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Abstract

Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount
of the terrestrial sink is realized by forests. However, considerable uncertainties remain
regarding the fate of this carbon over both short and long timescales. Relevant data to
address these uncertainties are being collected at many sites around the world, but
syntheses of these data are still sparse. To facilitate future synthesis activities, we have
assembled a comprehensive global database for forest ecosystems, which includes
carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age),
as well as ancillary site information such as management regime, climate, and soil
characteristics. This publicly available database can be used to quantify global, regional
or biome-specific carbon budgets; to re-examine established relationships; to test emer-
ging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production
(NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evalua-
tions. In this paper, we present the first analysis of this database. We discuss the climatic
influences on GPP, net primary production (NPP) and NEP and present the CO2 balances
for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophy-
siological, and biometric flux and inventory estimates. Globally, GPP of forests benefited
from higher temperatures and precipitation whereas NPP saturated above either a
threshold of 1500mm precipitation or a mean annual temperature of 10 1C. The global
pattern in NEP was insensitive to climate and is hypothesized to be mainly determined
by nonclimatic conditions such as successional stage, management, site history, and site
disturbance. In all biomes, closing the CO2 balance required the introduction of
substantial biome-specific closure terms. Nonclosure was taken as an indication that
respiratory processes, advection, and non-CO2 carbon fluxes are not presently being
adequately accounted for.

Nomenclauture:

DOC5 dissolved organic carbon;
fNPP5 foliage component of NPP;
GPP5 gross primary production (GPP40 denotes photosynthetic uptake);

mNPP5 missing component of NPP;
NBP5 net biome production (NBP40 denotes biome uptake);

NECB5 net ecosystem carbon balance (NECB40 denotes ecosystem uptake);
NEE5 net ecosystem exchange (NEE40 denotes ecosystem uptake);
NEP5 net ecosystem production (NEP40 denotes ecosystem uptake);
NPP5 net primary production (NPP40 denotes ecosystem uptake);

Ra5 autotrophic respiration (Ra40 denotes respiratory losses);
Re5 ecosystem respiration (Re40 denotes respiratory losses);
Rh5 heterotrophic respiration (Rh40 denotes respiratory losses);

rNPP5 root component of NPP;
Rs5 soil respiration (Rs40 denotes respiratory losses);

VOC5 volatile organic compounds;
wNPP5 wood component of NPP

Keywords: carbon cycle, CO2, forest ecosystems, global database, gross primary productivity,

net ecosystem productivity, net primary productivity
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Introduction

By sequestering large amounts of atmospheric carbon,
forests play an important role in the global carbon cycle
and are thought to offer a mitigation strategy to reduce
global warming (Schimel et al., 2001). The awareness
that fossil fuel burning has perturbed the carbon cycle,
with feedbacks to global climate, has inspired research-
ers and funding agencies worldwide to invest in carbon
cycle research. Hence, many more data on carbon
cycling in forests have become available in recent
decades. Knowledge of global patterns in net primary
production (NPP) improved substantially during the
1970s thanks to the International Biological Program
(IBP; Jager et al., 2000). More recently, additional insight
in global NPP was gained by analyses of updated
comprehensive data summaries (Scurlock & Olson,
2002; Ciais et al., 2005), as well as by modelling studies,
such as the Potsdam NPP model intercomparison study
(Cramer et al., 1999). Global patterns (both spatial and
temporal) in gross primary production (GPP) and re-
spiration (Re) are mainly based on modelling exercises
(i.e. Schimel et al., 2001). Exceptions include analyses of
NEP and GPP measurements from eddy covariance flux
networks (Valentini et al., 2000; Janssens et al., 2001; Law
et al., 2002; Reichstein et al., 2003) and a synthesis of the
CO2 balance of a boreal, temperate and tropical forest
site (Malhi et al., 1999).
Because the wide spread application of the eddy

covariance technique our understanding of the magni-
tude, temporal, and spatial variability of CO2 cycling in
terrestrial ecosystems has evolved quickly (Baldocchi,
2003). However, considerable uncertainties remain re-
garding the current status of terrestrial sinks and the
fate of the carbon sequestered by the terrestrial bio-
sphere over both short and long timescales. The flow of
carbon between the different components of forest
ecosystems and its eventual allocation to long-term
storage pools (wood and soil organic matter) is likely
to vary across forests of different growth strategies
(deciduous vs. evergreen), age, management regime,
and climate. The relevant data are collected at many
sites around the world, but need to be synthesized to
address the remaining uncertainties. Therefore, we have
assembled a comprehensive global database for forest
ecosystems, which includes carbon budget variables
(fluxes and stocks), ecosystem traits (e.g. leaf area index,
age), as well as ancillary site information such as
management regime, climate, and soil characteristics.
This publicly available database is dedicated to quanti-
fying the global and biome-specific carbon budget of
the forests, re-examination of previously hypothesized
global relationships, testing emerging hypotheses about
ecosystem functioning, and providing benchmarks for

ecosystem model evaluations. The database will be
updated as additional data become available.
The objectives of this manuscript are to (1) present the

database structure, explain data consistency and quality
control mechanisms, (2) identify data gaps, (3) present
global patterns in GPP, NPP and NEP, and (4) establish
forest carbon budgets by biome.

Components of the C-balance

GPP of an ecosystem represents the gross uptake of CO2

that is used for photosynthesis. The synthesis of new
plant tissue from CO2, water and nutrients and the
maintenance of living tissues are energy demanding
processes (Penning de Vries et al., 1974; Amthor, 2000).
Hence, some photo-assimilated compounds are lost
from the ecosystem as autotrophic respiration (Ra) due
to the costs associated with growth and maintenance of
foliage, wood, and roots. The amount of photosynthates
that is not used for respiration and is available for other
processes is defined as NPP and relates to GPP and Ra

as

GPP ¼ NPPþ Ra: ð1Þ

The bulk of NPP is allocated to the production of
biomass in different ecosystem components: foliage
(fNPP), wood (wNPP; including branches and stems),
and root (rNPP; including coarse and fine roots) pro-
duction. In addition to these measurable components,
NPP also includes a variety of additional components
and processes that are more difficult to measure and
often ignored. In this manuscript, these components
were called mNPP and include the carbon invested in
understory plant growth and in reproductive organs
(flowers, seeds, fruits), as well as carbon lost through
herbivory, emitted as volatile organic compounds
(VOC) and methane (CH4), and exuded from roots or
transferred to mycorrhizae. The global average of pro-
duction and losses contained in mNPP was estimated to
be 11% (Randerson et al., 2002) but can easily amount to
20% of the sum of fNPP, wNPP, and rNPP in tropical
forests (Clark et al., 2001). Thus,

NPP ¼ fNPPþwNPPþ rNPPþmNPP: ð2Þ

The residence time of carbon, which is the time
between fixation in photosynthates and the return to
the atmosphere following respiration or chemical trans-
formation into VOC, exudates or CH4, differs among
NPP components. Carbon incorporated in wood, which
is physiologically dead, has a residence time within the
living tree of years to centuries, whereas the carbon
deposited in foliage and fine roots has residence times
of months to years. Each year part of the standing
biomass is transferred to litter- and/or soil layer carbon
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pools (each of which has different residence times).
These carbon pools are subjected to decomposition by
microbial activity, a process defined as heterotrophic
respiration (Rh). The decomposition processes that con-
tribute to Rh include decomposition of current year
biomass, but also contain decomposition of organic
matter that accumulated in the ecosystem during the
last decades, centuries or millennia. The imbalance
between NPP and Rh is the NEP

NPP ¼ NEPþ Rh: ð3Þ

The sum of Rh and Ra represents the total ecosystem
respiration (Re) and the sum of the belowground frac-
tion of Ra and Rh is the soil respiration (Rs). NEP is
determined by the difference between GPP and Re and
differs from the net rate of organic carbon accumulation
in ecosystems (Schulze et al., 2000).

GPP ¼ NEPþ Re: ð4Þ

The carbon fluxes observed in experiments differ
from the long-term carbon balance mainly because
non-CO2 losses and nonrespiratory CO2 losses, which
occur at a range of timescales, are typically ignored.
Shortly (o1 year) after uptake, synthesized compounds
are lost from the ecosystem as VOCs (Guenther et al.,
1995) or as plant-produced CH4 (Keppler et al., 2006).
On longer timescales (41 years), part of the annually
accumulated NEP leaves the ecosystem as dissolved
organic carbon (DOC) or microbially produced CH4. In
addition, all or part of the carbon that has been built up
over the years by the accumulation of the annual NEP
can leave the ecosystem and eventually return to the
atmosphere as nonrespiratory CO2 fluxes by forest fires,
harvests and/or erosion (Randerson et al., 2002; Amiro
et al., 2006). Therefore, non-CO2 and nonrespiratory
CO2 losses should be accounted for in Eqn (4) to obtain
the carbon balance. The net ecosystem carbon balance
(NECB) is the term applied to the total rate of organic
carbon accumulation (or loss) from ecosystems (Chapin
et al., 2006) and balances NEP as follows:

NECB ¼NEP

% nonrespiratoryCO2 losses% non-CO2 losses

þ import from bordering ecosystems:

ð5Þ

GPP, NPP, NEP, and NECB may all represent carbon
sinks or sources (except GPP which is always a sink) but
the relevance of the sink or source depends on the
temporal and spatial scale one wants to study. Where
the carbon sink in GPP is only sustained for minutes,
the sink or source quantified as the NECB equals the
long-term carbon-sequestration by ecosystems. When

integrated over time and space the NECB equals the net
biome production (NBP; Schulze & Heimann, 1998;
Buchmann & Schulze, 1999). It is the NBP that is
reflected in the long-term atmospheric concentration
of CO2, CH4 and other atmospheric carbon-compounds.

Materials and methods

Database

A comprehensive relational database structure was
designed to store information on carbon fluxes, ecosys-
tem properties, and site information of forest stands.
Data entries originated from peer-reviewed literature,
established databases (e.g. Olson et al., 2001; Papale
et al., 2006) and personal communications with research
groups involved in Fluxnet (Baldocchi et al., 2001). The
high quality of the database is ensured by several
features: (1) referential integrity is ensured by the
structure of the database, (2) data selection is based
on strict methodological criteria, (3) consistency of the
NPP data is ensured by a hierarchical framework, (4)
uncertainty of the fluxes are estimated in a consistent
manner accounting for the methodological approach
and the length of the time series, (5) the uncertainty of
aggregated fluxes is estimated, and (6) a variety of
observed and/or modelled meta-data is included in
the database.

Structure of the database. The database is structured by
site. A site is a forest or a stand with a known
geographical location, biome (US Department of
Agriculture biome classification; Reich & Eswaran,
2002), tree species composition and management
regime. Hence, different treatments within an
experimental forest or different aged stands that form
a chronosequence were recorded as different sites. Each
site in the database is linked to at least one carbon
balance component and each component is further
linked to the methodology that was used to estimate
it. Owing to its structure, the database can contain
multiple estimates of the same flux for the same year
(i.e. if these estimates were reported in different studies
or estimated with different measurement techniques).
Because data from different sources or references are
stored as different entries, the structure of the database,
thus ensures referential integrity.

Selection criteria. Flux estimates were included in the
database when they were based on direct measurements
(NPP, NEP, Rs, Rh, and Ra), derived from single
or multiple direct measurements (GPP, NPP, NEP, Re,
Rh, and Rh) or modelled (GPP, NPP, NEP, Re, Rs, Rh,
and Ra).
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NPP estimates were included in the database when
they were based on direct measurements of the main
components of NPP (Clark et al., 2001) if these were
obtained as follows: the net annual production of leaves
or needles was determined by collecting leaf/needle fall
throughout the year; annual stem and branch increment
were determined using species- and region-specific
allometric equations relating aboveground woody
biomass increment to the change in basal area of
individual trees in the plot; and coarse-root production
was determined through species- and region-specific
allometric equations relating root mass to basal area
and fine-root production was determined by repeated
soil coring, isotopic estimates of fine-root turnover
combined with biomass measurements, upscaled root-
length production observed in minirhizotrons or the soil
respiration and litterfall constraint formulated by Raich
& Nadelhoffer (1989). Furthermore, to be included in the
database, foliage, stem, branch, coarse and fine root
biomass increment had to be corrected for the annual
litterfall of these components. When available, we also
included estimates of NPP which accounted for: the NPP
of the understory vegetation through destructive
harvests (available for 30% of the sites with NPP
estimates); fruit and seed production (availability:
o4%); herbivory (availability: o4%); emissions of
volatile compounds (availability: 0%) and leaching of
root exudates (availability: 0%). However, availability
of these NPP components was not a necessary criterion
for inclusion.

Direct measurements of annual and multiple-year
NEP were included in the database when based on
continuous measurements with a tower-based eddy
covariance system. NEP estimates were accepted
when data gaps due to system failure, stable
atmospheric conditions or data rejection were filled by
means of standardized methods (Falge et al., 2001;
Reichstein et al., 2005) to provide complete data sets.
These data, however, do not include corrections for
possible effects of advection, which may lead to a
systematic underestimation of night-time respiration
even at high turbulence.

Biometric NEP estimates were included in our
database when they were based on the difference
between biomass production and heterotrophic re-
spiration (e.g. Hanson et al., 2003) or repeated biomass
inventories and soil respiration measurements (e.g. Law
et al., 2004).

Estimates of Rs and its heterotrophic component
Rh were included in the database when based on
subtracting chamber measurements from undisturbed
plots from measured and up-scaled root respiration
(Hanson et al., 2000) or chamber measurements after
trenching or girdling. Directly measured estimates

of Ra were included in the database when the estimate
was based on up-scaled chamber measurements of
foliage, stem and root respiration (e.g. Ryan et al., 1996).

Half-hourly eddy covariance measurements can be
used to derive an estimate of Re and GPP. At night there
is no photosynthesis, so the site-specific relationship
between the night-time NEE and soil temperature can
be used to estimate the half-hourly respiration during
the day given the daytime soil temperature. However,
due to below-canopy CO2 storage and advection,
nocturnal NEE measured on calm nights (u*
threshold) is not used to estimate Re. These rejected
data were treated as gaps and filled by means of
standardized methods (Falge et al., 2001). Only
measured data were used to fit a relationship between
night-time NEE and soil temperature, from which
daytime respiration was estimated. The relationship
can be fitted with constant parameter values (Falge
et al., 2001) or with variable parameter values
(Reichstein et al., 2005). Respiration estimates from
either method of fitting were included in the database.
Applying Eqn (4) results in half-hourly estimates of
GPP that must be integrated over the course of a year to
obtain an estimate of the annual GPP. On sites affected
by advection, GPP and Re are both likely to be
underestimated.

When data are available for at least two flux
components, the identities given by Eqns (1)–(4) can
be used to estimate a missing flux (e.g. Ra can be
calculated from the difference between Re and Rh).
Flux estimates obtained by applying these equations
were also included in the database. However, modelled
GPP, NPP, NEP, Re, Rs, Rh, and Ra estimates were only
included when a mechanistic process model driven by
daily or more detailed climatological input variables
was used, and when the model was calibrated with
site-specific parameters and/or validated against site-
specific measurements such as biomass, NEP, etc.

Consistency of the flux data. Despite the strict selec-
tion criteria there are still inconsistencies between
methodological approaches (i.e. an eddy covariance-
based estimate of GPP includes the understory, whereas
most process models limit the GPP to the photosynthesis
of the overstory vegetation). Depending on the
methodological approach, respiration by mycorrhizae
may be included either in Ra or in Rh. These
inconsistencies contribute to the observed variation
among sites, but given the small contribution of
understory and mycorrhizal fluxes are unlikely to
have severely affected the results presented below.

More problematic are the inconsistencies in NPP.
Although NPP data are more widely available than
other carbon-flux estimates, there are considerable
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problems of consistency among NPP studies. Reported
NPP values can range from the NPP of a single
component (e.g. foliage NPP) to the complete NPP of
the ecosystem. The database accounted for these
inconsistencies by combining 11 components and nine
aggregation levels of NPP in a hierarchical framework
(Fig. 1). At the lowest level, stem and foliage NPP were
recorded. When both components were measured, the
lowest possible level of aboveground NPP (ANPP_1;
foliage1 stem NPP) was calculated. The next level
included branch NPP. If branch NPP was measured,
wood NPP (stem1branch NPP) and ANPP_2
(foliage1 stem1 branch NPP or foliage1wood NPP)
were calculated. Coarse and fine root NPP were
recorded as separate components and summed to
obtain the belowground NPP (BNPP_1; coarse1fine
roots NPP). If all required low-level components were
available, the total NPP (TNPP_1) was calculated as
ANPP_21BNPP_1. If the understory NPP was
measured, the next level of total NPP was calculated
(TNPP_2). Adding estimates of the NPP of the
reproductive parts, herbivory, root exudation and
VOC’s and CH4 resulted in TNPP_3, TNPP_4,
TNPP_5, and TNPP_6, respectively. The framework
was considered hierarchical because a certain level of
NPP was calculated only when all underlying
components were measured. For example, TNPP_4
was not calculated unless TNPP_3 was available and
NPP consumed by herbivores was measured. There
was, however, one exception: NPP calculated from the
difference between GPP and Ra or the sum of NEP and
Rh was set to TNPP_5 despite the absence of lower-level
NPP estimates. The imbalance between GPP and Ra was

assigned to TNPP level 5 instead of level 6 because most
often GPP and NEP were estimated on the basis of eddy
covariance measurements which do not capture VOC’s
and CH4 losses.

Given this careful processing and quality evaluation
of data for each site, the NPP data are consistent when a
single level of NPP data is used. For the majority of the
sites, only a few components were reported such that
TNPP_1 was the most common estimate for total NPP. It
should be noted that minor inconsistencies remain within
an individual component (i.e. the use of different cut-off
diameters between coarse and fine roots). However, the
variation due to these inconsistencies is expected to
disappear when NPP estimates of a higher level are
used [i.e. the variation due to different cutoff diameters
are expected to disappear when total belowground NPP
(BNPP_1) is used].

Uncertainty of the measured CO2 fluxes. Although recently
efforts have been made to quantify the uncertainties of
eddy covariance measurements (Hollinger et al., 2004;
Hollinger & Richardson, 2005; Richardson et al., 2006;
Black et al., 2007), uncertainty of CO2-flux estimates are
only rarely reported in the literature and when reported
it is often unclear whether the given value denotes
instrumental, spatial, temporal and/or other sources
of variability. Therefore, we ignored the reported
uncertainty and instead estimated the total uncertainty
for every component flux contained in the database.
The uncertainty was estimated in a uniform way based
on expert judgment. We could not identify prior
information that could constrain the absolute range of
the estimated NEP. Without measurements or prior
information, experts agreed that the NEP of a forest
most likely ranges from %100 to 600 gCm%2 yr%1.
The absolute range of the NEP estimate is, thus,
& 350 gCm%2 yr%1 (this manuscript). However, all
methodological approaches contained in the database
used site-specific observations and are therefore
expected to reduce the uncertainty surrounding the
NEP estimates. Consequently, the uncertainty was
reduced with a method-specific factor (i.e. when NEP
was determined by eddy covariance measurements),
the precision was thought to be 30% of 350 or
105 gCm%2 yr%1. This estimate is similar to those
presented by Griffis et al. (2003), Richardson &
Hollinger (2005) and Oren et al. (2006). For tropical
forest, where night-time measurements are often
problematic the absolute range of the NEP estimate
was set to & 700 gCm%2 yr%1. The applied method-
specific reduction factors (i.e. 30% for eddy
covariance, are given in Table 1). When a flux was a
multiple-year mean value, its value is less prone to
interannual variability and, therefore, its uncertainty
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(sij) was further reduced by accounting for the length of
the time series. Thus,

sij ¼ pi ' RFj
! ". ffiffiffiffi

lij
q

;

where pi is the initial uncertainty for site i in the absence
of measurements according to Table 2 and RFj is the
reduction factor for method j according to Table 1 and lij
is the length of the time series (in years) for site i for
which the fluxes where estimated with method j.

A similar approach was followed to estimate the
uncertainty of GPP, NPP, Re, Ra, Rh, and Rs. However,
for these fluxes the latitude of the site contained prior
information regarding their absolute range [i.e. GPP at a
boreal site likely ranges from 0 to 1000 gCm%2 yr%1,
whereas GPP at a tropical site likely ranges from 2000 to

4000 gCm%2 yr%1 (this manuscript)]. Consequently, the
absolute range for GPP in the absence of measurements
depends on the latitude (Table 2). For each site contained
in the database the latitude was known and as such,
the absolute range in the absence of measurements
could be estimated. This initial uncertainty was then
reduced by the method-specific factor (Table 1) and
further adjusted for the length of the time series.

Aggregated fluxes and their uncertainty. According to the
planned analysis, differently structured tables can be
extracted from the database (e.g. for low-resolution
model comparison, the data should be aggregated by
latitudinal and longitudinal cells whereas for analyzing
C balances of different forests the data should be
aggregated by site). For a given site or cell (i), the flux
component (F) was determined with k different
methods j. The average flux component determined
by method j for site or cell i was then given as Fij. The
average flux component across methods (Fi) was
calculated as the weighted mean:

Fi ¼
Pk

j¼1 lij ' Fij
Pk

j¼1 lij
:

The uncertainty of the weighted mean was
calculated by means of error propagation:

si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

k lij ' sij
! "2

P
k lij

vuut
,

ffiffiffiffi
ni

p
;

Table 1 Method-specific reduction factors for GPP, NPP, NEP, Re, Rs, Rh and Ra determined by expert judgment

Method GPP NPP NEP Re Rs Rh Ra Reduction factor

Eddy covariance and data assimilation x x 0.2
Eddy covariance x x x x 0.3
Measured increment and litterfall x 0.3
Chamber based x 0.4
Measured and modelled increment and litterfall x 0.6
Process-model based x x x x 0.6
Chamber1girdling x 0.8
Chamber1 root excised x 0.8
Chamber1 trenching x 0.8
Radiocarbon x 0.8
Chamber based x 0.8
Alkali absorption x 0.8
Chamber1gap based x 0.9
Process-model based x x x 1.0
Flux component based x x x x x x x 1.0

The reduction factors account for the precision of a method and are multiplied with the absolute range of the uncertainty of the
fluxes (Table 2) to get the uncertainty of a specific observation.
NPP, net primary production; NEP, net ecosystem production; GPP, gross primary production.

Table 2 Absolute range (gCm%2 yr%1) of GPP, NPP, NEP, Re,
Rs, Rh and Ra under the assumption that measurements are
absent

Component flux Uncertainty

GPP 5001 7.1' (70–latitude)
NPP 3501 2.9' (70–latitude)
NEP 350 if latitude423

700 if latitudeo23
Re 5001 7.1' (70–latitude)
Rs 2001 8.6' (70–latitude)
Rh 1001 2.9' (70–latitude)
Ra 1001 4.3' (70–latitude)

Values determined by expert judgment.
NPP, net primary production; NEP, net ecosystem production;
GPP, gross primary production.
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where ni is the total number of observations for the flux
component Fi for site or cell i and lij is the number of
observations determined with method j. Hence, the
obtained uncertainty (si) is a proxy for the uncertainty
surrounding the mean annual flux for the site or cell.

Site description data. Additional site information related
to stand characteristics, standing biomass, leaf area index
and growing environment were added to the database as
separate tables (see Appendix A). Stand characteristics
such as basal area, mean tree diameter, mean tree height,
mean tree density and mean stand age are available for
many sites. Also, the observed standing biomass and its
major components, the maximal observed leaf area
index, and some methodological details of the leaf
area measurement technique were available and
stored in the database for many sites. A description
of stand management was also included in the
database. Among sites, information on management
was of variable quality and detail. Therefore, a coarse
classification, distinguishing managed (when the
description contained a reference to planting, thinning
or harvesting), unmanaged (when no management had
occurred during the last 50 years), recently burned
(when burned in the last 25 years), recently clear cut
(when clear cut in the last 25 years) and fertilized
and irrigated sites (when the site was fertilized or
irrigated often as part of an experimental set-up).
Finally, the growing environment was characterized
by the observed mean annual temperature and annual
precipitation.

For almost all sites, soil texture expressed as the
volumetric percentage of sand, silt and clay was
extracted from Global Soil Data Products (Global Soil
Data Task, 2000). The spatial resolution is 5min. Mass
percentages were converted to volumetric percentages
by dividing the mass percentage by the bulk density
(i.e. 1.19 g cm%3 for sand and 0.94 g cm%3 for clay). The
percentage silt was calculated as the difference of the
volumetric percentage sand and clay from 100%. The
normalized different vegetation index (NDVI) at a
spatial resolution of 8' 8 km2 and 15-day interval
were acquired from the Global Inventory Monitoring
and Modelling Studies (GIMMS) group derived from
the NOAA/AVHRR series satellites (NOAA 7, 9, 11 and
14) for the period January 1982 to December 2003
(Tucker et al., 2005). In addition to the direct
measurements, monthly precipitation, air humidity
and temperature were extracted from the CRU data
set (Mitchell & Jones, 2005). The observed temperature
and precipitation were strongly correlated to the CRU-
derived temperature and precipitation (r25 0.93 and
0.70, respectively). However, the CRU data were
added to the database and used in the present

analysis because these data was more complete and
consistent (all from 1990 to 2003) than the observed
data. Monthly net solar radiation, absorbed downward
longwave radiation, net surface longwave radiation,
soil moisture, dry nitrogen deposition, wet nitrogen
deposition and ammonia deposition were simulated
with the model ORCHIDEE (Krinner et al., 2005).

Biome-specific CO2 balances

The different biomes were characterized by means of a
stand and climate description. The stand description
was based on observed values, the climate description
was based on the CRU data set (Mitchell & Jones, 2005)
and ORCHIDEE model output (Krinner et al., 2005). All
data were extracted from the database and mean values
with their SD were presented for the different biomes.
For the selected biomes, site-specific GPP, NPP, NEP,

Re, Ra, Rh values and their uncertainty were extracted
from the database and aggregated as explained above.
Evergreen and deciduous sites were analyzed sepa-
rately. Flux estimates affected by climatic anomalies
such as El Niño events or the 2003 summer drought
were included, however, recently cut, burned, fertilized
or irrigated sites were excluded from the present ana-
lysis (although these are included in the database).
Whenever an estimate was available for two of the three
respiration components (Ra, Rh, and Re), the missing
component was calculated based on the relationship
between the respiration components. A similar proce-
dure was used to calculate Re when GPP and NEP were
measured. The uncertainty of the calculated component
was calculated by error propagation. In theory Ra and/
or Rh can also be calculated when estimates of GPP and
NPP and/or NPP and NEP are available. However, the
NPP values that were extracted from the database were
not the total NPP but just the sum of foliage, wood and
root NPP (TNPP_1). Using Eqns (1)–(4) with only part
of the NPP (TNPP_1) instead of the total NPP
(Ra5GPP%TNPP_5 or Rh5TNPP_5%NEP) violates
the underlying assumptions of the equations.
Subsequently, the biome-specific weighted mean was

calculated for each flux, using the inverse of the un-
certainty as the weight. Hence, the mean values are
strongly determined by flux estimates from long-term
experimental sites and by estimates obtained with more
precise measurement techniques (see Table 1). The flux
values in the CO2 balances should be interpreted as the
most reliable mean estimates currently available but it
should be noted that the balances are only representa-
tive for a larger region as far as the sites with the long
time series and more precise flux estimates are repre-
sentative for that region. As with most general patterns,
these mean fluxes, which are the result of both spatial
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and temporal averaging may not apply to specific sites
or specific years (Gower et al., 1996).
Robustness of the CO2 balances was tested by remov-

ing the lowest and highest observed flux for each
component and re-calculating the weighted mean. The
weighted mean for the trimmed data set was compared
with the weighted mean of the original data set. When,
for all flux components, the difference between the
original and truncated weighted means was less than
& 10%, the CO2 balance was considered robust. CO2

balances for which none of the weighted means of the
trimmed components deviated more than 25% from the
weighted means of the original components were con-
sidered acceptable. If one of the weighted means de-
viated more than 25% from its original value, the CO2

balance was considered sensitive to the available data.
It is conceivable that GPP could be estimated for

many years on a site where Rh was not measured or
that GPP at a given site was measured with a precise
method whereas Rh was measured with a less precise
technique. Consequently, the biome-specific CO2 bal-
ances were not necessarily closed. Closure of the bal-
ances was enforced by introducing terms that closed the
budget. Six closure terms, one for each flux, were
introduced to Eqns (1), (3) and (4) introduced. The
equations can be rewritten as follows:

GPPþ dGPP ¼NPPþ dNPPþ Ra þ dRa;

NPPþ dNPP ¼NEPþ dNEPþ Rh þ dRh;

GPPþ dGPP ¼NEPþ dNEPþ Re þ dRe:

The CO2 balance was further constrained by introdu-
cing the soil respiration (Rs). Following the definitions
of the respiration components the following inequalities
apply:

Ra þ dRa > Re þ dRe % Rs;

Rs > Rh þ dRh;

Re þ dRe > Rs;

Ra þ dRa þ Rh þ dRh > Rs:

For the selected biomes, mean biome-specific esti-
mates were available for GPP, NPP, NEP, Re, Ra, Rh,
and Rs. The closure terms were optimized by means
of quadratic programming such that the objective func-
tion (|dGPP|1|dNPP |1|dNEP|1|dRe|1|dRa|
1|dRh|)

2 was minimal and the CO2-balance closed.
The closure terms are a numerical way to approach

data quality and flux uncertainty on the biome level.
Ideally each individual closure term should be zero;
deviations from zero indicate a closure problem. Small
deviations indicate a good agreement between the
fluxes unless the fluxes were not measured indepen-
dently. Large closure terms (i.e. beyond uncertainties in

measured fluxes) could indicate problems with the
accuracy of the measurement technique or missing
components in the CO2 balance but could also be due
to a high natural variability within the biome because a
different set of sites may have been used to calculate the
different carbon fluxes. An underestimation of one flux
(i.e. NPP can be accounted for by adding a closure term
to NPP but also by decreasing Ra or GPP). Therefore,
the sum of the absolute values of the closure terms were
discussed instead of individual closure terms.
Mean biome-specific fluxes (weighted by the inverse

uncertainty), closure terms and NPP components were
calculated for 1000 bootstrap data sets for GPP, NPP,
fNPP, wNPP, rNPP, NEP, Re, Ra, and Rh. Consequently,
the SD of the mean fluxes, closure terms and NPP
components could be estimated for each biome.

Results and discussion

Available data

In total, 513 forest sites are included in the database: 309
needle-leaved, 181 broadleaved and 23 mixed sites or
345 evergreen, 146 deciduous and 22 mixed sites. The
database contains 519 GPP estimates for 133 sites, 298
NPP (TNPP_1) estimates for 244 sites, 714 NEP esti-
mates for 164 sites, 504 Re estimates for 112 sites, 40 Ra

estimates for 21 sites and, 186 Rh estimates for 138 sites.
Irrespective of the classification, southern hemisphere
ecosystems were highly underrepresented with just 21
sites (Fig. 2). Many common tree species from the
southern hemisphere are, therefore, not represented in
the database and coverage would greatly benefit from
additional southern hemisphere data. However, only
part of the data that is collected within the frame of
Fluxnet was made available for use at this moment.
Therefore, we expect that more GPP, NEP, and Re data
will become available in the near future, especially for
South America.
The applied biome classification (Reich & Eswaran,

2002) distinguished eight forest biomes; the database
contained 96 boreal humid (13% of the forested biomes
vs. 19% of the sites), 38 boreal semiarid (5% area vs. 19%
sites), 299 temperate humid (17% area vs. 58% sites), 17
temperate semiarid (10% area vs. 3% sites), 18 mediter-
ranean warm (5% area vs. 4% sites), 0 mediterranean
cold (1% area vs. 0% sites), 29 tropical humid (20% area
vs. 3% sites) and 16 tropical semiarid sites (28% area vs.
6% sites). Although the temperate humid forest are
overrepresented compared with their areal extent, all
main climatic regions that support forest growth are
present in the database. The lack of data for mediterra-
nean cold forests is considered less essential because
these ecosystems account for o1% of the global biomes
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that support forest growth. Their extent is limited to the
Sierra Nevada and Cascade mountain ranges in the
western US, the western half of the Russian-Kazakh
border and the Caucasian mountain range between
eastern Turkey and northwestern Iran (Reich & Eswar-
an, 2002). Semiarid forests, particularly tropical semiar-
id forests (covering almost 30% of the global forested
biomes) appear under-studied. It is not clear whether
the data gaps are the result of a lack of data or whether
the data exists but the ecosystems were not classified as
forest. The difference between forests, shrublands and
savannas is not always clear, and this is especially a
problem in semiarid regions where forests are less
dense and individual trees are smaller than in more
mesic regions.
Beside climatic conditions, growth strategy (i.e. ever-

green vs. deciduous) is also expected to influence the
CO2 balance. Therefore, evergreen and deciduous sites
were analyzed separately. Highly disturbed sites such
as recently cut, burned, fertilized or irrigated sites are
included in the database but were excluded from the
current analysis. Separation by growth strategy high-
lighted several data gaps. Subdividing the data accord-
ing to climate and growth strategy revealed that only
the CO2 balances of temperate humid evergreen, tem-
perate humid deciduous and tropical humid evergreen
forests were robust. Our robustness measure quantifies
the leverage of individual observations on the overall
mean but contains no information concerning the re-
presentativeness or the quality of the observations. The
robustness of the CO2 balance for boreal humid ever-
green and temperate semiarid evergreen was acceptable
and for the other biomes (i.e. boreal semiarid evergreen,
boreal semiarid deciduous and mediterranean warm
evergreen forests), CO2 balances were only indicative

because the current estimates were highly sensitive to
the available data due to smaller sample sizes and
greater variability among sites.
Although robustness is not solely a function of the

number of sites, we observed a relationship between the
number of sites included in the budget calculation and
the robustness of individual flux estimates (not shown).
Across biomes and fluxes, weighted means calculated
from at least 18 sites consistently produced robust flux
estimates. In addition, 16% of the Rh and 33% of the Ra

were estimated with process models (compared with
10% of the GPP, 3% of NEP, 5% of Re, and 1% of the
NPP). The low number of real observations and the
correspondingly high share of modelled values, tend to
suggest that more effort should be put into measuring
the components of Re (i.e. Ra and Rh, independently).
More direct (and thus less uncertain) observations
would increase the robustness of the flux estimates
and would also be valuable for testing or improving
models of heterotrophic and autotrophic respiration.
Even up-scaled measurements of aboveground auto-
trophic respiration and soil respiration from chamber
measurements would be valuable data with which
constraints on Ra and Rh could be improved. For all
biomes, data of non-CO2 and nonrespiratory CO2 losses
are rare. Consequently, more data are needed before
these carbon fluxes can be included in biome-specific
balances.

How do climate, stand characteristics and CO2 fluxes
differ among biomes?

Climate and stand characteristics across biomes. Mean
climate, stand characteristics and CO2 fluxes of the
biomes are based on the observations contained in the

Fig. 2 Geographical distribution of the sites contained in the database.
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database. Hence, the values given in Tables 3–5 are
representative for the sites contained in the database
and not necessarily representative for the entire biome.
Nevertheless, the well-known climatological contrasts
between biomes were obvious across the investigated
sites. Going from boreal towards tropical forests, the

mean annual temperature at sites in the database
increases from %3 to 23 1C and the difference in mean
temperature between winter (December, January and
February for the northern hemisphere and June, July,
and August for the southern hemisphere) and summer
(June, July, and August for the northern hemisphere

Table 3 Mean carbon fluxes, NPP components, sum of closure terms [S(dFlux) 5|dGPP|1|dNPP|1|dRe|1|dRa|1|dRh|]
and their standard deviation for the different biomes. The SD refer to the variability surrounding the mean values

Boreal humid
Boreal semiarid Temperate humid Temperate

semiarid
Mediterranean
warm

Tropical
humid

Evergreen Evergreen Deciduous Evergreen Deciduous Evergreen Evergreen Evergreen

GPP 973 & 83 773 & 35 1201 & 23 1762 & 56 1375 & 56 1228 & 286 1478 & 136 3551 & 160
NPP 271 & 17 334 & 55 539 & 73 783 & 45 738 & 55 354 & 33 801 & NA 864 & 96
fNPP 73 & 9 47 & 5 109 & 11 159 & 19 235 & 13 56 & 11 134 & NA 316 & 32
wNPP 205 & 28 110 & 20 304 & 36 280 & 29 329 & 47 117 & 20 389 & NA 212 & 52
rNPP 69 & 9 157 & 31 112 & 22 235 & 14 207 & 20 172 & 19 278 & NA 324 & 56
NEP 131 & 79 40 & 30 178 & NA 398 & 42 311 & 38 133 & 47 380 & 73 403 & 102
Re 824 & 112 734 & 37 1029 & NA 1336 & 57 1048 & 64 1104 & 260 1112 & 100 3061 & 162
Ra 489 & 83 541 & 35 755 & 31 951 & 114 673 & 87 498 & 58 615 & NA 2323 & 144
Rh 381 & 40 247 & 26 275 & 31 420 & 31 387 & 26 298 & 16 574 & 98 877 & 96
S(dFlux) 439 & 122 176 & 81 163 & 90 216 & 102 206 & 95 713 & 314 359 & 131 774 & 225
Re/GPP 0.88 & 0.09 0.97 & 0.04 0.86 & 0.01 0.77 & 0.03 0.77 & 0.04 0.87 & 0.22 0.76 & 0.07 0.88 & 0.04
Re/GPP 0.85 & 0.14 0.95 & 0.06 0.86 & 0.02 0.76 & 0.04 0.76 & 0.06 0.96 & 0.38 0.76 & 0.10 0.86 & 0.06

The Re/GPP ratio was calculated for each bootstrap before and after balance closure.
NPP, net primary production; NEP, net ecosystem production; GPP, gross primary production.

Table 4 Stand climate characterized by the mean & SD in winter (December, January and February in the northern hemisphere
and June, July and August in the southern hemisphere) and summer (June, July and August in the northern hemisphere and
December, January and February in the southern hemisphere) for the different biomes

Boreal humid

Boreal
semi-arid

Temperate
humid Temperate

semiarid
Mediterranean
warm

Tropical
humid

Evergreen Evergreen Deciduous Evergreen Deciduous Evergreen Evergreen Evergreen

Mean winter
temperature ( 1C)

%9 & 7 %18 & 6 %20 & 8 4 & 5 2 & 9 0 & 5 10 & 3 23 & 4

Mean summer
temperature ( 1C)

13 & 4 13 & 4 13 & 4 17 & 4 20 & 5 14 & 3 23 & 3 24 & 3

Precipitation sum
winter (mm)

205 & 110 52 & 33 47 & 31 449 & 337 183 & 164 356 & 182 239 & 212 685 & 664

Precipitation sum
summer (mm)

144 & 88 183 & 105 156 & 86 194 & 234 356 & 259 81 & 99 106 & 127 469 & 395

Net radiation sum
winter (Wm%2)

46 & 48 46 & 31 33 & 29 147 & 92 150 & 100 152 & 141 196 & 47 361 & 55

Net radiation sum
summer (Wm%2)

216 & 35 359 & 102 348 & 108 473 & 104 425 & 78 502 & 95 550 & 102 437 & 47

Mean winter air
humidity (%)

86 & 16 83 & 19 79 & 22 84 & 11 79 & 11 85 & 18 74 & 7 82 & 4

Mean summer air
humidity (%)

72 & 12 71 & 6 70 & 6 67 & 12 77 & 5 50 & 6 60 & 8 77 & 6

The temperature, precipitation and air humidity values are based on the CRU data set. Net radiation are model outputs from
ORCHIDEE.
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and December, January, and February for the southern
hemisphere) decreased from 31 to 1 1C (Table 4). Along
the same gradient, the difference in net radiation sum
between winter and summer decreased from 315 to
76Wm%2. The annual precipitation sum in boreal
semiarid forests was o400mm and exceeded 2200mm
in tropical humid forests. In the semiarid forests, the
difference in precipitation between winter and summer
was more pronounced than in the humid biomes (Table
4). Pronounced differences between winter and summer
relative air humidity were only present in the temperate
semiarid and mediterranean warm forests.

The distribution of plant species and, thus, forest
ecosystems depends on historical events (i.e. ice ages),
migrational ability and ability to adapt to present
environmental conditions (Schulze, 2005). The mean
ecosystem characteristics for each of the selected
biomes are given in Table 5. The unexpected high
latitude of the tropical forests is caused by the high
number of Hawaiian sites with latitude around 201N.
The low leaf area index for temperate semiarid
evergreen forests is not robust and most likely due
to the low number of observations for this biome.
Maximum LAI (in most cases, LAI refers to tree LAI
and does not include the LAI of the understory or the
herb layer), tree height, basal area, tree density, and
biomass do not follow a clear trend but overall higher
biomass accumulation is observed in forests from the
poles to the equator with the highest accumulation in
temperate-humid evergreen forests. Within a climatic

zone, forests in the humid biomes accumulate in
general more biomass compared with forests in
semiarid biomes. Despite the exclusion of recently
disturbed sites, there is a 50-year gap between the
mean and median age of the trees in the temperate
humid evergreen biome, which indicates a skewed age
distribution. Unrepresentative sampling in the presence
of both intensively managed and old-growth stands
(mostly located in the Pacific Northwest of the United
States) in this biome likely explains the lower median
age of the evergreen biome.

Global patterns in GPP, NPP, and NEP. The global pattern
in GPP shows a clear dependency on the climatic
conditions (Fig. 3). Temperature and precipitation
which are both sensitive to effects of continentality
and topography were thought to give a more
meaningful representation of climate than latitude,
longitude, and elevation. Climatic conditions explain
71 & 2% of the variability in GPP [Po0.01 for GPP5
f(temperature)' f(precipitation), where f is a power
function]. In line with the basic ecological principles
(e.g. Liebig’s ‘Law of the Minimum’), the GPP of
ecosystems that are already limited by low precipitation
sums (o800mm) or low mean annual temperatures
(o5 1C) do not benefit from higher mean annual
temperatures or precipitation, respectively. Given a
sufficient amount of precipitation (4800mm), GPP
increases with increasing temperatures (Fig. 3, top
panel). A similar relationship between temperature

Table 5 Stand characteristics for the different biomes

Boreal humid

Boreal
semiarid

Temperate
humid Temperate

semiarid

Mediter-
ranean
warm

Tropical
humid

Evergreen Evergreen Deciduous Evergreen Deciduous Evergreen Evergreen Evergreen

Latitude (1) 58 & 7 59 & 5 61 & 5 44 & 8 44 & 9 44 & 2 40 & 4 14 & 8
Max LAI

(m2m%2)
4.1 & 3.0 3.4 & 1.8 3.5 & 1.5 7 & 2.9 6.1 & 3.5 1.8 & 1.0 3.5 & 1.2 5.2 & 1.2

Tree height (m) 14 & 7 8 & 2 19 & 5 20 & 12 19 & 7 10 & 5 12 & 8 28 & 9
Basal area

(m2ha%1)
28 & 12 26 & 10 28 & 4 42 & 24 31 & 15 8 & 2 24 & 14 23 & 13

Tree density
(numberha%1)

3767 & 5652 4230 & 3018 1451 & 720 1399 & 1985 1723 & 2439 506 & 326 2136 & 2815 385 & 221

Stand age
(years)

72 & 52 121 & 67 78 & 31 91 & 141 75 & 50 94 & 86 45 & 34 4100

Aboveground
biomass
(gCm%2)

5761 & 3708 4766 & 2498 7609 & 2438 14 934 & 13 562 10 882 & 5670 6283 & 5554 5947 & 1808 11 389 & 5824

Belowground
biomass
(gCm%2)

1388 & 836 1604 & 925 1352 & 645 4626 & 4673 2565 & 2609 2238 & 1728 3247 & 2212 2925 & 2284

The values are the mean & the standard deviation of the observed values for the sites included in the CO2-balances
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and GPP has been reported for different types of
terrestrial vegetation such as tundra, forest, and
grasslands (Law et al., 2002). Given a nonrestrictive
mean annual temperature (45 1C), GPP benefits from
higher annual precipitation sums. However, the
beneficial effect of precipitation appears to saturate
above 1500mm (i.e. for tropical forests, there was no
correlation between precipitation and GPP, see Fig. 3,
bottom panel). This apparent saturation could originate
from the use of precipitation as the independent
variable instead of plant available water. At high
precipitation sites, run-off is a major component of the
hydrological balance and hence evapotranspiration
remains almost constant beyond annual precipitation
sums of 1500mm (Schulze, 2005). At temperatures
between 5 and 15 1C, some of the dryer forests even
have higher GPP than wetter forests (Fig. 3), likely
because the dryer sites experience less cloudiness and
hence more sunshine (Table 4).

Although an effort was made to use consistent NPP
data (TNPP_1), the observed relationships between
climatic variables and NPP are more scattered than
earlier reported relationships (Lieth & Whittaker, 1975;
Scurlock & Olson, 2002). Some of the scatter in our data

set is caused by including chronosequences (i.e. the
‘line’ at 25 1C or at 1200mm in Fig. 4, top and bottom
panel, respectively) in the analyses. Nevertheless,
temperature and precipitation explain 36 & 5% of the
variability in NPP [Po0.01 for NPP5 f(temperature)'
f(precipitation), where f is a power function]. Similar to
the results for GPP, the NPP of ecosystems does not
respond to increasing temperatures or precipitation
when the ecosystem is limited either by precipitation
(o800mm) or temperature (o5 1C), respectively (Fig. 4,
top and bottom panel). For mean annual temperatures
ranging from 5 to 10 1C, NPP increases with increasing
temperature but appears to saturate beyond 10 1C (Fig.
4, top panel). Although low NPP values are observed at
sites with low precipitation, there is no clear correlation
between NPP and precipitation above precipitation of
1500mm (Fig. 4, bottom panel). Schuur (2003) reported
that NPP decreased beyond the 1500mm threshold, but
our results are not conclusive. This saturation or
decrease could be the effect of using precipitation
instead of plant available water as the independent
variable in the figures. Similar to our observations for
GPP, some of the dryer forests at intermediate mean
annual temperatures (between 5 and 15 1C) have higher
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NPP than wetter forests at similar temperatures, likely
because these dryer sites have a higher GPP. Despite
tropical forests having the highest observed GPP
values, the highest NPP values were observed in the
temperate forests. High autotrophic respiration and/
or non-CO2 losses in tropical forests compared with
the other biomes could explain this observation, but
this then raises the question why these factors are
particularly important in tropical humid forests.

Similar to earlier studies (Law et al., 2002), NEP was
found independent from the mean annual temperature
and precipitation sum (Fig. 5). Climate explained just
5 & 1% of the variability in NEP [P5 0.03 for
NEP5 f(temperature)' f(precipitation), where f is a
power function). However, the highest NEP values are
observed in temperate humid forests. This may be
related to forest management, which is more intensive
in this biome. Forest management targets to increase the
production of woody biomass. Therefore, it is to be
expected that the effect of forest management is
reflected in the CO2 balance as thinning and
harvesting result in a higher wNPP and a lower
heterotrophic respiration due to the removal of woody
biomass before it dies and decomposes in situ. Mean

wNPP in temperate humid forests is among the highest
values observed (Table 3), which supports the idea that
management is the cause of the high-observed NEP
values. However, an effect of management on Rh is not
seen in the data (Table 3). Although some of the higher
NEP values in temperate forests might be due to
management, management in itself neither explains
the magnitude of the NEP value nor whether the
ecosystem is a CO2 source or sink. The global pattern
of NEP values of unmanaged forest across biomes
(Fig. 6) is similar to that of forests in general (Fig. 5)
and shows that also unmanaged forests are most often
carbon sinks. This finding indicates that preservation of
unmanaged forest ecosystems could be just as
important as reforestation efforts in mitigating climate
change through carbon sequestration.

Across European forests, the absence of a latitudinal
trend in GPP, in the presence of a latitudinal trend
in NEP was the foundation for the hypothesis that
respiration was the main determinant of the CO2

balance at the regional scale (Valentini et al., 2000).
However, the current analysis at larger spatial scale
shows exactly the opposite (i.e. a global pattern in
GPP in the absence of a global pattern in NEP). Our
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findings suggest that on the global scale GPP is mainly
climate driven (R25 0.72, Po0.01) and only marginally
sensitive to nonclimatic conditions. In contrast, the
global pattern in NEP was found be insensitive to
climatic conditions (R25 0.05, P5 0.03) and was,
therefore, expected to be mainly determined by
nonclimatic conditions such as successional stage,

management, site history and site disturbance. We
hypothesize that different drivers determine the
carbon fluxes at different spatial scales (i.e. the
magnitude of NPP on the global scale can is likely
driven by the climatic conditions, whereas the site
level NPP is also determined by site quality and
management).
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Despite the difference in drivers between GPP and
NEP, a linear relationship between GPP and NEP has
been reported across terrestrial vegetations (Law et al.,
2002). If we confine our data set to a similar range in
GPP as in Law et al. (2002; 600–2200 gCm%2 yr%1), a
similar relationship is observed (Fig. 7). However,
increasing GPP beyond 2200 gCm%2 yr%1 does not
result in a further increase of NEP (Fig. 7). Although
below a GPP of 2200 gCm%2 yr%1 there is a tendency of
higher NEP with higher GPP, this relationship has
limited predictive power. At any GPP, the range of
possible NEP values is so wide that it is even not
possible to predict whether the forest will be a carbon
source or sink (R25 0.28 for a quadratic regression
model, Po0.01).

Effect of the growth strategy and water availability. The
differences in CO2 fluxes between growth strategies
were tested individually for each flux in each biome
(one-way ANOVA, assuming equal variances and using
growth strategy as a factor). Out of the potential 42 tests
(seven biomes' six fluxes), 19 tests could not be
performed due to the absence of one of the growth
strategies within the biome (i.e. no data available of
deciduous forests in the humid tropics). In general, the
fluxes between evergreen and deciduous forests did not
differ within the same climate zones (ANOVA, P40.15;
see Figs 8–10). Five exceptions were observed (ANOVA,
P ( 0.10): GPP and Re are higher in evergreens
compared with deciduous forests in the temperate
humid zone, GPP and Re are higher in deciduous
forests in the boreal semiarid zone (based on few
observations) and NEP is lower in deciduous than
in evergreen mediterranean warm forests (based on
few observations). Current statistical evidence, thus
justifies merging growth strategies and hence limiting
the stratification of biomes to the climatic zones.

Nevertheless, we opted to present biomes that
distinguish growth strategies to acknowledge other
ecological differences and because 19 out of 42 tests
could not be performed.

In general fluxes are lower in semi-arid ecosystems
compared with humid ecosystems (Figs 3–5). In the
temperate zone, this difference is significant at the
0.05 level for GPP, NEP, and Rh, while for NPP the
difference is significant at the 0.10 level.

CO2 balances

Where is the CO2 going?. Eddy covariance studies have
indicated uncertainties concerning the correct
interpretation of CO2 fluxes measured on calm nights
(Goulden et al., 1996; Malhi & Grace, 2000). These
uncertainties are exceptionally important in tropical
rain forests where typically about 80% of all nighttime
data is collected during calm nights. The uncertainties
are caused by CO2 storage below the canopy, advective
losses of CO2 and higher random uncertainties during
calm nights (Araujo et al., 2002; Kruijt et al., 2004;
Richardson et al., 2006) and it is often unclear how
to deal with night-time flux measurements in tropical
forests (however, see Saleska et al., 2003). Two different
approaches for replacing night-time measurements at
low turbulence were reported to result in at least 100%
difference of the annual NEP (Kruijt et al., 2004).
Consequently, the reported NEP’s for tropical forests
are likely to be an overestimate of the true CO2 uptake.
Based on the current estimates of NEP in tropical humid
evergreen forests, the equivalent of 10% of the CO2

influx by photosynthesis remains in the ecosystem
(Fig. 8). Wood growth accounts for 50% of the carbon
sink. However, the importance of woody biomass as a
long-term sink of carbon in tropical humid forests is still
under debate (cf. Phillips et al., 1998; Clark, 2002;
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Fig. 8 Observed CO2 balance for the mediterranean warm and tropical humid biome. These CO2 balances were not closed and

therefore the identities given by Eqns (1)–(4) do not apply. The width of the arrows is proportional to the fluxes and all units are in

gCm%2 yr%1, (n) refers to the number of observations; 25–75% refers to the 25th an 75th percentiles of the observations. Flux values were

obtained from the same data but a different bootstrap-run and can therefore be slightly different from the values reported in Table 3.

Fig. 9 Observed CO2 balance for the temperate biomes. These CO2 balances were not closed and therefore the identities given by Eqns

(1)–(4) do not apply. The width of the arrows is proportional to the fluxes and all units are in gCm%2 yr%1. The legend of the figures is

given in Fig. 8. Flux values were obtained from the same data but a different bootstrap-run and can therefore be slightly different from

the values reported in Table 3.
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Phillips et al., 2002). Even if the non-CO2 losses amount
to 15–20% of the NPP (Clark et al., 2001; Grace & Malhi,
2002; Richey et al., 2002), the sequestration of carbon in
soils and organic matter pools is expected to be an
important process in tropical humid forests. Despite
the summer drought in Mediterranean warm forests,
the equivalent of 25% of the CO2 accumulated through
photosynthesis remains in the ecosystem (Fig. 8). In this
biome, wNPP is roughly equal to NEP, which suggests
declining soil organic matter pools in response to land-
use change or ecosystem perturbation.

Within the different temperate biomes, large
differences were observed in absolute flux values (i.e.
GPP, NPP, NEP; Fig. 9). In temperate humid evergreen
forests the mean annual NEP is larger than the wNPP.
Roughly 70% of the NEP accumulates in the woody
biomass, and therefore sequestration of carbon in soils
and organic matter pools is expected to be an important
process. Temperate semiarid forests are close to a
CO2-neutral state, which means that an equal amount
of CO2 that was taken up by photosynthesis is released
by auto- and heterotrophic respiration (Fig. 9). In
temperate humid deciduous and temperate semiarid
evergreen forests, wNPP and NEP are almost equal so

accumulation of the entire annual NEP can occur in the
woody biomass reducing the importance of the soil and
organic matter pools for carbon sequestration.

The differences among the boreal biomes are smaller
than the differences among the temperate biomes. In
general, the boreal humid evergreen forests have higher
absolute fluxes than the boreal semiarid evergreen forests.
However, the boreal semiarid deciduous biome is more
productive than its humid counterparts. In all three boreal
biomes wNPP exceeds NEP, suggesting an important
contribution of decomposition of historical carbon
through land-use change or ecosystem perturbation.

Carbon use, expressed as the ratio of Re over GPP
(Table 3), is significantly different between temperate
humid evergreen, temperate humid deciduous, and
mediterranean warm forests in one group, boreal humid
evergreen, boreal semiarid deciduous and tropical humid
in a second group and boreal semiarid evergreen and
temperate semiarid in a third group (ANOVA, Po0.01).
High efficiencies, indicated by low Re/GPP ratios were
found in temperate humid and mediterranean forests.
The variability in carbon use across forest biomes
observed from our database is larger than the
previously reported variability across forests, grasslands

Fig. 10 Observed CO2 balance for boreal biomes. These CO2 balances were not closed and therefore the identities given by Eqns (1)–(4)

do not apply. The width of the arrows is proportional to the fluxes and all units are in gCm%2 yr%1. The legend of the figures is given in

Fig. 8. Flux values were obtained from the same data but a different bootstrap-run and can therefore be slightly different from the values

reported in Table 3.

2526 S . L U Y S SA E RT et al.

r 2007 The Authors
Journal compilation r 2007 Blackwell Publishing Ltd, Global Change Biology, 13, 2509–2537



and tundra (Law et al., 2002). As the drivers of NEP are
not well understood it is not clear what determines these
differences in carbon use but it is hypothesized that
intensive managed (i.e. increasing wood production
through thinning is among the causes of a more-efficient
carbon use in forest biomes). We did not observe a global
pattern in carbon use (Fig. 11).

Closing the CO2 balance. In Figs 8–10, weighted mean
CO2-fluxes are plotted for different biomes without any
further consideration. At intermediate temporal scales
(years to decades) and in the absence of measurement
and conceptual errors [Eqns (1)–(5) are to be used on the
appropriate timescale], the theoretical relationships
among the fluxes should hold. However, the figures
indicate that this agreement is often poor. Therefore,
closure of the CO2 balance was enforced by adding an
additional ‘closure term.’

The closure terms are a numerical way to approach
data quality and flux uncertainty on the biome-level. An
underestimation of one flux (i.e. NPP can be accounted
for by adding a closure term to NPP but also by
decreasing Ra or GPP). Therefore, it is preferable to
focus on the sum of the absolute values of the closure
terms (Table 3), instead of individual closure terms (not
shown). For all biomes, substantial correction terms
(ranging from 10% to 60% of GPP) were needed to
close the CO2 balance (Table 3). There is no relationship
between the relative amount of unallocated carbon and
the mean annual temperature (Fig. 12) or annual
precipitation sum (not shown).

Recall that the CO2 balances for temperate humid
evergreen, temperate humid deciduous and tropical
humid evergreen forests were found to be robust
against the influence of individual flux estimates (see
‘Available data’). Despite robustness, 10–20% (Fig. 12)

of the photosynthetic carbon uptake remains
unallocated to a specific flux component, indicating
that for these biomes better data in terms of accuracy
and precision are needed rather than more data.
Although the CO2 balances for boreal humid
evergreen and temperate semi-arid evergreen forests
are reasonable robust (see ‘Available data’), 45–60% of
the carbon uptake remains unallocated in these
ecosystems. More and better observations of the
respiratory processes and lateral fluxes at the
ecosystem scale (i.e. advection, VOC, DOC) would
enable us to better close the CO2 balances and to
estimate regional and global carbon budgets more
accurately than currently possible.
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Conclusions

We have described a new global database of forest C
fluxes and pools. This database, which quantifies CO2

fluxes and pathways across a number of different levels
of integration (from photosynthesis up to net ecosystem
production), fills an important gap for model calibra-
tion, model validation and hypothesis testing at global
and regional scales. The database contains 513 sites
from eight major biomes. Estimates of the mean fluxes
in temperate humid evergreen, temperate humid decid-
uous and tropical humid evergreen were found to be
robust; in other biomes, small sample sizes and high
variability among sampled sites resulted in less robust
flux estimates. Closing the CO2 balances required the
introduction of closure terms. The value of the closure
terms was taken as an indication for the existence of
methodological and conceptual errors in the CO2 bal-
ances. For all biomes, the correction terms needed to
close biome-specific CO2 balances are substantial, ran-
ging from 10% to 60%. We believe that a better under-
standing of respiratory processes and lateral fluxes at
the ecosystem scale is a prerequisite to closing CO2

balances at the ecosystem level. This would enable us
to estimate regional and global carbon budgets more
accurately than currently possible. Carbon budgets of
semiarid forests (boreal, temperate and tropical) would
benefit most from additional data inputs.
The global patterns in GPP and NPP show clear rela-

tionships with mean annual temperature and annual
precipitation. Primary production increases with increas-
ing temperature and precipitation, but saturates beyond a
threshold of 1500mm precipitation for GPP and NPP or
10 1C mean annual temperature for NPP. Global patterns
in NEP were not correlated with climatic variables. We
hypothesize instead that variability in NEP is mainly
determined by nonclimatic conditions such as successional
stage, management, site history and site disturbance.

Availability of the database

Contributions or corrections to the database, as well
as requests to use the database (subject to standard
‘Fair Use’ policies), should be directed to the
corresponding author (S. L.).
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Table B1 Overview of the information contained in the database

Plot information
Plot name Text Name of the plot
Biome Text Biome according to US Department of Agriculture (1999)
Growth strategy Text Evergreen, deciduous or mixed
Growth form Text Needle-leaved, broadleaved or mixed
Tree species Text Dominant tree species
Tree species Text Co-dominant tree species
Latitude Number Latitude in decimal degrees
Longitude Number Longitude in decimal degrees
Elevation Number Elevation above sea level in m
Management Text Relevant information on management and disturbance

Observed stand characteristics
Basal area Number Basal area in m%2 ha%1

Diameter Number Diameter at breast height in m
Height Number Mean tree height in m
Density Number Stand density in number of trees.ha%1

Age Number Age of the dominant trees in years
LAI Number Maximal LAI in m2m%2

Method Text Description of the method used to determine LAI
Observed stand biomass
Foliar biomass Number Foliar biomass in gCm%2

Branch biomass Number Branch biomass in gCm%2

Stem biomass Number Stem biomass in gCm%2

Stump biomass Number Stump biomass in gCm%2

Coarse root biomass Number Coarse root biomass in gCm%2

Fine root biomass Number Fine root biomass in gCm%2

Aboveground biomass Number Total aboveground biomass in gCm%2

Belowground biomass Number Total belowground biomass in gCm%2

Observed stand climate
Temperature Number Mean annual temperature in 1C
Precipitation Number Total annual precipitation in mm
Evaporation Number Total annual evaporation in mm
APAR Number Total annual absorbed radiation in MJm%2

PAR Number Total annual incident radiation in MJm%2

IPAR Number Total annual intercepted radiation in MJm%2

Observed flux estimate
GPP Number Ecosystem GPP in gCm%2 yr%1

NEP Number Ecosystem NEP in gCm%2 yr%1

Re Number Ecosystem Re gCm%2 yr%1

NPP wood Number NPP of the stems/wood gCm%2 yr%1

NPP foliage Number NPP of the foliage gCm%2 yr%1

NPP branch Number NPP of the branches gCm%2 yr%1

NPP stumps Number NPP of the stumps gCm%2 yr%1

NPP coarse Number NPP of the coarse roots gCm%2 yr%1

NPP fine Number NPP of the fine roots gCm%2 yr%1

NPP repro Number NPP of the reproductive organs gCm%2 yr%1

NPP herbi Number NPP of the herbivory gCm%2 yr%1

NPP under Number NPP of the understory gCm%2 yr%1

NPP VOC Number NPP of the VOC’s gCm%2 yr%1

NPP exudates Number NPP of the root exudates gCm%2 yr%1

Rs Number Total soil respiration gCm%2 yr%1

Ra Number Autotrophic respiration gCm%2 yr%1

Rh Number Heterotrophic respiration gCm%2 yr%1

Methodology Text Description of the different methodologies that were used to estimate the fluxes
Site climate and environment
Temperature Number Monthly mean annual temperature in 1C (CRU, 2006)
Precipitation Number Monthly precipitation sum in mm CRU (2006)
Air humidity Number Monthly air humidity CRU (2006)
Cloud cover Number Monthly average cloud cover (%) CRU (2006)
Number of wet days Number Monthly sum of wet days CRU (2006)
Long wave radiation (1) Number Monthly absorbed downward longwave radiation in Wm%2 Krinner et al. (2005)
Long wave radiation (2) Number Monthly net surface longwave radiation in Wm%2 Krinner et al. (2005)
Solar radiation Number Monthly solar radiation in Wm%2 Krinner et al. (2005)
Soil moisture Number Monthly soil moisture in mm Krinner et al. (2005)
Dry deposition Number Mean monthly dry deposition of NgNm%2 month%1 Krinner et al. (2005)
Wet deposition Number Mean monthly wet deposition of NgNm%2 month%1 Krinner et al. (2005)
NHx deposition Number Mean monthly NHx deposition of NgNm%2 month%1 Krinner et al. (2005)
NDVI Number Mean 14-day NDVI Tucker et al. (2005)
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