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Abstract

Two models were evaluated for their ability to estimate land surface evaporation at 16-day intervals using MODIS remote sensing data and surface
meteorology as inputs. The first was the aerodynamic resistance–surface energy balance model, and the second was the Penman–Monteith (P–M)
equation,where the required surface conductance is estimated from remotely-sensed leaf area index. Themodels were tested using 3 years of evaporation
and meteorological measurements from two contrasting Australian ecosystems, a cool temperate, evergreen Eucalyptus forest and a wet/dry, tropical
savanna. The aerodynamic resistance–surface energy balance approach failed because small errors in the radiative surface temperature translate into
large errors in sensible heat, and hence into estimates of evaporation. The P–M model adequately estimated the magnitude and seasonal variation in
evaporation in both ecosystems (RMSE=27Wm−2,R2=0.74), demonstrating the validity of the proposed surface conductance algorithm. This, and the
ability to constrain evaporation estimates via the energy balance, demonstrates the superiority of the P–M equation over the surface temperature-based
model. There was no degradation in the performance of the P–Mmodel when griddedmeteorological data at coarser spatial (0.05°) and temporal (daily)
resolution were substituted for locally-measured inputs.

The P–M approach was used to generate a monthly evaporation climatology for Australia from 2001 to 2004 to demonstrate the potential of
this approach for monitoring land surface evaporation and constructing monthly water budgets from 1-km to continental spatial scales.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The ability to monitor evaporation1 from land surfaces is
important for applications requiring spatially-resolved estimates
of moisture availability over large areas continuously at weekly
to monthly timescales. Examples of such applications include
irrigation scheduling (e.g. Dodds et al., 2005), managing
carbon, water and land resources (e.g. Meyer, 1999; Raupach,
2001), and risk assessments for bushfires, dust storms and
flooding. Evaporation is a large component of the terrestrial
water balance, so improving the accuracy of evaporation
estimates will significantly reduce uncertainties in terrestrial

water balance modelling and improve the quality of information
used in these applications.

Hydrometeorologists have striven for decades to use the
global coverage of satellite-based remote sensing to provide
accurate estimates of evaporation at daily to weekly time scales
and at fine spatial scales (100 to 103 m). These efforts have been
hindered by two problems: firstly, that the quantities of interest,
such as carbon and water fluxes and their associated stores,
must be estimated indirectly using algorithms that relate
measured radiances to, for example, leaf area index (Myneni
et al., 2002), gross and net primary productivity (Running et al.,
2004), vegetation indices (Huete et al., 2002) and land surface
temperature (Wan et al., 2002). Secondly, one of the biggest
impediments to global, multi-temporal satellite-based monitor-
ing is the conflicting requirement for algorithms that are
biophysically realistic yet simple enough for global parameter-
isation and implementation. Zhao et al. (2005) demonstrates this
for the MODIS primary productivity products, while a global
MODIS evaporation product remains elusive because no
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algorithm has yet been found that achieves the right balance
between accuracy and simplicity.

We present a new approach to building a global land
surface evaporation algorithm using optical/thermal satellite
data. Our goal is to develop an observation model appropriate
for global implementation and routine monitoring of land-
scape-scale evaporation at weekly to monthly timescales. In
this paper we use data products from the MODIS Moderate
Resolution Imaging Spectroradiometer on the polar-orbiting
Terra satellite, which has a daily overpass at around 10:30 h
local time. With these constraints, the following model
attributes are required:

i) Model inputs and parameters must be routinely available
at daily time and local space scales, for large regions such
as continental Australia, and globally.

ii) The model needs to be robust, i.e. evaporation estimates
are constrained by energy and mass conservation and
have relatively low sensitivity to the input data and
parameters.

iii) The model needs to be insensitive to constraints imposed
by the once-daily overpass of the polar orbiting satellite
and the necessary cloud screening and compositing
procedures.

iv) The model needs to be validated using comparable evapo-
ration measurements from a diverse range of bioclimates.

These objectives are consistent with the ultimate goal for
Fluxnet (Baldocchi et al., 2001), which seeks to integrate
flux and concentration measurements, remote sensing and
land-surface modelling to yield a comprehensive global bio-
sphere monitoring network (Running et al., 1999; Zhao et
al., 2005). Fluxnet encompasses over 400 towers distributed
across the globe, providing hourly measurements of carbon,
water and sensible heat fluxes across a diverse range of
ecosystems and climates for multiple years (Baldocchi et
al., 2001; http://www.daac.ornl.gov/FLUXNET/fluxnet.html).
The insights and constraints provided by the simultaneous
measurement of these fluxes and their corresponding scalar
fields ensures that Fluxnet provides an excellent data set
for land surface model development and testing. Data from
two Australian flux stations (Ozflux: http://www.dar.csiro.
au/lai/ozflux/) are used in this paper to test two
evaporation models: i) an aerodynamic resistance–surface
energy balance model and ii) the Penman–Monteith (P–M)
equation, where the required surface conductance is
estimated from remotely-sensed vegetation indices (leaf
area index and NDVI).

The plan of the paper is as follows: Section 2 presents the
fundamental energy balance and evaporation equations that
underpin the evaporation modelling approaches that are tested;
Section 3 describes the micrometeorological flux measure-
ments used to develop and test the models; and Section 4
evaluates the two modelling approaches. Sections 5 and 6 then
implement the successful model to determine monthly
evaporation fluxes at 1-km resolution for the Australian
continent. This demonstrates the potential to monitor monthly

land surface evaporation at the regional-scale by combining
surface-based meteorological measurements with MODIS
remote sensing.

2. Modelling land surface evaporation

Energy partitioning at the surface of the earth is governed by
the following three coupled equations:

H ¼ qcp
Ts−Ta
Ra

; ð1Þ

kE ¼
qcp
g

es−ea
Ra þ Rs

; ð2Þ

A ¼ Rn−G−DS ¼ H þ kE; ð3Þ

where H, λE and A are the fluxes of sensible heat, latent heat
and available energy, Rn is net radiation, G is soil heat flux; ΔS
is the heat storage flux; Ts, Ta are the aerodynamic surface and
air temperatures; es, ea are the water vapour pressure at the
evaporating surface and in the air; Ra is the aerodynamic
resistance, Rs is the surface resistance to evaporation, λ is the
latent heat of evaporation, ρ is air density, and cp is the specific
heat capacity of air. The psychometric constant γ is given by
γ=(Ma /Mv)(cpPa /λ), where Ma and Mv are the molecular
masses of dry air and water vapour and Pa is atmospheric
pressure.

These fundamental equations form the basis of a suite of
land surface evaporation modelling approaches that use
remotely-sensed radiances and are described in detail in
several excellent reviews, for example Su (2005), Norman et
al. (1995) and Caparrini et al. (2003). These reviews reveal
several classes of remote sensing evaporation models, with the
main operational approaches being: SEBAL (Bastiaanssen et
al., 1998a,b); SEBS (Su, 2002); NTDI (McVicar & Jupp, 1999,
2002); the resistance surface energy balance (RSEB; Kalma &
Jupp, 1990); the triangle method (Gillies & Carlson, 1995;
Nemani & Running, 1989; Nishida et al., 2003); and the dual-
source model developed by Norman et al. (1995) and Kustas
and Norman (1999) that uses multi-angular remote sensing.
Core to all of these approaches is the use of radiative surface
temperatures (TsR) to determine the surface energy balance via
Eqs. (1)–(3). Recalling the required model attributes for a
global evaporation algorithm, we evaluate the RSEB method
and compare its performance to a new method based on the
Penman–Monteith equation that eliminates surface temperature
and uses remotely sensed vegetation indices such as leaf area
index (Λ) to inform the model of the water availability of the
land surface.

The next section describes these approaches in more detail
while Section 4 assesses which model provides the best and
most reliable estimates evaporation at multiple time and space
scales.
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2.1. Resistance–surface energy balance model

The resistance energy balance method calculates the flux of
sensible heat from Eq. (1) by substituting the remotely-sensed
radiative surface temperature (TsR) for Ts, using the measured
air temperature (Ta) and calculating the aerodynamic resistance
(Ra) from:

Ra ¼
1

k2U
ln

z−d
z0H

! "
−WH

z−d
L

! "# $
ln

z−d
z0

! "
−WM

z−d
L

! "# $
:

ð4Þ

In this equation k is von Karman's constant (0.4); U is wind
speed at the reference height z; d is the zero-plane displacement
height; z0, z0H are the roughness lengths for momentum and
sensible heat, respectively; and ΨM,ΨH are the stability
correction functions for momentum and heat which depend on
the Monin–Obukhov length L (Kaimal & Finnigan, 1994). λE
is then calculated as the residual of the energy balance using
Eq. (3).

This approach has received much attention in the literature
(e.g. Cleugh & Dunin, 1995; Hall et al., 1992; Kalma & Jupp,
1990) and its performance has been shown to be unreliable
for some, or all, of the following reasons: i) the sensible heat
flux predicted from (1) is not constrained by the requirement
for energy conservation at the surface; ii) the aerodynamic
and radiative surface temperatures are not equal (Kustas et al.,
2003; Stewart et al., 1994); iii) there is no unique relationship
between surface roughness characteristics such as the
geometry of the roughness elements and z0H, the roughness
length for sensible heat (Brutsaert & Sugita, 1996; Lhomme
et al., 2000; Schmugge et al., 2002; Stewart et al., 1994;
Suleiman & Crago, 2002); iv) small errors in either TsR or Ta
will lead to large errors in the magnitude and even sign of H
as a result of the relative sizes of ρcp and Ra; v) H is very
sensitive to fluctuations in Ra through its dependence on wind
speed and atmospheric stability; vi) use of instantaneous
measure of TsR to calculate a time-averaged flux leads to
errors. This is an issue for models using the MODIS 8-day
TsR which is a composite of once-daily overpasses at
∼10:30 h local time, the time of overpass of the Terra
satellite. As standard MODIS data processing procedures
eliminate all cloud-contaminated periods (Wan et al., 2002),
TsR will be the average of between 0 and 8 values; and vii)
TsR is determined from a radiance measured by a sensor at the
view angle at the time of overpass, and converted to a
radiative temperature using emissivities based on vegetation
classes using a 1-km grid that differs from the MODIS pixel
location.

The models developed by Kustas and Norman (1999), and
Su (2005) address these difficulties, but the resulting models
are complex and hence unsuitable for routine delivery of a
continental or global evaporation product. Therefore, we
evaluate the simplest of the surface temperature-based models
to test whether it is sufficiently robust and accurate for the task
at hand.

2.2. Penman–Monteith model

We propose a fundamentally different approach to develop-
ing a satellite-based evaporation algorithm that uses the well-
known Penman–Monteith (hereafter P–M) equation. Monteith
(1964) eliminated surface temperature from Eqs. (1)–(3) to
give:

kE ¼
sAþ ðqcpDa=RaÞ
sþ gð1þ Rs=RaÞ

ð5Þ

where s=de*/dT, the slope of the curve relating saturation water
vapour pressure to temperature, Da=e*(Ta)−ea is the water
vapour pressure deficit of the air (humidity deficit) and e*(Ta) is
the saturation water vapour pressure at air temperature. All
inputs have been previously defined except for surface re-
sistance, Rs, which is an effective resistance accounting for
evaporation from the soil surface and transpiration from the
plant canopy. The aerodynamic resistance, Ra, can be estimated
from Eq. (4) using z0V (the roughness length for water vapour)
in place of z0H although in practice the two are usually assumed
to be equal.

Over extensive, moist surfaces when Rs approaches zero, or
when Rs≪Ra, Eq. (5) reduces to the equilibrium evaporation
rate:

kEeq ¼
sA

sþ g
ð6Þ

which is limited only by available energy. Raupach (2001)
demonstrates why (6) is the theoretical upper limit for regional
evaporation from land surfaces where moisture availability is
not constrained. Conversely when Ra≪Rs, evaporation is
largely controlled by the surface resistance and Eq. (5) then
reduces to:

kERs ¼
qcpDa

gRs
ð7Þ

Others have used somewhat similar approaches. Nemani and
Running (1989) combined a modified version of Eq. (7) with
surface temperatures from NOAA–AVHRR and the normalised
difference vegetation index (ND). More recently Nishida et al.
(2003) used the complementary evaporation model of Morton
(1969) and discount functions (Jarvis, 1976) to account for the
effect of environmental factors such as light, humidity and soil
moisture on the surface resistance. Although their efforts were
reasonably successful, the evaporation models (i.e. Morton's
complementary model and Eq. (7)) are not as theoretically
sound as the P–M model. For example, Morton's model can be
shown to fail for aerodynamically rough surfaces where Ra

becomes small; while (7), as already noted, is only appropriate
when Ra≪Rs.

The full P–M equation provides a more robust approach to
estimating land surface evaporation because: i) it combines the

287H.A. Cleugh et al. / Remote Sensing of Environment 106 (2007) 285–304



main drivers of evaporation in a theoretically sound way; ii) it
provides an energy constraint on the evaporation rate; iii) it
has been successfully used to both diagnose and predict land
surface evaporation; and iv) modelled evaporation fluxes are
not overly sensitive to any of the inputs, i.e. differentiation of
λE shows that (independent) changes in any of the input terms
(x) on the RHS of Eq. (5) yield a conservative change (dλE/
dxb1) in predicted λE. Actual sensitivities depend on the
environmental conditions, but in general: λE is only sensitive
to wind speed when surface conductances are high, and the
sensitivity can be positive or negative depending on the value
of the surface conductance; and sensitivity of λE to humidity
deficit (available energy) increases (decreases) with the
aerodynamic conductance. Thom (1975) provides a more
extensive discussion about the sensitivity of the P–M equation
to its inputs.

Despite its theoretical appeal, the routine implementation of
the P–M equation is often hindered by requiring meteorological
forcing data (A, Ta and Da) and the aerodynamic and surface
resistances (Ra and Rs). Radiation and soil heat flux measure-
ments are needed to determine A; air temperature and humidity
to calculate Da; and wind speed and surface roughness
parameters to determine Ra. These problems are not unique to
the P–M equation, since A, Ta and Ra are also required by all of
the approaches using radiative surface temperature and the
surface energy balance to calculate λE, including the resis-
tance–surface energy balance model.

Fortunately, the necessary inputs are measured at flux station
sites and so our model validation can utilize these data.
However multi-temporal implementation of the P–M model at
regional scales requires routine surface meteorological observa-
tions of air temperature, humidity, solar radiation and wind
speed. Stability corrections to Ra (Eq. (4)) must be neglected,
although this is justified because the P–M equation is relatively
insensitive to aerodynamic resistance – especially when R-
a≪Rs and at daily timescales. Surface albedo and emissivities
of the surface and atmosphere needed to determine A, and the
aerodynamic roughness needed for Ra, can be derived from
remotely sensed radiance data or from models such as those
described in Section 5.

Determining the surface resistance, Rs, is much more dif-
ficult. For a fully closed canopy, where ΛN3, the surface
resistance is the parallel sum of the leaf stomatal resistances,
i.e. Rs ¼ Prst=K where Prst is the mean stomatal resistance (e.g.
Monteith, 1980) which can be measured directly using
porometry. Models for estimating maximum stomatal conduc-
tance exist (Kelliher et al., 1995) but including the effect of
limited soil water availability and stomatal physiology requires
either a fully coupled biophysical model such as that by Tuzet
et al. (2003) or resorting to the empirical discount functions of
Jarvis (1976), which must be calibrated. Neither of these are
appropriate for a land surface evaporation model that is to be
implemented routinely across the globe at spatial resolutions
of a kilometre. Determining a surface resistance for partial
canopy cover is even more challenging with various dual
source models proposed (e.g. Shuttleworth & Wallace, 1985)
to account for the presence of plants and soil. Given the

impediment that Rs presents to using the P–M equation, we
propose a model for Rs using remotely sensed vegetation
indices.

2.2.1. Surface resistance algorithm
To estimate the surface resistance at 1-km scales utilising

MODIS composite data, we postulate that the remotely-sensed
vegetation indices such as ND and the derived measures of
canopy cover such as Λ and fractional land cover ( fc), are an
adequate surrogate for Rs. Thus, if there is sufficient soil
moisture for vegetation to develop, this will be manifested as a
signal in ND, fc or Λ on timescales that match plant growth,
i.e. weeks to months rather than hours to days, as
demonstrated in studies by Lotsch et al. (2005) and Zhang et
al. (2004, 2005). The greater the soil moisture and green
canopy cover, the larger the signal in these vegetation indices,
and thus the lower the surface conductance, Gs (Denmead et
al., 1996; Kelliher et al., 1995) (note that Gs=Rs

−1 and
conductance or resistance are used below whenever conve-
nient). Low values of Gs are expected at low Λ and when low
levels of soil moisture limits evaporation, while Gs will be
high for well-watered surfaces with high Λ. Based on this
reasoning we propose a simple linear relationship between Λ
and the surface conductance, Gs:

Gs ¼ cLKþ Gs;min ð8Þ

Eq. (8) applies more correctly to canopy conductance, Gc, than
to surface conductance, but Gc→Gs when soil evaporation is
small compared to transpiration and when ΛN2 (Kelliher et
al., 1995). The model parameters cL and Gs,min must be
determined empirically; cL is the mean surface conductance
per unit leaf area index and Gs,min is the surface conductance
controlling soil evaporation and the conductance through the
leaf cuticle.

While Eq. (8) has not been proposed as an approach to
model surface conductance, several authors have noted the
correlation between Λ and ND and soil moisture (e.g.
Choudhury & Golus, 1988) and land surface evaporation
(Seevers & Ottman, 1994; Szilagyi & Parlange, 1999;
Szilagyi et al., 1998). These studies proposed models that
were typically statistical in nature and did not utilise the
biophysical framework provided by the P–M equation and the
known relationships between leaf area and canopy conduc-
tance. While these approaches do not seem to have been
taken up by the hydrometeorological community, perhaps
because of their empirical nature, they do provide observa-
tional support to the hypothesis embodied in Eqs. (8) and (5).
It remains to test the validity of these equations by comparing
modelled and local-scale measurements of land surface
evaporation.

3. Flux measurement sites

Fluxes of sensible and latent heat used in the model eval-
uation were measured over two strongly contrasting ecosys-
tems. The first is a wet/dry tropical savanna located in
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northern Queensland (Virginia Park, 19°53′00″S, 146°33′14″
E, elevation of 200 m ASL), the other is a cool temperate,
broadleaved forest in south east New South Wales (Tumbar-
umba, 35°39′20.6″S, 148°09′07.5″E, elevation of 1200 m
ASL). Complete site descriptions, including the soil, rainfall
climate and flux station measurements, are contained in
Leuning et al. (2005).

Vegetation at Virginia Park consists of scattered Eucalyptus
creba and Eucalyptus drepanophylla trees, 5–8 m tall and
spaced ∼30–40 m apart. A C4 grassy understorey is present
during the November to April summer wet season, but
extensive grazing by cattle removes much of this during the
dry season. This means that the canopy Λ varies from ∼0.3 in
the dry season to ∼1.5 in the wet season. Rainfall was below
the climatic average in the 3 years of measurement (Jul 2001–
Mar 2004) with the last two wet seasons (2002–2003 and
2003–2004) in the lowest quartile, corresponding to a severe
drought across much of eastern Australia. Mean daytime
temperature during the measurement period was 25.1±5.3 °C
(1 S.D.), with daytime humidity deficits ranging from
9.1 mmol mol−1 (June 2002) to 28 mmol mol−1 in the
relatively dry summer of 2001–2002.

Vegetation at Tumbarumba consists of 40 m tall, Euca-
lyptus delagatensis and Eucalyptus dalrympleana wet
sclerophyll forest, with Λ∼1.4, while the understorey has
a cover of shrubs and a full cover of grasses (Λ∼1).
Measurements at the Tumbarumba flux station reported in
this paper span the period Feb. 2001 to Mar. 2004, ranging
from an above average rainfall year (2001) to a severe
drought from Mar. 2002 to May 2003. Mean daytime air
temperature at the flux station was 10.0±7.0 °C, and
daytime humidity deficits ranged from a low of 2 mmol mol−1

in winter (Aug. 2001) to 16 mmol mol−1 in mid summer
(2003 and 2004).

Fluxes were measured using the eddy covariance technique.
Instruments at Virginia Park were mounted at a height of 28 m,
∼23 m above the zero-plane displacement (d) while those at
Tumbarumba were located at 71 m above the ground, ∼40 m
above d (Leuning et al., 2005) These measurement heights
were possible because of large upwind fetches (N1 km) of
similar vegetation in each case. Sensible heat fluxes were
measured with a Solent sonic anemometer (Model HS, Gill
Instruments Ltd., Lymington, UK), while turbulent fluxes of
water vapour and CO2 were measured using the sonic
anemometer and an open-path Licor 7500 sensor (Licor Inc.,
Logan, UT, USA). All sensors were logged at 20 Hz and fluxes
were calculated using 1-hourly block-averages, with coordinate
rotations calculated separately for each hour (Finnigan et al.,
2003). Corrections to fluxes of CO2 and water vapour due to
density fluctuations introduced by the fluxes of sensible and
latent heat were made according to Webb et al. (1980) and
Leuning (2004).

Ancillary meteorological measurements needed for the
analysis included net radiation, soil heat flux, soil temperature,
air temperature and humidity and wind speed. Leuning et al.
(2005) provide a detailed description of the sensors and their
deployment. Missing meteorological data were interpolated

using information from adjacent days and the meteorological
data were used in a neural network analysis to fill gaps in the
flux time series (Leuning et al., 2005). Daytime data for rain-
free (but not cloud-free) periods were used in the analysis
reported here to maintain consistency with the MODIS
measurements. Meteorological and flux data from Tumbarumba
and Virginia Park were averaged over the daylight hours and
then further averaged according to the MODIS compositing
periods.

The averaged measurements of available energy (A) and
vapour pressure deficit (Da) were used as inputs to both models
(resistance–surface energy balance and P–M). Ra was estimated
from flux tower wind speed measurements, using simple ex-
pressions for z0H and d as a function of canopy height and no
correction for atmospheric stability.

The following MODIS Collection 4 land data products were
extracted from the FLUXNETwebsite (http://www.fluxnet.ornl.
gov/fluxnet/modis.cfm):

a) MOD11A2: 8-day, 1-km land surface temperature (TsR, Wan
et al., 2002);

b) MOD15A2: 8-day, 1-km leaf area index (Λ; Myneni et al.,
2002);

c) MOD17A2: 8-day, 1-km gross primary productivity (PG;
Running et al., 2004);

d) MOD13A2: 16-day, 1-km vegetation indices (ND, Huete et
al., 2002).

The 1-km data were averaged over a 7×7 km2 area centred
on each flux tower to achieve spatial averaging and improve
the representativeness of the data for each ecosystem.
Analyses of the change in ND and Λ as the cutout area is
decreased from 7×7 km2 to 3×3 km2 confirm the homoge-
neity of the flux tower sites: ND changed by an average of
0.02 (Tumbarumba) and 0.01 (Virginia Park). Changes in Λ
were slightly larger: the average change resulting from
shrinking the domain from 7×7 km2 to 3×3 km2 were 0.3
and 0.04 for Tumbarumba and Virginia Park, respectively. In
part, this reflects the increase in uncertainty due to a poorer
spatial sample for the 3×3 km2 cutout. These changes are still
less than 10% of the average Λ at both sites. All 8-day values
were further averaged to match the 16-day periods used for the
vegetation indices.

4. Results and discussion

4.1. Climatology and surface properties

Time series of TsR and ND for the 7×7 km2 MODIS cutouts
for Tumbarumba and Virginia Park are shown in Fig. 1. Gaps in
the original record due to presence of persistent cloud cover
during the wet season have been filled using linear interpola-
tion, which may limit the validity of TsR for the Virginia Park
site in the first wet season (Dec. 2001–Feb. 2002). The ND for
Tumbarumba had a mean value of 0.80 for 2001–2003, with a
fairly small annual amplitude ranging from a maximum of 0.89
(late autumn) to a minimum of 0.66 (late spring–early summer).
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The seasonal variation in ND at Virginia Park depends mostly
on the strength and timing of the wet season as this determines
the flush of growth in the grass understorey. The peak value in
ND of 0.50 was recorded in March, 2002, demonstrating both
the response of the canopy to the 2001–2002 summer wet
season and the weakness of the subsequent wet seasons. Mini-
mum ND values of around 0.24 occurred in late spring to early
summer (October–November) each year at the end of the long
dry season. The average ND at Virginia Park of 0.33 is less than
half that of Tumbarumba.

MODIS land surface temperatures varied between 3 and
26 °C at Tumbarumba, significantly lower in magnitude, but
similar in amplitude to the 25–48 °C range observed at
Virginia Park. The peak surface temperature occurred in
January at Tumbarumba, and towards the end of the dry
season in November at Virginia Park, illustrating the
influence of seasonal variations in solar radiation. The
similarity in amplitude of the surface temperatures between
the two sites contrasts with ND, which showed less seasonal
variation at Tumbarumba compared to Virginia Park. These
differences in the phasing and magnitude mean that the
relationship between TsR and ND at the two sites will be quite
different.

4.2. Surface temperatures and sensible heat fluxes

As discussed in Section 2.1, TsA is not generally expected to
equal TsR: TsA is the aerodynamic surface temperature that
satisfies the observed sensible heat flux (Eq. (1)), while TsR is

an instantaneous measurement that depends on the radiation
balance of the surface elements at the time of the satellite
overpass. These discrepancies are compounded by the non-
linearity of Eq. (1) when using surface temperature products,
such as MODIS, that are measured once daily and composited
over 8- or 16-day periods. This is shown formally by the
definition of the average value of the sensible flux over a
period, tA:

P
H ¼ 1

tA

Z tA

0
qcp

TsA−Ta
Ra

# $
dt: ð9Þ

The non-linearity of this equation means that

P
H p

P
q

P
cp

P
TsA−

P
Ta

P
Ra

p
P
q

P
cp

P
TsR−

P
Ta

P
Ra

; ð10Þ

where the overbar represents the time-average. It is clearly
incorrect to invert Eq. (10) to estimate

P
H from the 8- or 16-day

composites of surface temperatures. Further errors are expected
because TsR is measured only once per day by the MODIS
instruments on the Terra and Aqua satellites.

To illustrate these points, 8-day composites of the MODIS TsR
are compared in Fig. 2 with TsA calculated using Eqs. (1) and (4),
with estimates of d and z0H from relationships with canopy height
andΛ (Raupach, 1994), and measuredH, Ta andU for the 10:00–
11:00 h period corresponding to the time of the Terra satellite

Fig. 1. Time series of MODIS ND and TsR (land surface temperature) for 7×7 km2 areas surrounding the Tumbarumba and Virginia Park sites. Data are 16-day
averages from 2001 to 2004.
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overpass. The time series and scatter plots in Fig. 2 show a strong
correlation between TsR fromMODIS and TsA. At Tumbarumba
|TsR−TsA| was mostly b3 °C over the 50 months of measure-
ments, except for larger discrepancies (up to 8 °C) in winter
2001 when snow cover possibly influenced TsR. The agreement
between TsR and TsAwas not as good at Virginia Park, with |TsR−
TsA| exceeding 10 °C during each dry season (Nov.–Mar.).

Fig. 3 illustrates the errors in sensible and latent heat fluxes
that result from using

P
TsR in Eq. (10) when the inequalities in this

equation are ignored. There is little agreement in both absolute
fluxes and seasonal dynamics betweenmodelled and measured 8-
day composites of

P
H and

P
kE for the period 10:00–11:00 h. Fig. 3

also illustrates the physically unreasonable evaporation fluxes
estimated using the resistance–surface energy balance method.

Fig. 3. Time series of measured and modelled: heat (H) and evaporation (λE) fluxes using the resistance–surface energy balance approach. Modelled fluxes use
MODIS TsR and all other inputs were measured at the Tumbarumba and Virginia Park flux towers. Data are smoothed 8-day averages from 2001 to 2005 and are for the
period 10:00–11:00 h only.

Fig. 2. Time series and scatter plots of TsR (land surface temperature) from MODIS and TsA (aerodynamic surface temperatures) calculated at Tumbarumba and
Virginia Park. Data are 8-day averages.
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Even for periods when there is close agreement between
P
TsR and

TsA, such as at Tumbarumba from January to June 2003, there are
still large discrepancies between measured and modelled heat and
evaporation fluxes. This demonstrates that even if it were possible

to implement the model globally using a 1-day surface tempera-
ture product, large errors would arise that cannot easily be con-
strained using Eqs. (1) and (3).

This, and the model performance diagnostics shown in
Table 1, demonstrates clearly that the resistance–energy
balance approach does not perform well at the mesic
Tumbarumba site and is very unreliable for the savanna site
at Virginia Park. Although the approach may be applicable if
surface temperatures are measured more frequently and are
assimilated into a full surface energy balance model where the
nature of the surface and parameters describing the surface are
well known, we conclude that the resistance surface energy
balance model does not meet the specifications defined in the
Introduction and so is not appropriate as an ET algorithm for
global implementation.

4.3. Evaporation estimates from the P–M equation

Estimates of λE at Tumbarumba and Virginia Park were
made using the P–M equation, where Gs was calculated using
Eq. (8) with Gs,min=0 and the MOD15A2 leaf area index
product. Unlike the above analysis for the resistance–energy
balance approach, the meteorological inputs here are averaged
over daytime hours (non-rain days) and then over the 16-day
compositing period used to determine MODIS ND.

The value for cL used in Eq. (8) was first optimised using the
MOD15A2 value for Λ at each site. Optimum values of cL for
Tumbarumba and Virginia Park were quite similar, 0.0019 and
0.0025 respectively, despite large differences in vegetation and
climatology between the two sites. The time series of
evaporation predicted with the optimised values of cL are in
good agreement with measured fluxes (Fig. 4)) in terms of both

Table 1
Statistics for the P–M model performance

Evaporation
model

R2 Slope Intercept
(W m−2)

P̄− Ō
(W m−2)

RMSE
(W m−2)

Parameter
values and
description

1. Equilibrium
evaporation

0.88 1.35 0.6 36.2 46.5 Tumbarumba
0.23 0.55 134.2 105.3 112.1 Virginia Park
n/a n/a n/a 66.9 98.4 Combined

sites
2. Resistance–
surface energy
balance

0.41 1.73 −200.1 −86.74 200.1 Tumbarumba
0.22 1.64 −267 −203.9 268.3 Virginia Park
0.41 1.88 −257 −142.1 235.7 Combined

sites
3. Gs from
MODIS Λ and
site specific cL

0.74 0.89 8.6 −2.8 24.5 cL=0.0019
(T)
cL=0.0025
(VP)

4. Gs from
MODIS Λ and
average cL

0.74 1.01 0.69 −0.3 27.3 cL=0.0022

5. Gs from
MODIS Λ,
time varying
(Virginia Park
only) and
site specific cL

0.77 0.93 2.89 −5.0 23.7 cL=0.0019
(T)
cL=0.0025
(VP, winter)
cL=0.002
(VP, summer)

Unless otherwise indicated, both site datasets are combined. Ō and P̄ are
observed and predicted mean fluxes, where Ō=85.5, 100.6 and 64.3 W m− 2

for
the combined and individual Tumbarumba and Virginia Park data sets,
respectively. n/a indicates that it is inappropriate to combine the data sets
from the two sites as they are separate populations.

Fig. 4. Time series of measured and modelled λE, using the P–M model with Gs calculated from MODIS Λ and site-specific values of cL.
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the seasonal variation and magnitude. The main discrepancies
occur in the very dry summer of 2002–2003 at Tumbarumba,
when large vapour pressure deficits (Leuning et al., 2005) lead
to predictions of λE that are 100 W m−2 higher than measured.
Modelled evaporation fluxes for Tumbarumba were also 30–
50 W m−2 lower than measured in winter and spring of 2001.
The phase shift between modelled and measured λE at
Tumbarumba during this period is the type of bias that can be
expected from maximum value compositing of ND, and points
to the potential to improve this approach through refinements to
the MODIS processing algorithms. At Virginia Park, modelled
evaporation was greater than measured in the winter–spring
periods of 2001 and 2003 but the overall agreement is very
good. Especially encouraging is the ability of the model to
simulate the timing and magnitude of the increased evaporation,
and enhanced surface conductance (not shown), when the wet
season occurs at Virginia Park. The model also captures the
strong contrast in the magnitude and timing of evaporation
between the two sites, thus supporting the model for surface
conductance based on Λ.

Using a site-specific value for cL, the model explains 74%
of the variance in the measurements for the two sites,
combined, while the slope and intercept of the line of best fit
are not significantly different from 1 and 0, respectively (Table
1). Even with an average cL for the two sites, the model still
explains 74% of the variance, the slope of the regression
between modelled and observed λE increases from 0.89 to
1.01 while the intercept is reduced from 8.6 to 0.69 W m−2

(Table 1). The RMSE for both values of cL is similar
(∼30 W m−2) By comparison, the resistance energy balance
model explained 41% of the variance for the combined data
with a large slope (1.88) and unacceptable bias and RMSE
(absolute values exceeded 200 W m−2). While the equilibrium
evaporation model (Eq. (6)) yields a higher R2 than the P–M
model at Tumbarumba (0.88 compared to 0.74), the
equilibrium model is clearly inappropriate for a dry site such
as Virginia Park where the surface conductance is reduced for
large parts of the year. Fig. 5 presents scatterplots for the two
variations of the P–M equation: (a) using an optimised value
of cL for each site and (b) using an average value of cL. These
plots illustrate the statistical analysis shown in Table 1 and the
qualitative trends in Fig. 4.

4.4. Evaluation of evaporation models

The analyses and results presented in Sections 4.2–4.3 show
that the resistance–surface energy balance model does not
correctly predict the magnitude and time course of land surface
evaporation, especially in drier ecosystems such as the savanna,
and so it is a poor candidate for a land surface evaporation
model that meets the criteria laid out in Section 1.

Evaporation estimated using the P–M model, with a linear
surface conductance model and the MODIS Λ product, matched
both the temporal variation and magnitude of measured eva-
poration fluxes. Further tests of the P–M model were performed
using a seasonally varying cL at Virginia Park, acknowledging the
large changes in vegetation cover between the wet and dry
seasons in savannas, but this did not significantly improve the
model predictions (Table 1).

Because of its superior model performance and the potential
for constraining the estimates using energy conservation, we
conclude that the P–M – MODIS approach has considerable
potential for estimating weekly land surface evaporation at
regional and global spatial scales. None of the more traditional
models, based on multi-temporal thermal imagery, met all of the
criteria listed earlier.

The tasks needed to realise this potential of the P–M model
are described in Section 5, viz: i) acquiring the meteorolo-
gical forcing at larger spatial scales through developing and
testing sub-models for available energy (A), vapour pressure
deficit (Da), and Ra; ii) assessing the model performance when
forced with these data; iii) implementing and assessing the
model at regional and continental scales; and iv) testing the
surface conductance algorithm over a more diverse range of
ecosystems.

5. Implementing P–M at regional scales

5.1. Using non-local meteorological forcing

The above results suggest that the P–M model is the most
appropriate model but these results were achieved using locally
measured meteorological forcing. The next step is to investigate
model performance when these local measurements are replaced
by inputs derived from calibrated functions, broader scale

Fig. 5. Scatter plots of measured and modelled λE using the P–Mmodel where Gs is calculated from MODIS Λ with (a) a site-specific value of cL and (b) an average
cL. Table 1 specifies the regression coefficients and model performance statistics.
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meteorological data and look-up tables for parameters that vary
with vegetation type. Daily values of incoming solar radiation,
temperature and humidity are available from a variety of sources,
including the interpolated meteorological fields from the Data
Assimilation Office (DAO) of the U.S. and Australia's Bureau of
Meteorology.

The most critical meteorological inputs for the P–M equation
are Da and A, while the sensitivity of the model to aerodynamic
conductance is low when Ga≫Gs (for arid ecosystems such as
Virginia Park) or when the evaporation rate is close to equili-
brium (for temperate forests such as at Tumbarumba).

Comparisons with flux tower measurements show large
discrepancies with the DAO estimates of Da, especially at
Virginia Park (Fig. 6a), and so we developed a model for Da

using either air temperature (Ta) or surface temperature (TsR)
as inputs (Granger, 2000). There is no clear biophysical

basis for any particular relationship between D and Ta or
TsR, although the upper limit to water vapour pressure in air,
ea, is determined by the exponential dependence of the
saturation water vapour pressure, ea* on Ta, while the lower
limit is often set by ea* at the daily minimum temperature.
Since Da=ea*−ea, these limits suggest an exponential rela-
tionship between D and either Ta or TsR, i.e. Da=ae

(bTa,sR).
This is confirmed by comparing in Fig. 6b measured

P
Da

with
P
Ta measured at the flux tower and with TsR from

MOD11A2, where the overbars indicate time-averages.
P
Da

estimated from TsR is too large at the savanna site in
summer (Fig. 6a) and also fails to predict the large humidity
deficits observed at Tumbarumba in the drought in the
summer of 2002–2003 (not shown). Fig. 6c shows that the
best agreement between measured and modelled

P
Da is

obtained when the DAO daytime average air temperatures

Fig. 6. (a) Time series of measured, 16-day average vapour pressure deficit (Da) and the U.S. DAO values of Da for Virginia Park; (b) 16-day average, measured Da

plotted as a function of MODIS surface radiative temperature (TsR) and mean air temperature (Ta) measured at both flux stations; and (c) predictions using functions
shown in (b), for Virginia Park only.
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Fig. 7. Time series of measured and modelled values for (a) available energy, A; (b) aerodynamic conductance, Ga; and (c) vapour pressure deficit, Da using the
functions described in the text for Tumbarumba and Virginia Park.

Fig. 8. Comparison between λE modelled using locally-measured inputs and MODIS Λ; and λE modelled using the functions shown in Fig. 9.
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(
P
TDAO) are used to predict the 16-day average humidity
deficit via the relationship:

P
Da ¼ 2:32eð0:082

P
TDAOÞ ð11Þ

Available energy (A) is determined by separately computing
the net all-wave radiation (Rn) and soil heat flux (G) compo-
nents. From the radiation balance, Rn is the sum of the net
shortwave and longwave radiation streams:

Rn ¼ ½SAð1−aÞ& þ ½ðea−esÞrT4
a & ð12Þ

where S↓ is the DAO estimate of shortwave radiation (MJ m−2

day−1), adjusted for day length and α is surface albedo. The
surface emissivity (εs) is assumed here to be unity but ope-
rationally, ecosystem classifications could be used to assign

appropriate values. Atmospheric emissivity (εa) is calculated from
air temperature using the formula of Idso and Jackson (1969):

ea ¼ 1−0:261exp½−7:77' 10−4ð273−TaÞ2& ð13Þ

with Ta is in K. Soil heat flux (G) is an assumed proportion (cG) of
the net radiation:

G ¼ cGRn ð14Þ

While cG can often be assumed to be negligible over these long
time periods, at the savanna site better agreement with measured
available energy was achieved by setting it to 0.1.

Fig. 7a and c show that the calculated inputs required by the
P–M equation (A andDa) closely match the absolute magnitude,
range and temporal variability of the local measurements, with
the exception of Da at Virginia Park in the first year of
measurements. Mean values of Ga appropriate to the aerody-
namic roughness of each site were used to avoid detailed
knowledge of the wind speed (Fig. 7b). Consequently, there was
little change to estimates of λE from the P–M model when
locally-measured meteorological forcing was replaced with
calculated forcing using the DAO dataset, especially at Virginia
Park (Fig. 8). Modelled meteorology caused λE to be
overestimated at Tumbarumba by 20–30 W m−2 during the
winter months in 2001 and 2003, but agreement was very good
at other times.

Table 2 presents the model performance statistics derived
when the locally-measured inputs to the P–M equation are
progressively replaced by values calculated from meteorological
data and the calibrated functions (Eqs. (11)–(14)). The base
model results are the performance statistics for the P–M equation
using locally-measured forcing, MODIS Λ and a site specific cL

Fig. 9. Modelled land surface evaporation using P–M model and MODIS data (LHS) and climatological average estimated by Wang et al. (RHS): (a) annual total
(mm year−1); (b) mid summer (Jan., mm month−1); and (c) mid winter (Jul. mm month−1).

Table 2
Model statistics derived when the locally-measured inputs to the P–M equation
are progressively replaced by values calculated from broader scale
meteorological data (refer to text for further explanation)

Evaporation
model

R2 Slope Intercept
(W m−2)

P̄− Ō
(W m−2)

RMSE
(W m−2)

1. Base model 0.73 0.98 6.3 4.9 27
2. A 0.71 0.96 7.5 4.3 28.1
3. Da 0.78 0.89 15.5 6.6 22.8
4. Ga constant 0.71 0.98 6.3 4.8 28.1
5. ρcp 0.73 0.97 6.8 4.3 26.7
6. All sub-
models

0.74 0.89 15.7 6.7 24.7

Ō and P̄ are observed and predicted mean evaporation fluxes. Note that the
average period used is slightly shorter than for Table 1, and explains why the
base model statistics differ slightly from Model 3 in Table 1.
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(i.e. Model 3 in Table 1). Subsequent rows show the result of
progressively replacing each of the measured inputs (A, Da, Ga

and ρcp) with modelled values derived using the sub models
described in text. Table 2 shows that replacing all locally-
measured inputs with modelled values leads to a slight
improvement in R2 (0.73 to 0.74) but the slope of the line of
best fit drops from 0.98 to 0.89 and the intercept increases from
6.3 to 15.7Wm−2. It is clear from the time series in Fig. 8 and the
statistics presented in Table 2 that replacing locally measured
inputs with values calculated from broader scale meteorological
data and calibrated functions reduces model performance only
slightly. This result reflects the relative lack of sensitivity of the
P–M equation to any of the individual inputs.

5.2. Continental land surface evaporation climatologies

The above P–M approach is next used to estimate monthly
land surface evaporation at 1-km resolution for Australia from
2001 to 2004. The MODIS products used to generate these
spatial evaporation estimates are the 8-day, 1-km leaf area
(Λ, MOD15A2), and the 16-day, 1-km normalized vegetation
(ND, MOD13A2) indices. Data were error-checked and
erroneous values replaced with the preceding and subsequent
values that meet the quality control criteria. These 8-day and 16-
day products were then interpolated to provide daily values to
calculate a daily surface conductance to match the daily
timestep of the meteorological forcing data.

Daily, gridded meteorological data (solar radiation; vapour
pressure; and daily minimum and maximum air temperature) were
derived from the Australian Bureau of Meteorology's point mea-
surements from their climate station network (about 700 stations
for the period 2000–2004) and interpolated from 0.05° to 1-km

using the thin plate splining and kriging techniques described in
Jeffrey et al. (2001) and the following URL: http://www.nrm.qld.
gov.au/silo/datadrill/datadrill_frameset.html. Atmospheric emis-
sivity (εa) and humidity deficit (Da) were calculated from the daily
mean air temperature and Eqs. (13) and (11), and the aerodynamic
conductance was fixed at 0.05 m s−1. Available energy requires
estimates of albedo and surface emissivity aswell as solar radiation
(Eq. (12)). A constant surface emissivity (0.97) was used while the
continental albedowas determined using the data fromDilley et al.
(2000) and Schaaf et al. (2002) and interpolated to 1-km resolution
from the original 2.5° product.

These forcing data were used to compute daily land surface
evaporation which was then aggregated to monthly, seasonal
and annual averages for this analysis. While there are no
measurements to validate these estimates, several consistency
assessments can be made:

5.2.1. Seasonal variation in land surface evaporation
Fig. 9a (RHS) is an estimate of the climatological average

(i.e. long-term) land surface evaporation across Australia that
has been made available by Australia's Bureau of Meteorology
(Wang et al., 20012) using Morton's complementary evapora-
tion model. It is the only other published evaporation product
for Australia and is used here as a comparison for our MODIS
estimates in 2001, when the rainfall was close to average. Such
a comparison is between two modelled estimates of evapora-
tion, where one is a long-term average, and so this can be no
more than a qualitative consistency assessment.

The product of Wang et al. shows annual evaporation
increasing from the south to the north, and from the interior to the

2 http://www.bom.gov.au/climate/averages/climatology/evapotrans/et.shtml.

Fig. 9 (continued ).
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Fig. 10. Variation in the ratio of annual evaporation to rainfall (RER) for the Australian continent for the years 2000–2001 and 2001–2002. Evaporation was modelled
using the P–M approach, while rainfall was obtained by interpolation of continental rainfall records.

Fig. 9 (continued ).
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coast, reflecting variations in rainfall, available energy and
temperature. These continental-scale evaporation trends are
matched reasonably well by the MODIS estimates, i.e. the
maximum annual evaporation rates in the north and around the
east coast range from 1100 to 1400 mm year−1, while the
minimum rates in the southern interior are about 150 mm year−1

(Fig. 9a, LHS).
Both plots illustrate the magnitude and spatial pattern in

summer evaporation (Fig. 9b): in the north and eastern parts of
the continent evaporation rates peak at about 150 mm month−1

for January; there is a pronounced minimum of 20 mmmonth−1

in inland, SW Western Australia and a sharp gradient from this
minimum to the SW coast; and a large crescent-shaped minima
across the southern interior of about 20 mm month−1.

Winter evaporation (Fig. 9c) shows much less variation
across the continent in both plots, while the maximum and
minimum evaporation rates and spatial trends are similar.

5.2.2. Seasonal and regional patterns normalised by energy
and rainfall

Seasonal variations in land surface evaporation are quantified
by two measures that also provide a physical upper constraint to

land surface evaporation. The first is RER, the ratio of evaporation
to rainfall. RER=0 means that all rainfall will be used to restore
soil moisture or contribute to runoff, while RER≥1 means that all
rainfall, and perhaps some stored soil water, contributes to
evaporation. The second measure is RPT=λE/λEPT, the ratio of
evaporation to the Priestley–Taylor (Priestley and Taylor, 1972)
potential rate, defined as λEPT=1.26λEeq (see Eq. (6)).

Fig. 10 shows the spatial distribution of RER. For 2000–
2001, with rainfall close to or greater than normal, RER≈1 for
much of the continent (Fig. 10a) with the notable exceptions
being the “top end” and the areas coinciding with the great
Dividing Range in eastern Australia and western Tasmania
where R is closer to 0.4, indicating areas where runoff will be
generated. The model predicts the unlikely result that RERN1
for the dry regions of central and NW Australia in each of the
years shown in Fig. 10, but this is probably a numerical artefact
caused by dividing very low rainfalls by small evaporation
rates. In the following much drier year, the predicted RER has
shifted towards the green and blue end of the scale across the
whole continent (Fig. 10b), i.e. RER has increased from 0.4 to
0.6 in the runoff generating regions of the north and to about 1
in the east. This increase in RER reflects a reduction in rainfall

Fig. 10 (continued ).
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and/or an increase in evaporation. RER changed little in Tasma-
nia, consistent with that region receiving close to normal rainfall
across all 3 years.

Fig. 11a illustrates that for summer 2000–2001, modelled
evaporation is close to the Priestley–Taylor potential rate
(RPT=1) in the far north and in the SE corner of the continent,
while for much of the rest of the continent RPTN0.8, indicating
that λE equals or exceeds λEeq. Predicted evaporation is slightly
below equilibrium (RPT≈0.5–0.7) in a thin strip around the
coast of eastern Australia and Tasmania. The contrast with the
much drier summer of 2002–2003 is quite clear (Fig. 11b) when
RPT declines to ∼0.5 for those regions that were close to
equilibrium in the north and SE of Australia in previous summer.
In the winter months, RPT≥0.9 for the southern fringes of the
continent and Tasmania and around the equilibrium value of
RPT≈0.8 for much of the SE and SW regions (Fig. 11c), as
expected for these regions that receive winter rainfall.

Although these modelled seasonal and spatial patterns are
generally reasonable and consistent, it is almost certain that the
estimates of land surface evaporation are incorrect for particular
areas. Closer analysis of those locations where the seasonal

variation in evaporation is known reveal likely errors in the
MOD15A leaf area product and so a fruitful avenue for future
work is to improve the MODIS algorithm for computing leaf
area index for Australian ecosystems. Further testing of the
algorithm, and the generality of the values of cL used in this
study, is also an important area of continuing work.

6. Concluding comments

Our goal was to develop a global model for monitoring
land surface evaporation at weekly to monthly timescales and
at 1-km to continental spatial scales using surface meteorology
and MODIS remote sensing. We compared the remote sensing
approach that uses radiative surface temperature to estimate
evaporation with the P–M model. The resistance–surface
energy balance approach yielded implausible and unrealistic
estimates of evaporation. This approach failed because of the
difficulties in using 8- or 16-day composites of once-daily
measurements of radiative surface temperature, because of the
inherent non-linearity in the governing heat transfer equation,
and because there is no energy-balance constraint on the

Fig. 11. Inter-seasonal variation in the ratio of predicted actual to potential evaporation (RPT) for the Australian continent for (a) the average-rainfall summer of 2000–
2001; (b) the dry summer of 2002–2003; and (c) winter 2000. Evaporation was modelled using the P–M approach, while potential evaporation was calculated using a
model for net radiation and interpolated meteorological fields.
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sensible flux derived from the radiative surface temperature. In
contrast, evaporation estimates from the P–M model ade-
quately matched the magnitude and seasonal variation in
evaporation measured in two strongly contrasting ecosystems
in Australia (a temperate forest and a grazed savanna), with a
RMSE of 27 W m−2. This error is comparable to other
methods described in the literature for determining evapora-
tion from satellite-based surface temperatures and vegetation
indices: most methods have errors of ∼1 mm day− 1

(28 W m−2) or 20–25%. None of these approaches has
been developed for global implementation. The P–M approach
is successful for this purpose because the calculated
evaporation rates are inherently constrained by the surface
energy balance, and are relatively insensitive to errors in each
the four key driving variables: available energy, humidity
deficit, surface resistance and aerodynamic resistance.

The innovative aspect of our P–M approach was to para-
meterise the surface conductance using a linear relationship with
MODIS measurements of leaf area index. Optimising this con-
ductance model using evaporation measurements reveals that
the coefficients (cL) are remarkably similar in value, despite the
strong contrasts in vegetation and climate at each flux tower site,
suggesting that the simple conductance equation has some

general applicability. This has yet to be tested for a greater range
of land covers and climatologies.

The simple parameterization for surface conductance resulted
in close and unbiased agreement between estimated and
observed evaporation over the 16-day periods used to composite
the MODIS data. As the approach is intended for routine eva-
poration monitoring across large regions, at weekly to monthly
time scales, it was necessary to use routinely observed or ar-
chived meteorological data to develop sub-models for available
energy, humidity deficit, aerodynamic conductance, plus the
thermodynamic parameters that are required by the P–M
equation. Standard models are employed for net radiation that
use measured albedo, incoming solar radiation and a standard
expression for clear sky emissivity, while an empirical rela-
tionship using air temperature is developed for the humidity
deficit. The agreement between these modelled and measured
inputs is good and, importantly, the performance of the P–M
model is only slightly degraded when it is implemented using
these modelled inputs. These encouraging results are due to the
theoretically sound basis of the P–M model and its relative
insensitivity to errors in model inputs.

To demonstrate an intended application, we applied the model
to the Australian continent using a 0.05° gridded meteorological

Fig. 11 (continued ).
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dataset and MODIS vegetation indices to provide a 3-year,
monthly climatology of land surface evaporation.

The results of applying the P–Mmodel at local and continental
scales demonstrate that the approach: i) meets our specifications in
terms of being robust across different ecosystems and climates,
and performswell at the time and space scales of interest; ii) should
be straightforward to apply to other land cover types through the
use of look-up tables for key parameters. Two key sources of error
lie in the simple surface conductance algorithm itself (both the
linear relationship and the generality of the coefficient across all
ecosystems) and the quality of the MODIS vegetation indices.
Further research is needed to address these two issues.
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