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Abstract

Radiation reflected from vegetation canopies exhibits high spatial variation. Satellite-borne sensors measure the mean intensities emanating
from heterogeneous vegetated pixels. The theory of radiative transfer in stochastic media provides the most logical linkage between satellite
observations and the three-dimensional canopy structure through a closed system of simple equations which contains the mean intensity and
higher statistical moments directly as its unknowns. Although this theory has been a highly active research field in recent years, its potential for
satellite remote sensing of vegetated surfaces has not been fully realized because of the lack of models of a canopy pair-correlation function that
the stochastic radiative transfer equations require. The pair correlation function is defined as the probability of finding simultaneously
phytoelements at two points. This paper presents analytical and Monte Carlo generated pair correlation functions. Theoretical and numerical
analyses show that the spatial correlation between phytoelements is primarily responsible for the effects of the three-dimensional canopy structure
on canopy reflective and absorptive properties. The pair correlation function, therefore, is the most natural and physically meaningful measure of
the canopy structure over a wide range of scales. The stochastic radiative transfer equations naturally admit this measure and thus provide a
powerful means to investigate the three-dimensional canopy structure from space. Canopy reflectances predicted by the stochastic equations are
assessed by comparisons with the PARABOLA measurements from coniferous and broadleaf forest stands in the BOREAS Southern Study Areas.
The pair correlation functions are derived from data on tree structural parameters collected during field campaigns conducted at these sites. The
simulated canopy reflectances compare well with the PARABOLA data.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The three-dimensional (3D) structure of vegetation canopies
determines the spatial distribution of intercepted solar radiation
which drives various physiological and physical processes
integral to the functioning of plants. Thus, monitoring of the
3D canopy structure has long been one of the main goals of
vegetation remote sensing from space (Castel et al., 2001;
Diner et al., 1999; Justice et al., 1998; Ranson et al., 1997). The

3D radiative transfer theory provides the most logical linkage
between satellite observations and the physics of processes
operative in the generation of signals in optical remote sensing
data (Davis & Knyazikhin, 2005; Knyazikhin et al., 2005a). Its
direct use in operational data processing, however, is not
feasible because of high computational costs. Therefore, the
use of one-dimensional (1D) models is still the preferred
option. The success of remote sensing of vegetation, thus,
depends on being able to develop a radiative transfer approach
for modeling the radiation regime of natural vegetation which is
as realistic as the 3D model and as simple as the 1D model.

At a given spatial location, the vegetation canopy should be
treated as a realization of a 3D random field. Satellite-borne sensors
measure the mean radiation field emanating from a satellite pixel.
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The interpretation of satellite observations requires an accurate
specification of relationships between statistical characteristics of
the 3D vegetation canopy and the corresponding characteristics of
the 3D radiation field. Conceptually, their derivation is straightfor-
ward (Pomraning, 1991). One generates from the presumed known
statistics of the vegetation canopy a certain realization of the 3D
vegetation in a satellite pixel. For this realization, the 3D canopy
radiation field is evaluated, either using a 3D canopy radiation
model or by a Monte Carlo procedure. One repeats this process for
all possible statistical realizations of the canopy, and then averages
the corresponding radiation fields to obtain the ensemble average
signature and higher statistical moments.

Most of existing canopy-radiation models, however, use “non-
stochastic” approaches to build angular and/or spectral signatures
of vegetation. In terms of the above straightforward procedure,
one first averages the canopy structure and then solves the
radiative transfer problem with average characteristics. As it is
illustrated in Fig. 1, the use of the stochastic and non-stochastic
approaches can result in different relationships between mean
characteristics of canopy structure and canopy-leaving radiation.
In this simple example, the stochastic approach has captured two
important effects of the 3D canopy structure on the relationship
between leaf area index (LAI) and canopy reflectance while the
conventional approach has not; that is, the reflectance saturation
occurs at a higher LAI and the canopy reflectance at red

wavelength is lower than the conventional approach predicts
(Asrar et al., 1992; Shabanov et al., 2005).

The theory of radiative transfer in stochastic media aims at
deriving a closed system of simple equations which contains the
ensemble-average intensity directly as one of its unknowns
(Pomraning, 1991, 1996). Since satellite-borne sensors measure
the mean intensities reflected from heterogeneous vegetated
pixels, we will use the stochastic 1D radiative transfer equa-
tions to compute the horizontally averaged 3D radiation fields
(Kotchenova et al., 2003; Shabanov et al., 2000; Vainikko,
1973). Their computational cost is comparable to that of the
conventional 1D radiative transfer equation.

Radiative transfer in stochastic media has been a highly
active research field in recent years (Byrne, 2005; Pomraning,
1991, 1996). The first significant and successful attempt to
derive a closed system of equations for statistical characteristics
of the 3D radiation field in cloudy atmosphere was made by
Vainikko (1973) and later by Titov (1990). Shabanov et al.
(2000) adapted these equations to examine the radiation regime
in discontinuous vegetation canopies. It was demonstrated that
a complete description of statistical characteristics of the 3D
canopy radiation regime is possible, using not only average
values of radiation over the canopy space, but also averages
over space occupied by absorbing elements. A new equation for
canopy absorption, which extends the equation for a homoge-
neous case, was obtained for the general case of discontinuous
media. These results were partly implemented to operationally
produce LAI and fraction of absorbed photosynthetically active
radiation (FPAR) from MODIS (Collection 5) and MISR
(version 3.3) data (Shabanov et al., 2005). However, the potential
of the theory for remote sensing of vegetation canopies has not
been fully realized because of the lack of statistical models of a
leaf pair-correlation function that the stochastic transport
equations require (Kotchenova et al., 2003). The aim of the
present paper is to develop suchmodels, to demonstrate the ability
of the stochastic radiative transfer to capture 3D effects, and to
assess its validity by comparing simulation results with field data.

The paper is organized as follows. Section 2, Appendices A
and B introduce the basic definitions and equations of the
stochastic transport theory. Monte Carlo generated and analyt-
ical models of the pair correlation function and its properties are
discussed in Section 3 and Appendix C. The ability of the
stochastic radiative transfer equation to reproduce 3D effects
reported in literature is illustrated in Section 4. Evaluation of the
stochastic approach with field data is presented in Section 5.
Finally, Section 6 summarizes the results.

2. Vegetation canopy as a stochastic medium

Consider a vegetation canopy confined to 0bzbH. The plane
surfaces z=0 and z=H constitute its upper and lower boundaries,
respectively. For ease of analysis, we ignore all organs other than
green leaves. We will adopt a stochastic view of the landscape and
its spatial structure proposed by Jupp et al. (1988). In a given area,
the vegetation canopy is a realization of a stochastic process of
space. We describe the 3D canopy structure with the indicator
function γ(r) whose value is 1, if there is a leaf in a volume element

Fig. 1. Hemispherical reflectance at redwavelength as a function of the canopy leaf
area index (LAI) calculated using (1) stochastic (dots) and (2) non-stochastic (solid
line) approaches. Calculations are performed for a vegetation canopy consisting of
identical cylindrical in shape trees uniformly distributed in a pixel bounded from
below by a non-reflecting surface. The 3D canopy structure is parameterized in
terms of the leaf area index of an individual tree, L0, crown radius, r, and crown
height, H. The number of trees, m, in the pixel is a random variable distributed
according to the Poisson distributionwith the parameter m̄(themean value ofm). In
the first case, for a given value of m̄, the canopy reflectance, ground cover, g, and
canopy LAI (gL0) were calculated for each realization ofm first and then averaged
over all realizations. The ensemble average reflectance satisfies the stochastic 1D
radiative transfer equations (Appendix A). In the second case, the relationship was
obtained by deriving the ensemble average canopy LAI first and then solving the
radiative transfer problem using the average canopy LAI as input. The canopy
reflectance coincides with the solution of the conventional 1D radiative transfer
equations (Appendix B). Canopy structural parameters are set as follows: L0=10,
H=1, r=0.5. The mean number of trees, m̄, is variable.
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about the spatial point r=(x, y, z), and 0 otherwise (Knyazikhin
et al., 1998a, 2005b). Since the vegetation canopy is treated as a
stochastic medium, the indicator function is a stochastic function of
space. It provides the most general description of the canopy
structure that accounts for both its macroscale (e.g., dimensions of
trees and their spatial distribution) and microscale (e.g., the
clumping of leaves into tree crown) properties.

Each foliated point is characterized by the leaf area volume
density dL (in m

2/m3) defined as the expectation of the one-sided
leaf area in a unit volume with leaves (Kotchenova et al., 2003;
Shabanov et al., 2000). This definition means that the leaf area in
a volume element dr is either zero or dLdr. The distribution of
the leaf area is given by the leaf area density distribution function
uL(r)=dLγ(r) (in m2/m3) which is a stochastic function of space.
The 3D leaf area density distribution function along with the leaf
normal distribution function and the leaf scattering phase function
are required to specify coefficients in the deterministic 3D radiative
transfer equation (Knyazikhin et al., 2005a; Myneni, 1991; Ross,
1981) which underlies the derivation of the system of stochastic
equation (Appendix A). The latter two variables are assumed to be
deterministic and independent on the spatial variable r.

Given a realization of the canopy structure, γ(r), the
corresponding realization of the canopy radiation field is
described by the deterministic 3D transport equation. Its
solution is the monochromatic intensity, Iγ(r,Ω), which depends
on wavelength, location r=(x, y, z) and direction Ω. Statistical
characteristics of the canopy radiation field can be determined
by averaging realizations of Iγ(x, y, z, Ω). Our aim is to obtain a
vertical profile of the horizontal average intensity Ī (z, Ω), i.e.,

Ī ðz;XÞ ¼ 1
S

Z

S
Igðx; y; z;XÞdxdy

! "
: ð1Þ

Here b·N designates ensemble averaging, i.e., over all
possible realizations of γ within a satellite pixel S. The mean
intensity, U(z,Ω), incident on the leaf surface at depth z is
another important statistical characteristics of the canopy
radiation regime needed, for example, to estimate canopy
energy absorption capacity. This variable is defined as

Uðz;XÞ ¼
R
S Igðx; y; z;XÞgðx; y; zÞdxdy

# $
R
S gðx; y; zÞdxdy

# $ : ð2Þ

It was shown (Shabanov et al., 2000; Titov, 1990; Vainikko,
1973) that under some reasonable physical assumptions of
probabilistic properties of the indicator function, a small and
simple system of deterministic 1D integral equations containing
Ī (z,Ω) and U(z,Ω) directly as its unknowns can be derived
(Appendix A). The system requires two statistical characteristics
of the 3D canopy structure as input. The first one characterizes
the vertical heterogeneity of vegetation and is defined as the
probability, p(z), of finding a foliated point at depth z, i.e.,

pðzÞ ¼ 1
S

Z

S
gðx; y; zÞdxdy

! "
: ð3Þ

The second parameter, a pair correlation function, describes
correlation between foliated points and is defined as the probability,

q(z,ξ,Ω), of finding simultaneously foliated points on horizontal
planes z and ξ along a given direction Ω, i.e.,

qðz; n;XÞ ¼ 1
S

Z

S
gðrzÞgðrz $ S XÞdxdy

! "
; ð4Þ

where rz=(x, y, z) is a point on the plane z, and ℓ is the distance
between rz and rξ (Fig. 2). If leaves are not spatially correlated with
one another, then q(z, ξ, Ω)=p(z)p(ξ). The stochastic radiative
transfer equations reduce to the conventional 1D radiative transfer
equation in this case and Ī (z,Ω)=U(z,Ω) (Appendix B, Section 3).

The pair correlation function possesses a symmetry property in
the form q(z,ξ,Ω)=q(ξ, z,−Ω). This relationship directly follows
from Eq. (4). Under some assumptions of the stochastic function
γ(r), the pair correlation function does not depend on the azimuth.
In this case, it can be defined in terms of measures of the overlap
between sets on a horizontal plane which, in turn, are functions of
the horizontal distance (Chen et al., 1993; Strahler & Jupp, 1990;
Jupp et al., 1988; also seeAppendixC). It is convenient, therefore,
to express arguments of the pair-correlation function in z, ξ and
the horizontal distance λ (Fig. 2).

The structural parameters introduced above along with the
leaf normal distribution function, the leaf scattering phase
function and the leaf area volume density are required to specify
the coefficients in the system of stochastic equations (Appendix
A). We use the method of successive orders of scattering
approximations (Shabanov et al., 2000) to numerically solve the
system for Ī(z, Ω) and U(z, Ω).

3. Monte Carlo models of the pair-correlation function

Consider a vegetation canopy consisting of identical trees
resided in the layer 0b zbH. The tree crown is represented by a
geometrical figure. In this section, non-dimensional scattering

Fig. 2. Correlation between foliated points is described by the probability,
q(z, ξ, Ω), of finding simultaneously foliated points on horizontal planes z
and ξ along a direction Ω. Here two points rξ= rz−ℓΩ (shown as a circle)
and rz (shown as a square) on the planes ξ and z (zb ξ) are spaced a distanceℓ
apart along the upward direction Ω. The direction (unit vector) Ω has an
azimuthal angle, φ, measured in the (XY) plane from the positive X axis in
a counterclockwise fashion and a polar angle, θ, with respect to the polar
axis that is opposite to the Z axis. The distance ℓ between rz and rξ is given
by |z−ξ| / |cos θ|. The horizontal distance, λ, is defined as horizontal projection
of the line between rz and rξ and given by |(z− ξ)tan θ|. For zNξ and downward
directions, q(z, ξ, Ω) =q(ξ, z, −Ω).
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centres (leaves) are assumed to be uniformly distributed and
spatially uncorrelated within tree crowns, i.e., the indicator
function takes on the value 1 within tree crowns. Here we derive
pair-correlations functions for cylindrical and conical in shape
trees using a Monte-Carlo technique. A theoretical basis for
deriving analytical equations for the pair correlation function in
general case and further examples are given in Appendix C.

The following Monte Carlo procedure is implemented. A
random number m of trees within a pixel area S is selected using
the Poisson distribution P(m)= (m̄)mexp(−m̄) /m! where m̄ is the
mean value of the random variable m. Random locations of m
trees are generated with a uniform distribution function. If the
running random location results in the intersection with
previously simulated crowns, a tree is not positioned at this
point and the next random location is generated. A realization of
the canopy structure is the area S with m trees. Given z, ξ and
Ω, one counts non-zero values of γ(rz)γ(rz−ℓΩ) for each
realization of the canopy structure. Their ensemble average
values are assigned to q(z, ξ, Ω).

Fig. 3 shows examples of Monte Carlo generated conditional
correlation functions, K(z, ξ, Ω)=q(z, ξ, Ω) /p(z), zbξ, for
cylindrical and conical in shape trees. They do not depend on
the azimuth and are expressed in terms of z, ξ and the horizontal
distance λ. There are several important features noteworthy in
the correlation between two foliated points. First, for two points
separated by a short horizontal distance, the values of K(z, ξ, λ)
are close to one. This is the effect of clumping of foliage
elements; that is, detecting a leaf makes it more likely that the
next leaf will be detected nearby. Note that Fig. 3 illustrates the
effect of clumping of foliage into crowns while the curve
“Cluster” in Fig. 4 accounts for both clumping of foliage into
crowns and clumping of foliage within crowns. Second, a value

of the horizontal distance at which the correlation function
reaches its minimum is related to the crown horizontal size at z.
Third, with further increase in the horizontal distance, the
correlation function tends to rise from its minimum to a constant
value, and then levels off. This constant value is the probability,
p(ξ), of finding a foliated point at depth ξ. Beyond a distance at
which the correlation function saturates, there is no relation
between foliated points.

The derivative of the conditional pair-correlation function at
the origin as λ tends to 0 is another important parameter which
is diagnostic of the essential variability of canopy structure at
the finest scale (Jupp et al., 1989; Roujean, 1999a). For
example, for the Poisson germ-grain model (Appendix C,
Section 1) of a forest consisting of identical cylindrical in shape
trees, |dK / dλ| =4(1−g)ln(1−g) / (πDB) where g and DB are
ground cover and diameter of the crown base. If the derivative is
near zero (e.g., the horizontal tree dimension DB is large or the
ground cover is close to 1), then vegetation canopy can be
treated as a “smooth medium” whereas if it is high, then the
canopy structure is “rough.” Inclusion of the within crown leaf
spatial correlation will result in a finer scale of the canopy
structure variability and values of |dK / dλ| at λ=0 will
consequently be increased (curve “Cluster” in Fig. 4).

For vertical directions, θ=0 or θ=180°, the range of the
horizontal distance reduces to a single point λ=0. The pair
correlation function conveys information about mean vertical
structure of the vegetation canopy. In Fig. 3, K(z, ξ, 0)=1 if zbξ
and thus q(z, ξ, 0)=p(z)K(z, ξ, 0)=p(z). If zNξ, q(z, ξ, 0)=p(ξ)
which is a direct consequence of the symmetry of the pair
correlation function, i.e., p(z)K(z, ξ, λ)=p(ξ)K(ξ, z, λ). In the limit
ξ→z, the function K(z, z, λ) describes the horizontal distribution
of phytoelements at z. In Fig. 3a, its values at distances between

Fig. 3. Conditional probability, K(z, ξ, Ω)=q(z, ξ, Ω) /p(z), of finding a foliated point at depth ξ= z+Δz given that there is a leaf at depth z along the upward direction
Ω for vegetation canopies consisting of conical (Panel a) and cylindrical (Panel b) in shape trees distributed in the canopy layer. HereΔz=0.01·Hc and Hc is the crown
height. In these examples, the conditional pair correlation functions are independent of the azimuth and are expressed in z, ξ and the horizontal distance λ (Fig. 2). The
dimensionless horizontal axis shows values of λ /DB where DB is the diameter of the crone base. If the horizontal dimension of tree crown varies with the depth, the
conditional pair correlation function depends on z, ξ and λ (left panel). Otherwise, its values are determined by the horizontal distance λ only (right panel, see also
Appendix C).
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tree diameter D(z) at depth z and about 2D(z) are mainly
determined by the probability of finding two trees placed λ apart.
In between these extremes, the pair correlation function describes
variation in the canopy structure along different directions, e.g.,
the distribution of phytoelements that shade leaves at depth ξ
along a given direction Ω. To summarize, the pair-correlation
function provides a quantative description of the canopy structure
and effects of all scales.

4. Three-dimensional effects of canopy structure on canopy
radiation regime

The pair correlation function naturally arises from ensemble
averaging the 3D canopy radiation field (Shabanov et al., 2000)
and, therefore, determines its mean characteristics. The aim of
this section is to illustrate that the foliage spatial correlation is
primary responsible for the effects of the 3D canopy structure
on canopy reflective and absorptive properties.

The Poisson germ-grain model of the forest with equal
cylindrical in shape trees (Appendix C, Section 1) is used to
simulate the 3D canopy structure. The crown height coincides
with the canopy depth H, i.e., the canopy layer 0b zbH consists
of tree crowns. The diameter of the crown base is DB. Non-
dimensional scattering centres (leaves) are assumed to be
uniformly distributed and spatially uncorrelated within tree
crowns. The probability, p(z), of finding a foliated point at depth
z (Eq. (3)) is constant in this case and coincides with the ground
cover g, i.e., p(z)=g. The pair correlation function is given by
Eq. (C3a). The amount of leaf area in the tree crown is
parameterized in terms of the plant LAI defined as L0=dLH.
The canopy LAI is gL0.

A uniform and bi-Lambertian models are assumed for the
leaf normal distribution and the diffuse leaf scattering phase
function, respectively (Ross, 1981). Leaf hemispherical reflec-
tance and transmittance are assumed to have the same value and
set to 0.07 at the red and 0.38 at the near-infrared wavelength.

Soil reflectance is variable in our calculations. The vegetation
canopy is illuminated by a parallel beam of unit intensity. The
solar zenith angle and azimuth of the incident radiation are set to
30° and 0°, respectively.

Our calculations include two steps. First, we solve the
stochastic transport equations for mean intensities Ī (z, Ω) and
U(z, Ω). Second, we average the 3D canopy structure into a
1D medium first and then solve the stochastic radiative transfer
equation. For the 1D medium, the ground cover is one and
values of the plant and canopy LAIs coincide (i.e., L0=LAI).
The pair correlation function is independent of z, ξ and λ, and
equal to unity, i.e., the leaves become uncorrelated. The mean
intensity Ī (z,Ω) coincides with the solution of the conventional
1D radiative transfer equation and U(z, Ω)= Ī (z, Ω) (Appendix
B, Section 3). The difference in the mean intensities of the 3D
and 1D vegetation canopies will be used as a measure to quantify
the effect of canopy structure on the canopy radiation regime.

An alternative way to construct a 1D canopy structure is to
ignore the leaf spatial correlation by setting the conditional pair
correlation function to its saturated value, i.e., K(z, ξ, Ω)=g
(Fig. 4, curve “Poisson). Formally, the canopy structure is
parameterized in terms of the ground cover and the plant leaf
area index in this case. The solutions of the stochastic transport
equations, however, depend on the product gL0 but not on
absolute values of g and L0 if the pair correlation function does
not vary (Appendix B, Section 4). The two methods, therefore,
result in the same mean intensities.

4.1. Vertical profiles of radiation fluxes

Here we investigate the effects of the 3D canopy structure on
canopy radiation regime by comparing the first and second
moments of vertical profiles of the radiation flux densities. The
former represents an average of the within and between crown
radiation fields while the latter is the mean radiation regime
within a tree crown. Definitions of the up- and downward
radiation flux densities are given in Appendix B.

Fig. 5 presents vertical profiles of mean downward and up-
ward radiation flux densities accumulated over crown horizontal
cross sections (FU

↓ and FU
↑ ), and over the horizontal plane (FI

↓ and
FI
↑). Their differences, FI

↓↑(z)  FU
↓↑(z), at red and near-infrared

wavelengths for g=0.5 and 1 are shown in Fig. 6. It follows from
Eq. (B4) that

FAz
I ðzÞ $ FAz

U ðzÞ ¼ ð1$ gÞ½FAz
P
U ðzÞ $ FAz

U ðzÞ&: ð5Þ

Here FŪ
↓↑(z) denotes the mean downward (upward) radiation

flux density accumulated over gaps at depth z (Appendix B).
The 1D vegetation canopy (solid lines in Figs. 5 and 6) does

not discriminate between tree crowns and gaps between them and
thus FU

↓↑(z)=FŪ
↓↑(z)=FI

↓↑(z)=F1D
↓↑ (z). In this example, the condi-

tional pair correlation function accounts for the clustering of
foliage into tree crowns. It reaches its maximum value of 1 at λ=0
(Fig. 3) indicating that there are more scattering centers and,
consequently, more foliage–radiation interactions at small scales
than the 1D approach assumes. Attenuation of the flux densities
by the foliage is stronger than the 1D approach predicts (Fig. 5),

Fig. 4. Conditional pair correlation functions of the Poisson germ-grain, Matérn
cluster and Matérn hard-core processes (Appendix C). Cluster, D0, and clump,
Dc, sizes in the Matérn cluster process are set to DB and 0.2DB, respectively.
The probability, p(z), of finding a foliated point at depth z is 0.22 in all examples.
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i.e., FU
↓↑(z)≤F1D

↓↑ (z). In this example, LAI=gL0, a decrease in the
ground cover g enhances the within crown photon interactions
due to an increase in the plant leaf area index L0 (Fig. 5).

Tree crowns transmit less radiation compared to horizontally
averaged values, i.e., FU

↓ (z)bFI
↓(z) (Fig. 5a). It follows from this

inequality and Eq. (5) that FŪ
↓ (z)NFU

↓ (z) and thus gaps between
trees are primarily responsible for the propagation of radiant
energy in downward directions. In contrast, upward fluxes
have the opposite tendency, i.e., FU

↑ (z)NFI
↑(z) (Fig. 5b). For a

vegetation canopy bounded from below by a non-reflecting
surface, the scattering from leaves determines the upward
radiation field. With a fixed amount of the total leaf area, the

upward radiation field is an increasing functionwith respect to the
ground cover since an increase in the ground cover involves a
decrease in gaps between trees which do not “participate” in the
scattering process. As one can see from Fig. 6, these tendencies
also take place at near-infrared wavelength.

The reflection, FU
↑ (0), of tree crowns is close to the reflec-

tion, F1D
↑ (0), of the 1D canopy. The mean canopy reflection

results from both scattering occurred in tree crowns and “zero
scattering” in the between crown space. This lowers the mean
canopy reflectance. The 1D approach ignores the gap effect
and mean upward radiation flux densities are consequently
overestimated.

Fig. 5. Vertical profiles of mean downward (Panel a) upward (Panel b) radiation flux densities at red wavelength for four values of the ground cover g. Ground
reflectance is zero. Canopy LAI is fixed and set to 1.5. Plant LAI varies with the ground cover as 1.5/g. The case g=1 (solid lines) corresponds to the 1D vegetation
canopy. Solid and hollow symbols represent mean flux densities over crown horizontal cross sections and over the entire horizontal plane, respectively. The
dimensionless horizontal axis shows values of z/Hc where Hc is the crown height.

Fig. 6. Difference between mean downward (upward) flux densities over the
horizontal plane and over crown horizontal cross sections at red and near-infrared
wavelengths. Solid line represents 1D vegetation canopy (g=1) while symbols
corresponds to g=0.5. Solid and hollow symbols show the difference in downward
and upward flux densities, respectively. Other parameters are as in Fig. 5.

Fig. 7. Vertical profiles of mean downward radiation flux densities over between
crown space at red wavelength. Calculations are performed for vegetation
canopies consisting of cylindrical (dashed line), conical (dotted line) and
ellipsoidal (dashed-dotted line) in shape trees. A 1D vegetation canopy is also
shown for comparison (solid line). Canopy LAI and ground cover are 4.2 and
0.85, respectively. Soil reflectance is zero.
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The sigmoidal shapes of the vertical distribution of the
between crown downward fluxes have been reported in several
studies (Larsen & Kersaw, 1996; Ni et al., 1997; Roujean,
1999a,b). The clumping of phytoelements into tree crown is
primarily responsible for this 3D effect (Roujean, 1999b). Fig. 7
shows mean vertical profiles of downward fluxes, FŪ

↓(z),
averaged over the between crown space. Calculations are
performed for vegetation canopies consisting of cylindrical,
conical and ellipsoidal in shape trees. Eqs. (C2a)–(C2d) are
used to specify corresponding pair-correlation functions and
probabilities, p(z), of finding a foliated point at depth z. In these
examples, the ground cover, g=max p(z), and canopy leaf area
index, LAI ¼ dL

RH
0 pðzÞdz, are fixed and equal to 0.85 and 4.2,

respectively. Maximum radii of the crown horizontal cross-
sections are set to 0.25H where the crown (canopy) height H is
1 (in relative units). One can see that the vertical profiles follow
the sigmoidal distribution and are sensitive to the crown shape.
The simulated distributions conform to both theoretical and
empirical expectations (Ni et al., 1997; Roujean, 1999b).

To summarize, the 1D canopy model which admits only the
amount of leaf area and not its spatial distribution, does not
discriminate between the radiative regimes within and between
crowns. This results in underestimation of the mean downward
horizontal fluxes and overestimation of its upward counterpart.
The discrepancy is especially greater at lower ground covers.
Ignoring within and between crown radiation regimes can lead to
incorrect predictions of solar fluxes in the forest canopy. Note
that the effects captured by the stochastic radiative transfer
equation are consistent with three-dimensional effects reported in
literature (Asrar et al., 1992; Ni et al., 1997; Roujean, 1999a,b).

4.2. Energy conservation law

Many ecosystem productivity models and global models of
climate, hydrology and ecology need an accurate information on
how solar energy is distributed between vegetation canopies and

the ground. Using the NCAR Community Climate Model,
Buermann et al. (2001) reported that a more realistic partitioning
of the incoming solar radiation between the canopy and the
underlying ground results in improved model predictions of near-
surface climate. The vegetation structure determines the partition-
ing of the incoming radiation between canopy absorption,
transmission and reflection. This section shows examples of 3D
effects of canopy structure on the shortwave energy balance.

Fig. 8 shows mean canopy reflectance, FI
↑(0), and transmit-

tance, FI
↓(1). For a vegetation canopy bounded from below by a

non reflecting surface, the canopy absorptance is 1−FI↑(0)−
FI
↓(1). The 1D approach underestimates canopy transmittance and

overestimates canopy reflectance at both red and near infrared
wavelengths. As one can see from Fig. 9, these two opposite
tendencies do not compensate each other, resulting in an
overestimation of canopy absorptance.

The results given in Fig. 9 show that at a given canopy LAI,
canopy absorptance can differ depending upon ground cover and
plant LAI. This is not a surprising result because a given amount
of leaf area can be distributed in different ways in a canopy, for
instance, as canopies of dense trees (high plant LAI) with low
ground cover or as canopies of sparse trees (low plant LAI) with
high ground cover. Although the canopy LAI is the same in both
cases, the between and within crown radiation regimes are dif-
ferent. Gaps between trees enhance the canopy transmittance at
the expense of the canopy absorptance and reflectance. An
increase in ground cover involves a decrease in gaps between tree
crowns which contribute neither to canopy absorptance nor
canopy reflectance. This process enhances canopy reflective
(Fig. 8) and absorptive (Fig. 9) properties. It should also be noted
that variation in canopy reflectance, absorptance and transmit-
tance with the canopy LAI happens at a lower rate than the 1D
predicts (Figs. 8 and 9). Ignoring the within and between crown
radiation regimes can lead to overestimation of the saturation
domain, i.e., a range of canopy reflectance values which are
insensitive to variation in canopy structure (Fig. 1).

Fig. 8. Mean canopy reflectance FI
↑(0) (vertical axis on the left side) and transmittance FI

↓(1) (vertical axis on the right side) at red (Panel a) and near-infrared (Panel b)
wavelengths as a function of the canopy LAI. Solid and dashed lines represent the 1D canopy while symbols show its 3D counterpart. Ground reflectance is zero. The
canopy absorptance is 1−FI

↑(0)−FI
↓(1) (arrows). Plant leaf area index L0 is fixed and set to 7. Ground cover varies with the canopy LAI as g=LAI/L0=LAI/7.
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The spatial distribution of trees significantly affects the
between and within crown radiation regimes which, in turn,
determine the short wave energy conservation law in vegetation
canopies. The stochastic radiative transfer equations provide
vertical profiles of the horizontal mean, Ī (z, Ω), and the second
moment, U(z, Ω), of the 3D radiation field and thus is able to
discriminate between radiative regimes occurred in crowns and
in a space between them. The impact of 3D canopy structure
on the partitioning of incoming radiation between canopy
transmittance, reflectance and absorptance, therefore, is cap-
tured by the stochastic radiative transfer equations.

4.3. Geometric effect

A vegetated surface scatters shortwave radiation into an
angular reflectance pattern, or Bidirectional Reflectance Factor
(BRF), whose magnitude and shape are governed by the
composition, density, optical properties and geometric structure
of the vegetation canopy and its underlying surface. By definition,
the BRF is the surface leaving radiance divided by radiance from a
Lambertian reflector illuminated from a single direction (Mar-
tonchik et al., 2000). Satellite-borne sensors measure the mean
radiation field emanating from a satellite pixel, i.e.,

BRFðX;X0Þ ¼
Ī ð0;XÞ
p$1l0i0

: ð6Þ

Note that this parameter has been operationally produced
from data provided by the MODIS and MISR instruments
during the Earth Observing System (EOS) Terra mission
(Bothwell et al., 2002; Schaaf et al., 2002).

Fig. 10 shows the BRF at red wavelength in the nadir view
direction for a vegetation canopy bounded from below by a
reflecting surface. For sparse vegetation canopies, photons
reflected from the sunlit area of the underlying surface can
escape the 3D canopy in the nadir direction without experiencing
a collision. This 3D effect results in increased canopy brightness
at low ground cover. The BRF exhibits a non monotonic variation

with the ground cover. First, it decreases since an increase in the
ground cover involves a decrease in the sunlit area which, in turn,
reduces the impact of the between crown radiation on the BRF in
the nadir direction. Second, at sufficiently large ground cover
values, the contribution of the underlying surface vanishes and, as
in the case of a vegetation canopy with a non-reflecting surface
(Figs. 5b and 8), the BRF becomes an increasing function with
respect to the ground cover. As discussed earlier, the 3D effects
make its values lower compared to those evaluated with the 1D
model. If the leaf spatial correlation is ignored, i.e., q(z, ξ,Ω)=g2,
the BRF becomes independent of the ground cover. Thus ignoring
the leaf spatial correlation can result in an underestimation of
the contribution of canopy background to the canopy leaving
radiation for sparse and intermediately dense vegetations and an
overestimation of the canopy BRF for dense vegetations.

The importance of accounting for 3D effects in algorithms for
the estimating of leaf area index from satellite data is illustrated
in Fig. 11. In this example, LAI values over evergreen needle

Fig. 9. Mean canopy absorptance at red (Panel a) and near infrared (Panel b) wavelengths as a function of canopy LAI for three values of the plant leaf area index L0. Solid
line and symbols represent 1D and 3D vegetation canopies, respectively. Ground cover, g, varies with the canopy LAI as g=LAI/L0. Other parameters are as in Fig. 8.

Fig. 10. Bidirectional Reflectance Factor (BRF) at red wavelength in nadir view
direction as a function of ground cover. Solid line and symbols represent 1D and
3D vegetation canopies, respectively. Canopy LAI is fixed and set to 7. Plant
leaf area index varies with ground cover, g, as 7/g. Surface albedo is 0.18. The
solar zenith angle is 30°. Other parameters are as in Fig. 8.
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leaf forest at 1 km resolution are derived from the MODIS
atmosphere corrected surface reflectance product (Justice et al.,
2002) using the MODIS LAI&FPAR operational algorithm
(Knyazikhin et al., 1998b) which performs retrievals by com-
paring observed spectral BRFs to comparable values from
model-based canopy reflectances stored in a look-up-table. The
algorithm was run two times per pixel, each time with a different
look-up-table. In the first case, the BRFs for a suite of canopy
structures, ground reflectances and sun-view geometries that
represents an expected range of typical conditions were
calculated using the stochastic radiative transfer equation and
the Poisson germ-grainmodel of the forest with equal cylindrical
in shape trees (Appendix C, Section 1). In the second case, the

look-up-table was generated without accounting for the leaf
spatial correlation, i.e., the pair-correlation function q(z, ξ, Ω)
was set to g2. The use of the 1D canopy structure in the retrieval
technique results in substantial underestimation of the contribu-
tion of high reflecting snowy background to the canopy BRF and
the portion of radiation reflected by trees is consequently
overestimated. This causes unrealistically low values of winter
time LAIs over evergreen needle leaf forests. This example
suggests that ignoring 3D effects in the 1Dmodels of the canopy
structure can lead to incorrect estimation of the vegetation
seasonality.

4.4. Canopy structure and NDVI

The measured spectral reflectance data are often trans-
formed into vegetation indices. More than a dozen such indices
are reported in the literature and shown to correlate well with
vegetation amount (Tucker, 1979), the fraction of absorbed
photosynthetically active radiation (FPAR) (Asrar et al., 1984),

Fig. 11. Annual course of the mean LAI (vertical axis on the left side) over
evergreen needle leaf forests located in an area of 1200 km by 1200 km (the
MODIS tile h12v03) derived from MODIS data using the MODIS LAI&FPAR
operational algorithm with look-up-tables generated by the stochastic RTE that
accounts for the foliage spatial correlation (legend “3D canopy”) and ignores it
(legend “1D canopy”). Also shown is the annual course of the percentage of
snow covered pixels in the MODIS tile (dashed line, vertical axis on the right
side).

Fig. 12. Normalized Difference Vegetation Index (Panel a) and canopy absorption at red wavelength (Panel b) versus canopy LAI for three values of plant leaf area
index L0. Solid line and symbols represent 1D and 3D vegetation canopies, respectively. Ground cover varies with the canopy LAI as g=LAI/L0. Surface albedo is
0.18 at red and near infrared wavelengths. Other parameters are as in Fig. 9.

Fig. 13. Canopy absorption at red wavelength versus Normalized Difference
Vegetation Index (NDVI). All parameters are set to the same values as in Fig. 12.
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unstressed vegetation conductance and photosynthetic capac-
ity (Sellers et al., 1992), and seasonal atmospheric carbon diox-
ide variations (Tucker et al., 1986). This section shows examples
of 3D effects of canopy structure on relationships between
canopy absorption, LAI and the normalized difference vegetation
index.

The normalized difference vegetation index, NDVI, is
defined as the ratio between the difference and the sum of
bidirectional reflectance factors at near infrared, BRFNIR, and
red, BRFRED, wavelengths, i.e.,

NDVIðX;X0Þ ¼
BRFNIRðX;X0Þ $ BRFREDðX;X0Þ
BRFNIRðX;X0Þ þ BRFREDðX;X0Þ

: ð7Þ

Note that this parameter has been operationally produced
from data provided by the MODIS instrument during the Earth
Observing System (EOS) Terra mission (Huete et al., 2002).
Here we consider the NDVI at the nadir view direction.

The relationships between canopy absorptance and NDVI
versus canopy LAI are shown in Fig. 12. The results are similar
to those shown in Fig. 9, i.e., at a given canopy LAI, canopy
absorptance and NDVI can differ depending upon ground cover
and plant LAI. Different radiation regimes in tree crowns and
gaps between them are primarily responsible for this effect.
Values of canopy absorptance versus corresponding NDVI
values are plotted in Fig. 13. One can see that the impact of 3D

canopy structure on the absorptance–NDVI relationship is
minimal. This effect is consistent with the results documented in
Asrar et al. (1992), i.e., spatial heterogeneity in vegetation
canopies does not affect the relationship between NDVI and
fraction of absorbed photosynthetically active radiation
(FPAR). The relationship is also insensitive to rather large
changes in solar zenith angle (Asrar et al., 1992; Kaufmann
et al., 2000). It should be noted, however, that the NDVI–FPAR
relationship is sensitive to the background. Theoretical analyses
of these regularities are established in (Kaufmann et al., 2000;
Knyazikhin et al., 1998b; Myneni et al., 1995).

5. Evaluation of the stochastic approach

The BRF measurements made with the PARABOLA
(Deering & Leone, 1986) on two boreal forest study sites
during field campaigns in central Saskatchewan, Canada, in
1994 (Deering et al., 1999) are used to validate the stochastic
radiative transfer equations. The sites representative of
coniferous and broadleaf forests are located in the Southern
Study Area (SSA) of the Boreal Ecosystem-Atmosphere Study
(BOREAS) experiment. The BOREAS designated names for
these sites are SSA Old Jack Pine (OJP, 53.916°N, 104.69°W)
and SSA Old Aspen (OA, 53.63°N, 106.20°W). These sites
were the subject of intensive field campaigns carried out in 1994
as part of BOREAS field activities. A field data set includes
forest age, stem density, overstory and understory LAIs (Deering

Table 1
Characteristics of the SSA Old Jack Pine (SSAOJP) and SSA Old Aspen (SSAOA) sites used for model parameterization

Site Age,
years

Stem
density,
stems/ha

LAI Understory
LAI

Tree
height,
m

Crown
length,
m

Horizontal
Crown
radius, m

Leaf/needle
reflectance

Leaf/needle
transmittance

Understory
reflectance

RED NIR RED NIR RED NIR

SSAOJP 68 2700 2.2 0 12.7 7 1.2 0.10 0.62 0.028 0.31 0.15 0.29
SSAOA 60 1200 2.3 3.23 16.2 10.76 2.12 0.065 0.36 0.135 0.60 0.09 0.40

Fig. 14. Bidirectional Reflectance Factor at red (Panel a) and NIR (Panel b) wavelengths in the nadir direction as a function of the solar zenith angle for the SSAOJP
and SSAOA sites. Symbols represent measured BRFs. Solid and dashed lines show simulated BRF using 3D and 1D models of canopy structure, respectively.

44 D. Huang et al. / Remote Sensing of Environment 112 (2008) 35–50



et al., 1999), tree height, crown height and horizontal crown
radius (Chen, 1996; Hardy et al., 1998), optical properties of
leaves, needles and understory (Middleton & Sullivan, 2000;
Miller et al., 1997). The characteristics of each site are sum-
marized in Table 1. Their detailed description can be found in
Deering et al. (1999).

The PARABOLA instrument permits acquisition of radiance
data in three narrow spectral bands (650–670 nm, 810–840 nm,
and 1620–1690 nm) for almost the complete (4π) sky-and
ground-looking hemispheres in 15° instantaneous field of view
(IFOV) sectors in 11 s (Deering et al., 1999). The following
sampling strategy was employed to measure the forest canopy
BRF at the SSAOJP and SSAOA sites (Deering et al., 1999). The
PARABOLA instrument was suspended from a tram which
traversed a pair of fixed steel cables between two towers spaced
about 70 m apart. The tram cable height was about 13–14 m
above the canopy height at each site. This sampling height and the
instrument IFOVof 15° resulted in a nadir view footprint size at
canopy top level of about 9 m2, increasing to about 79 m2 at 60°
off-nadir view angle (Deering et al., 1999). PARABOLA
measurements were taken at distances from 25 m to 5 m from a
tower, at 2 m increments. This resulted in a total 11 measurements
being taken along the tram at each solar zenith angle. The data
were processed to obtain mean BRF over sampling points in
15° angular increments in view zenith angle and 30° angular

increments of view azimuthwith one of the bins being centered on
the solar principal plane (Deering et al., 1999).

The Poisson germ-grain model of the forest with identical
cylindrical trees (Appendix C, Section 1) is used to simulate
canopy structure of the SSAOJP and SSAOA sites. The ground
cover is estimated with Eq. (C2b) where the steam density d and
the crown radius r(z)=DB /2 are given in Table 1. Its value is
0.71 for the SSAOJP and 0.82 for the SSAOA site. Given
ground cover, the pair-correlation function was calculated using
Eq. (C3a). The plant leaf area index, L0=LAI /g, and the leaf
area volume density, dL=L0 /Hc are L0=3.12, dL=0.46 for
SSAOJP and L0=2.82, dL=0.26 for SSAOA. Here Hc and LAI
are the crown height and the canopy LAI (Table 1).

The radiative transfer equation requires specification of the
scattering and extinction coefficients at a scale of the mean
photon free path (mean distance of photon travel between two
consecutive interactions). In coniferous canopies, clumped
shoot structure causes multiple scattering within a shoot, i.e.,
at a needle and finer scales. The coefficients can not be specified
because fluctuations of the number of needle in a given volume
do not follow Poisson statistics at these scales (Chen & Leblanc,
1997; Nilson, 1999). In radiative transfer models for conifers,
therefore, a shoot is usually taken as the basic structural element
(Rautiainen & Stenberg, 2005; Smolander & Stenberg, 2003,
2005; Stenberg, 1996). The shoot scattering coefficient, ωsh, is
calculated based on the canopy spectral invariant applied to the
shoot (Huang et al., 2007; Smolander & Stenberg, 2003)

xsh ¼ xn
1$ psh

1$ pshxn
: ð8Þ

Here ωn, is the needle albedo (needle reflectance plus needle
transmittance, Table 1) and psh is the probability that a photon
scattered from a needle in the shoot will interact within the same
shoot again — the shoot recollision probability. The latter is
related to the spherically averaged shoot silhouette to total needle

Table 2
Root mean square error in predicted nadir bidirectional reflectance factor at red
(650–670 nm) and near infrared (810–840 nm) spectral bands for the SSA Old
Jack Pine (SSAOJP) and SSA Old Aspen (SSAOA) sites

Red spectral band NIR spectral band

SSAOJP SSAOA SSAOJP SSAOA

3D canopy 0.0021 0.0013 0.021 0.013
1D canopy 0.0061 0.0024 0.053 0.016

Fig. 15. Bidirectional Reflectance Factor in the solar principal plane at red (Panel a) and NIR (Panel b) wavelengths for the SSAOJP and SSAOA sites. The solar zenith
angles are 34° for SSAOJP and 40° for SSAOA. Solid line and symbols represent predicted values and PARABOLAmeasurements. The RMSE values at red and near
infrared spectral bands are 0.0042 and 0.014 for the SSAOJP, 0.0043 and 0.042 for the SSAOA sites.
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area ratio,
P
STAR, as Psh ¼ 1$ 4

P
STAR (Smolander & Stenberg,

2003). The radiative transfer equation can now be applied to
describe shoot-photon interaction. The within-shoot multiple
scattering is accounted by the shoot recollision probability
appeared in the scattering coefficient (Smolander & Stenberg,
2005). The value of psh was set to 0.44 corresponding to an
average value of

P
STAR ¼ 0:14 (Oker-Blom&Smolander, 1988).

Measured and modeled BRFs at red and NIR wavelengths in
the nadir direction as a function of the solar zenith angle for the
SSAOJP and SSAOA sites are shown in Fig. 14. The BRFs
simulated using the 3D model of canopy structure show very
good agreement with measurements (Table 2). If one simplifies
the canopy structure into a 1D medium by setting the con-
ditional pair correlation function to its saturated value, ground
cover g, the disagreement increases by a factor of about 2.7 for
the SSAOJP and 1.5 for SSAOA site (Table 2). In both cases,
the 1D approach overestimates the observations. This result is
consistent with simulations shown in Fig. 14. The effect of
ignoring the leaf spatial correlation is more pronounced at lower
ground covers, as expected.

A statistical model proposed by Shabanov et al. (2000) is
used to simulate the hot spot effect (a sharp peak in reflected
radiation about the retro-solar direction). The model requires the
specification of a coefficient related to the ratio of vegetation
height to the smallest element in the scene. The ratio of tree
height to the tree diameter (the finest scale in our simulations) is
used. Figs. 15 and 16 show measured and predicted BRFs and
their correlation for the SSAOJP and SSAOA sites. In these
examples, the simulations compare well with the field data.

6. Conclusions

Analytical and Monte Carlo generated models of the pair
correlation function have been developed. Given two horizontal

planes in the vegetation canopy, this function describes the
correlation between foliated points on these planes as a func-
tion of the horizontal distance. Its derivative at the origin is
diagnostic of the essential variability of canopy structure at the
finest scale. For two points separated by a short distance,
values of the conditional pair correlation function are close
to one. This is the effect of clumping of foliage elements; that
is, detecting a leaf makes it more likely that the next leaf
will be detected nearby. At distances comparable to the crown
horizontal size the conditional pair correlation function reaches
its minimum. With further increase in the horizontal distance,
it tends to a constant value and then levels off. This constant
value is the probability of finding a foliated point on the hori-
zontal plane at a given depth. Beyond a distance at which
the correlation function saturates, there is no relation between
foliated points.

The stochastic 1D radiative transfer equations capture the
effects of the 3D canopy structure on the canopy reflective and
absorptive properties. Ignoring the canopy structure can result in
an underestimation of the canopy transmittance at the expense of
overestimation of the canopy absorptance and reflectance.
Transmittance, reflectance and absorptance of the 3D vegetation
canopy vary with canopy LAI at a slower rate than 1Dmodel can
possible predict. Ignoring this fact in interpretation of satellite
data can lead to overestimation of the saturation domain, i.e., a
range of canopy reflectance values which are insensitive to
variation in canopy structure. The stochastic radiative transfer
equations reproduce the effect of sunlit areas of the underlying
surface on the canopy leaving radiation. They adequately
account for impact of canopy structure on relationships between
NDVI, LAI and canopy absorptance. Our analysis suggests that
the foliage spatial correlation is primarily responsible for these
effects. The pair correlation function, therefore, is the most
natural and physically meaningful measure of canopy variability
over a wide range of scales.

Simulations are compared with the PARABOLA measure-
ments from two forest sites to evaluate the model performance.
The sites include coniferous and broadleaf forest stands in the
BOREAS Southern Study Areas. The pair correlation function
was parameterized with tree structural parameters available from
field campaigns conducted at these sites. The overall agreement
between the modeled and measured canopy reflectances is very
good.

To summarize, the stochastic 1D radiative transfer equations
provide a powerful tool to develop operational algorithms
for monitoring 3D canopy structure from space because (i) its
solution coincides exactly with what satellite-borne sensors
measure; that is, the mean intensity emanating from the smallest
area to be resolved, from a pixel; (ii) it accounts for 3D effects
through a small set of well defined measurable parameters; and
(iii) it is as simple as the conventional 1D radiative transfer
equation.

Acknowledgment

This research was funded by the National Aeronautics and
Space Administration (NASA) through MODIS contracts NAS5-

Fig. 16. Correlation between measured and simulated Bidirectional Reflectance
Factors in the solar principal plane at red and NIR wavelengths for the SSAOJP
and SSAOA sites. The solar zenith angles are 34° for SSAOJP and 40° for
SSAOA. The view zenith angle varies from 0° to 70° in 15° angular increments.
The R2 and RMSE are 0.99 and 0.0022, respectively. The measured and
modeled values follow the regression line y=0.93x+0.003.

46 D. Huang et al. / Remote Sensing of Environment 112 (2008) 35–50



96061, NNG04HZ09C, the Jet Propulsion Laboratory, California
Institute of Technology under MISR contract 1259071, and by the
NASA National Polar Orbiting Operational Environmental
Satellite System Preparatory Project (NPP) under Grant
NNG04GI52G. We gratefully acknowledge this support.

Appendix A. Stochastic radiative transfer equations

The indicator function approach is based on the following
equation for the statistical closure (Shabanov et al., 2000; Titov,
1990; Vainikko, 1973)
R
S gðrzÞgðrz $ S XÞIðrz $ S X;XÞdxdy

# $

S
¼ qðz; n;XÞUðn;XÞ:

ðA1Þ

Titov (1990) showed that this approximation to the second
moment is accurate if a stationary Poisson point process is used
to derive the indicator function γ (Appendix C). Here U and q
are defined by Eqs. (2) and (4), and b·N denotes ensemble
averaging, i.e., over all possible realizations of the indicator
function γ within a satellite pixel S. The notations and coor-
dinate systems for spatial and directional variables are intro-
duced in Fig. 2.

Under the assumptions formulated in Section 2, the horizon-
tal average intensity Ī (z,Ω) for downward (μ=cos θb0) and
upward (μ=cos θN0) directions at depth z can be expressed
via the second moment U(z, Ω) of the 3D radiation field as
(Shabanov et al., 2000; Vainikko, 1973)

jljĪ ðz;XÞ ¼ $
Z z

0
rðXÞpðnÞUðn;XÞdn

þ
Z z

0
pðnÞSðn;XÞdnþ jljĪ 0ðXÞ; l b 0; ðA2aÞ

jljĪ ðz;XÞ ¼ $
Z H

z
rðXÞpðnÞUðn;XÞdn

þ
Z H

z
pðnÞSðn;XÞdnþ jljĪ HðXÞ; l N 0; ðA2bÞ

Here σ(Ω)=dLG(Ω) is the total interaction cross section
(extinction coefficient), dL is the leaf area volume density, G(Ω)
is the geometry factor (Knyazikhin et al., 2005a; Oker-Blom &
Smolander, 1988; Ross, 1981; Stenberg, 1998) The probability,
p(z), of finding a foliated point at depth z is defined by Eq. (3).

The scattering integral S(ξ, z) has the following form

Sðn;XÞ ¼
Z

4p
rsðX VYXÞUðn;X VÞdX V:

Here 4π denotes the unit sphere,σs(Ω′→Ω)=dLπ
−1Γ(Ω′→Ω)

is the differential scattering coefficient and Γ(Ω′→Ω) is the area
scattering phase function (Knyazikhin et al., 2005a; Ross, 1981).
Finally, Ī 0 and Ī H are mean intensities of radiation penetrating into
the canopy through upper (z=0) and lower (z=H) boundaries,
respectively.

The second moment U(z, Ω) satisfies the following integral
equations

jljUðz;XÞ ¼ $
Z z

0
rðXÞKðz; n;XÞUðn;XÞdn

þ
Z z

0
Kðz; n;XÞSðn;XÞdnþjljU0ðz;XÞ; l b 0;

ðA3aÞ

jljUðz;XÞ ¼ $
Z H

z
rðXÞKðz; n;XÞUðn;XÞdn

þ
Z H

z
Kðz; n;XÞSðn;XÞdnþjljUH ðz;XÞ; l N 0:

ðA3bÞ

Here K(z, ξ, Ω) is the conditional pair correlation function,
K(z, ξ, Ω)=q(z, ξ, Ω) /p(z). The second moments of downward,
U0(z, Ω), and upward, UH(z, Ω), radiation penetrating into the
canopy through the upper and lower boundaries are defined as

U0ðz;XÞ ¼
R
S gðrzÞIðrz $ S 0XÞdxdy

# $
R
S gðrzÞdxdy

# $ ; l b 0;

UHðz;XÞ ¼
R
S gðrzÞIðrz $ S HXÞdxdy

# $
R
S gðrzÞdxdy

# $ ; l N 0;

ðA4Þ

where rz=(x, y, z) is a point on the plane z (Fig. 2); ℓ0(ℓH) is the
distance between rz and the upper (lower) boundary along the
direction −Ω. For the horizontally homogeneous incoming
radiation, U0(z, Ω)= Ī 0(Ω) and UH(z, Ω)= Ī H(Ω). In this case, the
equations for Ī(z, Ω) and U(z, Ω) derived by averaging the three-
dimensional radiative transfer equation over space and the
ensemble of canopy realizations coincide; that is, the radiation
field is ergodic (Titov, 1990).

Appendix B. Some properties of the stochastic radiative
transfer equations

1. The mean intensity, Ū(z, Ω), accumulated over non-
foliated points at depth z is

Ū ðz;XÞ ¼
R
S Iðx; y; z;XÞ½1$ gðx; y; zÞ&dxdy

# $
R
S ½1$ gðx; y; zÞ&dxdy

# $ : ðB1Þ

It follows from Eqs. (1–3 and A1) that

Ī ðz;XÞ ¼ pðzÞUðz;XÞ þ ð1$ pðzÞÞŪ ðz;XÞ: ðB2Þ

2. The mean up-and downward radiation flux densities
accumulated over foliated, FU

↑↓(z), non-foliated, FŪ
↑↓(z), and all

points, FI
↑↓(z), at depth z are defined as

FAz
J ðzÞ ¼ 1

i0jl0j

Z

2pb
Jðz;XÞjljdX: ðB3Þ

Here J(z, Ω) represents either U(z, Ω), Ū(z, Ω) or Ī (z, Ω), i0
is the intensity of the incident radiation; μ0 and μ are cosines of
the solar zenith angle and the polar angle of the direction Ω,
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respectively; 2π− (2π+) denotes the downward (upward)
hemisphere of directions. It follows from Eq. (B2) that

FAz
I ðzÞ ¼ pðzÞFAz

U ðzÞ þ ð1$ pðzÞÞFAz
Ū

ðzÞ: ðB4Þ

3. Let leaves be spatially uncorrelated, i.e., q(z, ξ, Ω)=p(z)
p(ξ), and the incoming radiation be horizontally homogeneous,
i.e., U0(z, Ω) = Ī 0(Ω) and UH(z,Ω) = Ī H(Ω). Subtracting
Eqs. (A3a) and (A3b) from Eqs. (A2a) and (A2b), one obtains
Ī (z, Ω)−U(z, Ω)=0. Differentiating Eqs. (A3a) and (A3b) with
respect to z, the stochastic radiative transfer equation for the
second moment rearranges to the standard boundary value
problem for 1D radiative transfer equation with the extinction
coefficient σ(z, Ω)=dLp(z)G(Ω) and the differential scattering
coefficient σs(Ω′→Ω)=dLp(z)π1Γ(Ω′→Ω).

4. Consider a 3D vegetation canopy consisting of identical
cylindrical in shape trees. The probability p(z) is constant and
coincides with the ground cover, i.e., p(z) =g. It is convenient
to express the vertical coordinate in terms of the normalized
depth, z̄ = z /H (dimensionless). The normalized depth varies
between 0 (canopy top) and 1 (canopy bottom). The extinction
and differential scattering coefficients in the stochastic
radiative transfer Eqs. (A2a) (A2b) (A3a) (A3b) rearrange to
σ(z, Ω) =L0G(Ω) and σs(Ω′→Ω) =L0π 1Γ(Ω′→Ω) where
L0=dLH is the plant leaf area index. If leaf are not spatially
correlated, i.e., K(z, ξ, Ω) =g, the stochastic radiative transfer
equations reduce to the conventional 1D radiative transfer
equation with the extinction coefficient σ(z, Ω) =LAI ·G(Ω)
and the differential scattering coefficient σs(Ω′→Ω) =
LAI ·π− 1Γ(Ω′→Ω) where LAI=gL0 is the canopy leaf area
index. Thus, solution to the stochastic radiative transfer
equations depend on the product gL0 but not on absolute
values of g and L0 in this case.

Appendix C. Analytical models of the pair correlation
function

The stochastic geometry provides a powerful tool to derive
pair correlation functions. We will follow the Boolean model
of random set to simulate 3D canopy structure. Below, the
formulation of Stoyan et al. (1995) is adopted.

Consider points scattered on the horizontal plane according
to a stationary Poisson point process of intensity d. Since the
intensity gives the mean number of points to be found in a unit
area, this parameter can be treated as the stem density. On each
of these points a geometrical figure is placed. The union of all
of these figures is the stochastic model of the canopy
structure. The geometrical figure is assumed to be a vertical
solid, i.e., a volume obtained by rotating a curve about the
vertical axis. Its horizontal cross section at depth z is a circle
of the depth dependent radius r(z). We shall restrict our
consideration to vegetation canopies consisting of identical
trees.

Let Tz be a set of crown cross sections at depth z projected
onto a reference horizontal plane, say, z=0. This set consists of
identical circles of the radius r(z). The pair correlation function,

q(z,ξ, λ), can be determined in terms of measures of the overlap
between two sets, Tz and Tξ−λu, i.e.,

qðz; n; kÞ ¼ PrðaaTz and baTnÞ ¼ E½mesðTz \ Tn $ kuÞ&:
ðC1Þ

Here a, b and u are projections of points rz and rξ= rz−ℓΩ
(Fig. 2) and the vector Ω onto the reference plane, respectively;
Tξ−λu is the set Tξ shifted by an increment λ along the
direction u; mes(A) denotes the Lebesque measure (area) of a set
A on the reference plane; and E(A) stands for the mean fraction
A∩B occupied by A in a region B of unit area, mes(B)=1.
Thus, the generation of 3D canopy structure can be reduced
to Boolean models of random sets on the horizontal plane.
Fig. 4 shows examples of the conditional pair correlation
function, K(z,ξ,λ)=q(z,ξ, λ) /p(z), of the Poisson germ-grain,
Matérn cluster and Matérn hard-core processes. Their short
descriptions are given below.

1. Poisson germ-grain models. In the above formulation of
the stochastic model, the points of the Poisson process are
germs of the model while the crown cross sections are the
primary grains. The primary grains are represented by discs of
the radius r(z) and r(ξ). Following derivations of the above
cited monograph on p. 68, the covariance function (C1) takes
the following form

qðz; n; kÞ ¼ pðzÞ þ pðnÞ $ 1þ ½1$ pðzÞ&½1$ pðnÞ&expfdhðz; n; kÞg;

ðC2aÞ

pðzÞ ¼ 1$ expf$dpr2ðzÞg: ðC2bÞ

Here p(z) is defined by Eq. (3) and, for r(ξ)≥ r(z),

hðz; n; kÞ ¼
pr2ðzÞ; if rðnÞ $ rðzÞNk;
0; if rðnÞ þ rðzÞVk;
ar2ðzÞ þ br2ðnÞ $ krðnÞsina; otherwise;

8
<

:

ðC2cÞ

a ¼ arccos
r2ðnÞ $ r2ðzÞ þ k2

2krðnÞ

% &
; b ¼ arccos

r2ðzÞ $ r2ðnÞ þ k2

2krðzÞ

% &
:

ðC2dÞ

For r(ξ)b r(z), θ(z,ξ,λ)=θ(ξ,z,λ).
For cylindrical in shape trees, p(z)=g, r(ξ)= r(z)=DB /2,

α=β=arccos(λ /DB). It follows from Eqs. (C2a)–(C2d) that the
pair correlation function depends on the horizontal distance λ
normalized by the crown base diameter DB, i.e.,

qðkÞ ¼ 2g $ 1þ ð1$ gÞ2$jðk;DBÞ: ðC3aÞ

The coefficient κ(λ,DB) is an area occupied by the inter-
section of two circles of the radius DB shifted by a distance λ
normalized by the circle area πDB

2 /4, i.e.,

jðk;DBÞ ¼ 2p$1 arccos
k
DB

$ k
DB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1$ k
DB

% &2
s2

4

3

5HðDB $ kÞ;

ðC3bÞ
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where H(s) is the Heaviside function. The derivative at the
origin λ=0 is

dqðkÞ
dk

j
k¼0

¼ 4ð1$ gÞlnð1$ gÞ
pDB

: ðC4Þ

2. Matérn cluster process. Cluster point processes are
produced from the stationary Poisson point process of intensity
d by replacing each point with a representative cluster C0 of
points. The representative cluster is a point process. The number
of points in C0 has a Poisson distribution with the positive
parameter m̄. The points of C0 are independently and uniformly
scattered in the circle of the diameter D0=2r0. On each of these
points a geometrical figure (clump) is placed. The union of all of
these figures is the stochastic cluster model of random sets on
the horizontal plane. For clumps represented by circles with the
diameter Dc=2rc, the pair correlation function can be factorized
into probabilities of finding two points in the clusters and
finding clumps at these points, i.e.,

qðkÞ¼ ½2gc $ 1þ ð1$ gcÞ2$jðk;DCÞ&½2g0 $ 1þ ð1$ g0Þ2$jðk;D0Þ&;

gc ¼ 1$ expð$m̄pr2cÞ; g0 ¼ 1$ expð$dpr20Þ:

The probability, p(z), of finding a foliated point at depth z is
given by p(z)=gcg0.

3. Matérn hard-core model. Tree crowns in the above models
can be intersected forming complex configuration. The hard-core
models describe patterns produced by the locations of centers of
non-overlapping circles of a given radius. Consider the Matérn
hard-core point process (Stoyan et al., 1995) which is produced
from a stationary Poisson point process of intensity d by deleting
points satisfying some definite rules. Consider a vegetation
canopy consisting of cylindrical in shape trees. Let ν=πDB

2

where DB is the crown base diameter. The intensity, dHC, and the
second order product density, ρ(2)(λ), of the Matérn hard-core
point process are given by (Stoyan et al., 1995)

dHC ¼ 1$ expð$dmÞ
m

; ðC5Þ

qð2ÞðkÞ ¼ 2CðkÞ½1$ expð$dmÞ& $ 2m½1$ expð$dCðkÞÞ&
mCðkÞ½CðkÞ $ m& Hðk$ DBÞ;

ðC6Þ

CðkÞ ¼ m½2$ jðk; 2DBÞ&: ðC7Þ

The second moment ρ(2)(λ) can be interpreted as the
probability density that two tree centers are separated by the
distance λ.

Since the trees are not overlapped, the ground cover is
g= dHCπDB

2 / 4= dHCν / 4. The pair correlation function is
decomposed into the sum of probabilities of finding foliated
points in the same crown and in different crowns, i.e.,

qðkÞ ¼ gjðk;DBÞ þ
Z

jjvjjVDB
jjv VjjVDB

qð2Þðjjv$ v Vþ kujjÞdvdv V; ðC8Þ

where u=(0,1) is the unit vector on the plane z=0 and || · || is the
Euclidean distance. Note the second order product density,
ρ(2)(λ), does not depend on u.
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