999). Satellite remote
sensing data can provide better cropland area estimates (Frolking et al., 2002; Xiao et al., 2002a,b, 2005).
Rice paddies have been mapped from multi-temporal Synthetic Aperture Radar (SAR) data using
backscatter change thresholds for many regions in Asia (Liew et al., 1998; Ribbes and Le Toan, 1999;
Rosenqvist, 1999).

There are several factors that make SAR data a logical choice for mapping paddy rice agriculture in
tropical and sub-tropical regions. First, the dynamic range in radar backscatter is large (>10 decibels, dB)
with a predictable increase from initial transplanting of rice to ripening stage prior to harvest (Ribbes and
Le Toan, 1999; Inoue et al., 2002). Second, radar backscatter is strongly correlated with several key growth
parameters of the rice plant, including height, age and biomass (Kurosu et al., 1995; Le Toan et al., 1997;
Ribbes and Le Toan, 1999; Inoue et al., 2002). Because of this large backscatter variation, well-timed image
acquisitions (beginning and end of the crop cycle) enable operational mapping of paddy fields. Third,
SAR data are largely independent of meteorological conditions. This is very important in tropical and
sub-tropical areas where much of the world’s rice is grown and the availability of routine high-resolution
optical satellite data is severely restrained by cloud cover.

The DNDC model

DNDC (DeNitrification–DeComposition) was originally developed for predicting carbon sequestration
and trace gas emissions for non-flooded agricultural lands, simulating the fundamental processes
controlling the interactions among ecological drivers, soil environmental factors, and relevant biochemical
or geochemical reactions, which collectively determine the rates of trace gas production and consumption in
agricultural ecosystems (Li et al., 1992, 1994, 1996). Through funding by NASA and APN (Asia Pacific
Network for Global Change Research), DNDC has recently been modified for predicting crop yield and
soil biogeochemistry for rice paddies. A crop model, MACROS, developed by Penning et al. (1989) was
adopted in DNDC to simulate the physiology and phenology of rice. Driven by the crop demands for heat,
water and nitrogen, DNDC precisely tracks the crop photosynthesis, respiration, C allocation, water and N
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uptake, and yield. Details of management (e.g. crop rotation, tillage, fertilization, manure amendment,
irrigation, weeding and grazing) have been parameterized and linked to the various biogeochemical
processes (e.g. crop growth, litter production, soil water infiltration, decomposition, nitrification,
denitrification, fermentation, etc.) embedded in DNDC. To enable DNDC to simulate C and N
biogeochemical cycling in paddy rice ecosystems, the model was modified by adding a series of anaerobic
processes. The paddy-rice version of DNDC has been described and tested in recent publications (Li et al.,
2002, 2004, 2005; Cai et al., 2003), and is summarized briefly here.

Paddy soil is characterized by the frequent changes between saturated and unsaturated conditions
driven by water management. During these changes in soil water content, the soil redox potential (Eh)
is subject to substantial fluctuations between +600 and !300mV. One of the key processes controlling
CH4 and N2O production/consumption in paddy soils is soil Eh dynamics; CH4 or N2O are produced
or consumed under certain Eh conditions (!300 to !150mV for CH4, and 200 to 500mV for N2O), so the
two gases are produced during different ranges of redox potential. Regulated with the Nernst
and Michaelis–Menten equations, DNDC tracks the formation and deflation of a series of Eh volume
fractions driven by depletion of O2, NO3

!, Mn4+, Fe3+, and SO4
2! consecutively, and hence estimates

soil Eh dynamics as well as rates of reductive/oxidative reactions, which produce and consume CH4 or
N2O in the soil. By tracking Eh dynamics, the model links the soil water regime to trace gas emissions for
rice paddy ecosystems. DNDC predicts daily CH4 and N2O fluxes from rice fields through the growing and
fallow seasons, as they remain flooded or shift between flooded and drained conditions. This rice paddy
version of DNDC has been successfully validated against methane and nitrous oxide flux data sets from
wetland rice sites in the USA, Italy, China, Thailand and Japan (Zheng et al., 1997; Li et al., 2002; Cai
et al., 2003). Both CH4 and N2O fluxes were measured at five rice paddy sites where mid-season drainage
was applied (Zheng et al., 1997; Cai et al., 1999). DNDC was tested against these observations in
China with satisfactory results (Cai et al., 2003). A recent study (Pathak et al., 2005) calibrated and
validated DNDC for rice paddies in India and presented total greenhouse gas emissions from Indian rice
paddies based on agricultural census data. In addition, an independent validation of DNDC performed by
the Central Rice Research Institute of India for both ‘kharif’ and ‘rabi’ rice systems in Cuttack, India,
found good agreement between the modelled and observed patterns and magnitude of methane emissions
(Yeluripati et al., 2005).

This paper presents a framework for a decision support system that uses routine SAR observations for
mapping rice paddy extent and cropping systems, GIS databases on soil properties and daily climate, and
the DNDC process-based biogeochemical model for quantifying trace gas emissions from rice paddies. This
framework has been developed to support the Japan Aerospace Exploration Agency’s ALOS Kyoto &
Carbon Initiative. This paper presents an application of this framework for a site in the Andhra Pradesh
state of India.

METHODS

Study area

The study region encompassed the city of Vijayawada in Andhra Pradesh state of India, located at
approximately 16.458N, 80.488E. India has more than 42 million ha of rice with four major systems:
irrigated lowland, rainfed lowland, rainfed upland and deepwater (water depth >50 cm) rice (Huke and
Huke, 1997; Frolking et al., 2006). Over half of the rice is grown in irrigated lowland systems. Vijayawada is
dominated by lowland irrigated rice. The Krishna River bisects the rice-growing region surrounding
Vijayawada. Rice production in this region is predominantly ‘kharif’ rice (more than 87% of total rice area
in India is kharif) with rice sown during the south-west monsoon (May–June) and harvested in the autumn
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(IRRI, 2002; Chanda et al., 2003; Directorate of Economics and Statistics, 2004; Frolking et al., 2006). A
small proportion (512%) of the rice in this region is ‘rabi’, which is planted in December–February and
harvested in the April–June period.

SAR preprocessing and algorithm development

The Japanese Earth Resources Satellite 1 (JERS-1) was launched and operated by the National Space
Development Agency of Japan (NASDA) from February 1992 until October 1998. Onboard the JERS-1
satellite was an L-band (1.275GHz) SAR with horizontal co-polarization (HH). The JERS-1 SAR imaged
with a 358 look angle and a ground resolution of 18m in both range and azimuth with a 44-day revisit cycle.

Five images (acquired on October 15, 1993; November 28, 1993; January 11, 1994; February 24, 1994;
and December 29, 1994) were used for this analysis. The October image was used as the base image; all
other scenes were co-registered to the base image using a minimum of 20 ground control points and an
RMS error of 0.35 pixels or less. Figure 1 is a colour composite of three JERS-1 images. Land cover with
little variation in backscatter appear as grey tones in multi-temporal SAR composites. The brightness of the
grey tones depends on the intensity of the radar backscatter. Cities, like Vijayawada near the centre of this
image, and built areas appear almost white; forest areas appear grey; areas with sparse vegetation appear
dark grey; and open water bodies appear black (see Krishna River which runs by Vijayawada). Rice areas
are clearly evident (in yellow and orange colours) by the large variation in radar backscatter. Well-timed
SAR image acquisitions have proved to be effective in the mapping of paddy fields owing to the unique
flooding cycle of rice agriculture. Previous rice mapping efforts using both RADARSAT (Ribbes and
LeToan, 1999) and ERS-2 data (Liew et al., 1998) have employed a backscatter change threshold level of at
least 3 dB. Our approach also relies on change thresholds for mapping rice. In the generation of the
backscatter difference map, water areas were masked from the analysis to avoid the effect that wind can

Figure 1. Multi-temporal JERS-1 SAR imagery for Vijayawada. Rice paddy areas appear in various colours, ranging from light blue
to yellow and orange, depending on the planting date and development stage. The city of Vijayawada is the white area near the upper

centre of the image. The Krishna River appears black and cuts across the image from the upper left corner to the lower right.
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have on water bodies (less of an issue for L-band SARs). A water mask was created by assigning any pixel
with a value of !20 dB or less in multiple images as water.

Backscatter dynamic range data were created using all five JERS-1 processed images. The dynamic range
images included minimum so, maximum so, and range (max-min) of so. Rice pixels were identified if they
met both of the following conditions. First, the dynamic range of backscatter had to be at least 4 dB across
the five images. Second, the minimum backscatter had to be –13 dB or less. This second constraint identifies
flooded fields and was empirically determined from the extraction of backscatter values for known rice
areas. The timing of low and peak so was used to assign rice areas to one of three cropping classes (kharif,
rabi or kharif-rabi double rice) based on the crop calendars.

DNDC modelling

DNDC requires data on soils (pH, soil carbon, bulk density and soil texture), rice cropping areas
and systems (single rice, double rice, rice rotated with upland crops, etc.), climate, and management
practices (e.g. fertilizer use, planting and harvesting dates, tillage, water use, etc.). Maximum and
minimum values of soil texture, pH, bulk density, and organic carbon content were derived from the
ORNL DAAC Soil Collections which provide ranges for each soil parameter. While for emission
inventories the range in soil values is used as part of an uncertainty analysis (see Li et al., 2004), the mid-
point of each range was used for this demonstration. NOAA’s National Center for Environmental
Prediction data were used for daily minimum and maximum temperature, precipitation, and solar radiation
(Kistler et al., 2001).

The following assumptions were made regarding management practices: the fertilizer application rate of
140 kgNha!1 (urea); 1000 kgCha!1 of rice straw was applied to the field just before initial flooding; rice
paddies were tilled just before flooding and after rice harvest; planting and harvesting dates were based on
crop calendars (MacLean et al., 2002); and paddies were flooded just before transplanting and drained 5
days before harvest. Optimum yield was assumed to be 20% above average yields from 1998 to 2003
(source: season and crop report Andhra Pradesh 2002–2003) for this district for kharif (3522 kg ha!1) and
rabi (4342 kg ha!1) rice.

Alternative water management scenarios

Since the early 1980s, water management of rice paddies in China has changed significantly, with mid-
season drainage replacing continuous flooding for a large portion of rice production in China (Li et al.,
2002). While this shift in water management has not been widespread outside of China and Japan (Barker
and Molle, 2004), a future shift in water management regimes is anticipated as future demand for water
resources increases. Therefore, to demonstrate the efficacy of our modelling framework to assess the shifts
in water regimes, three water management scenarios were modelled. Continuous flooding (CF), which
represents the conventional water management in most of Asia and the prevailing management in China
before 1980, assumes that fields are continuously flooded with a surface water layer 5–10 cm deep from
initial flooding to 5 days prior to harvest. The mid-season drainage (MD) scenario assumes a shift 100%
adoption of mid-season drainage where the rice fields are dried three times within a growing season and the
surface water layer is 5–10 cm for the remaining time (i.e. flooded time). Lastly, the shallow flooding (SF)
scenario simulates a new water management practice, which is currently being recommended to the rice
farmers in China. Shallow flooding assumes the rice paddies are marginally covered by the flooding water,
where the water table fluctuates 5–10 cm above and below the soil surface. This alternative management
practice can increase yield and reduce overall water requirements (Li, 1992; Chen, 2004).
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RESULTS AND DISCUSSION

Mapping rice with JERS-1 SAR

Rice cultivation can be characterized by three development stages: initial flooding of the paddies and
transplanting stage, vegetative growth stage, and the heading and ripening stage prior to harvest (Figure 2).
The radar response to the surface conditions across these stages is predictable, with very low backscatter
during the initial flooding period, followed by increasing backscatter during the vegetative growth period, and a
levelling off of backscatter during the heading/ripening stage (Inoue et al., 2002). Relying on this temporal
dynamic in backscatter, the rice paddy extent and type of rice cropping systems surrounding the city of

Figure 2. Radar surface scattering changes throughout the rice cultivation cycle. (a) During initial flooding and transplanting, there is high
forward scattering and very low backscatter; (b) during the vegetation stage, there is moderate forward and backscatter; and (c) during the
heading and ripening stage, there is low forward and higher backscatter. Photographs are from field collection in Jiangsu Province, China,

in 1999 (source: Xiao et al., 2002a). This figure is available in colour online at www.interscience.wiley.com/journal/aqc

Figure 3. JERS-1 derived map of rice paddy extent by cropping system.
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Vijayawada, India were mapped. Radar analysis reveals that there were approximately 188 000 ha of rice
paddies in production in 1993/1994 for this region (Figure 3). The majority of the rice was planted as kharif
("161 000 ha). Double rice (kharif and rabi) covered "25 000 ha. Single rabi rice covered a small
proportion of the planted area with less than 2000 ha. These results are consistent with census statistics for
the districts of Krishna and Guntur in the state of Andhra Pradesh, which indicate that 80–90% of the
"700 000 ha is kharif (Directorate of Economic Statistics, 2004; Frolking et al., 2006) and there are about
80 000 ha (10% of total sown area) in double rice (Frolking et al., 2006).

Modelling methane, nitrous oxide, yield and water use

A modelling grid, with 5824 1-km grid cells covering the study area was created to extract soils and
cropland inputs for DNDC from GIS databases. A total of 4038 cells contained rice based on the JERS-1
rice extent map. For each grid cell, the soil properties and climate data were assigned from the GIS
databases. The study area covers portions of two counties. Since the current soils database for this region of
India has been summarized at the county scale, there are only two soil types denoted for the study area.
DNDC simulations were run with three water regimes: continuous flooding, mid-season drainage (three per
crop cycle) and shallow flooding. Table 1 presents the modelling results for methane, nitrous oxide, rice
yield and evapotranspiration on a per hectare basis.

Table 1. Model estimates of methane emission, nitrous oxide emission, crop yield and evapotranspiration (ET) for kharif, rabi and
kharif-rabi cropping systems under three water management regimes for regions (a) south (soil organic carbon: 1.5%, soil pH 6.63, clay
content 0.27, and bulk density 1.56) and (b) north (soil organic carbon: 3.5%, soil pH 6.82, clay content 0. 136 and bulk density 1.5) of
the Krishna River. Soils databases provide ranges for each soil parameter. For this demonstration, we used the mid-point of the range

Cropping systema Water regimeb Yield (kg ha!1)c CH4 emission
(kgCha!1)

N2O emission
(kgNha!1)

ET (mm)

(a)
Kharif CF 3502.5 82.4 1.5 1420
Rabi CF 4302.5 40.3 5.6 1398
Kharif-rabi CF 7772.5 135.2 1.3 2262
Kharif MD 3485.0 61.0 1.5 1349
Rabi MD 4272.5 25.1 5.7 1297
Kharif-rabi MD 7767.5 95.5 1.5 2091
Kharif SF 3495.0 !2.1 10.5 1114
Rabi SF 4282.5 !3.9 12.4 1130
Kharif-rabi SF 7775.0 0.32 18.9 1690

(b)
Kharif CF 3502.5 42.8 1.8 1430
Rabi CF 4300.0 14.7 10.4 1417
Kharif-rabi CF 7772.5 69.5 2.4 2273
Kharif MD 3485.0 31.7 1.9 1365
Rabi MD 4277.5 8.3 5.5 1315
Kharif-rabi MD 7775.0 51.2 2.6 2112
Kharif SF 3495.0 !6.8 2.4 1147
Rabi SF 4315.0 !8.2 10.6 1159
Kharif-rabi SF 7797.5 !4.5 7.0 1739

aKharif rice is planted May–September and harvested October–January. Rabi rice is planted in November–February and harvested in
March–June.
bCF ¼ continuous flooding, MD ¼ mid-season drainage (three draining events per crop cycle), and SF ¼ shallow flooding (water table
fluctuates $ 5–10 cm from soil surface).
cYield for a given crop cycle, kharif-rabi yield for both crops.
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Rice yields were consistently higher for rabi rice and lower for kharif rice rotations across all three water
regimes. In Andhra Pradesh, yields in rabi season are greater because of higher temperature and longer
daylight during summer. In contrast to regions in China, where use of MD or SF can cause a significant
increase in rice yields (Li et al., 2005), these alternative water regimes did not change modelled yields.
Methane emissions were higher for the southern region of the study area (Table 1(a)), probably due to the
lower clay content. Methane emissions were higher for the kharif-rabi double rice rotation across all water
regimes owing to the longer flooding periods required for double cropping. Changes in soil water regimes
change Eh dynamics, which in turn has a significant impact on trace gas emissions. By simulating Eh

dynamics, DNDC predicts daily CH4 and N2O fluxes from rice fields through the growing and fallow
seasons, as they remain flooded or shift between flooded and drained conditions based on the management
systems. Methane emissions can be reduced through the adoption of mid-season drainage (Figure 4) and,
more considerably, under shallow flooding regimes (Li et al., 2002, 2005; Pathak et al., 2005). Figure 4(b)
shows that the reductions in methane emissions caused by a shift from CF to MD varies spatially, with
larger reductions in areas whose soils have higher soil carbon and greater clay content (region north of the
Krishna River) and with more varied cropping cycles (area surrounding Krishna River). N2O emissions
were typically higher during the rabi season, with the highest emission rates in the northern region of the
study area which has higher soil carbon content. As expected, water requirements for evapotranspiration
(ET) were higher for the double-cropping system. MD and SF water regimes reduced ET by 5–8% and
19–25%, respectively, relative to continuous flooding.

Figure 4. Modelled patterns of methane emissions for (a) continuous flooding (CF) and (b) reduction in methane emissions from
switching from CF to mid-season drainage (MD). This figure is available in colour online at www.interscience.wiley.com/journal/aqc
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Trace gas emissions, rice yields and water use vary as a result of local biophysical conditions (e.g. soils,
climate) and management conditions (e.g. water regime, crop cycles, planting and harvesting dates) (Li,
1992). Although this is well known, and illustrated by the DNDC simulated data in Table 1, one goal of this
analysis is to demonstrate how multi-temporal SAR data can potentially be an important part of a regional
rice monitoring system. While many studies have indicated that SAR is an ideal remote sensing technology
for mapping rice paddy extent and biophysical characteristics (LAI, biomass) (e.g. Kurosu et al., 1995; Le
Toan et al., 1997; Ribbes and Le Toan, 1999; Rosenqvist, 1999; Inoue et al., 2002), regional SAR
applications have been hampered by a lack of routine, extensive and well-timed acquisitions of SAR
imagery. However, with the launch of JAXA’s ALOS platform with the Phased Array type L-band
Synthetic Aperture Radar (PALSAR) regional acquisitions are not only possible, but part of the ALOS
mission plan. As part of JAXA’s Kyoto & Carbon Initiative (K & CI), an acquisition strategy has been
developed which includes ScanSAR data acquisitions every 46 days for a period of 14 months for regional
mapping and characterization of wetlands, including rice cultivation. While regional mapping of rice
paddies will require refinements to the methods presented in this paper to account for regional differences in
cropping systems and water management (shallow flooding), nevertheless using PALSAR-derived rice
maps in the DNDC modelling framework will enable a detailed, regional analysis of the impact of rice
paddy agriculture on greenhouse gas emissions, food and fibre production, and utilization of water
resources.
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