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Abstract

The response of photosynthetic activity to interannual rainfall variations in Africa South of the Sahara is examined using 20 years (1981–2000)
of Normalised Difference Vegetation Index (NDVI) AVHRR data. Linear correlations and regressions were computed between annual NDVI and
annual rainfall at a 0.5° latitude/longitude resolution, based on two gridded precipitation datasets (Climate Prediction Center Merged Analysis of
Precipitation [CMAP] and Climatic Research Unit [CRU]). The spatial patterns were then examined to detect how they relate to the mean annual
rainfall amounts, land-cover types as from the Global Land Cover 2000 data set, soil properties and soil types. Yearly means were computed
starting from the beginning of the vegetative year (first month after the minimum of the NDVI mean regime), with a one-month lead for rainfall.

One third of tropical Africa displays significant (95% c.l.) correlations between interannual NDVI variations and those of rainfall. At
continental scale, soil types and soil properties are only minor factors in the overall distribution of the correlations. Mean annual rainfall amounts
and land-cover types are much more discriminating. The largest correlations, mostly over 0.60, are distinctly found in semi-arid (200–600 mm
annual rainfall) open grassland and cropland areas. The presence of one of these two determinants (semi-aridity, and favourable land-cover type,
i.e. open grassland and cropland) in the absence of the other does not systematically result in a significant correlation between rainfall and NDVI.
By contrast, NDVI variations are independent from those of rainfall in markedly arid environments and in most forest and woodland areas. This
results from a low signal-to-noise ratio in the former, and the fact that precipitation is generally not a limiting factor in the latter.

The marginal response of NDVI to a given increase/decrease in rainfall, as described by the slope of the regression, displays a similar pattern to
that of the correlation, with maximum slopes in semi-arid regions, except that a weaker response is noted in more densely populated areas,
suggesting an incidence of particular land-use and agricultural practises.

One-year lag relationships between annual rainfall and NDVI in the next year were also considered. Ten percent of the grid-points show
significant correlations, but the spatial patterns remain difficult to interpret.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the tropics in general, and in tropical Africa in particular,
water availability is regarded by far as the most important
determinant to vegetation growth. In the absence of water stor-
age systems, agricultural activities are heavily dependent upon
precipitation. The high evaporative demand also makes natural
vegetation very sensitive to rainfall variations. In principle, the
effects of such variations could be recorded in the photosynthetic
activity of the vegetation cover, as deduced from satellite mea-

surements. In tropical Africa, different monitoring programs
actually resort to the Normalised Difference Vegetation Index
(NDVI) to provide assessments of the rainy season, and to warn
for possible food crises in case of much lower than average
NDVI values (e.g., USAID Famine Early Warning Systems,
FAO-ARTEMIS, MARS crop yield monitoring and forecasting
system of the European Commission Joint Research Centre).

Several regional or comparative studies have demonstrated a
significant response of NDVI to interannual rainfall variations
in African regions such as the Sahel (Herrmann et al., 2005;
Malo & Nicholson, 1990; Tucker et al., 1985), East Africa
(Davenport & Nicholson, 1993; Justice et al., 1986), the Kala-
hari area (Farrar et al., 1994; Nicholson & Farrar, 1994; Scanlon
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et al., 2002) or southern Africa as a whole (Gondwe & Jury,
1997; Richard & Poccard, 1998). Spatially more limited studies
are available for countries like Ethiopia (Hellden & Eklundh,
1988), Sudan (Hielkema et al., 1986), Senegal (Diouf &
Lambin, 2001; Li et al., 2004), or parts of South Africa (e.g.,
Archer, 2004), among others. In some regions, it has been
found a high spatial variability in the sensitivity of NDVI to
interannual rainfall variations (Richard & Poccard, 1998).
Though Lambin and Ehrlich (1997) suggested that year-to-year
land-cover changes in tropical Africa as a whole are mostly due

to interannual climatic variability, there is a lack of a detailed
mapping to show areas where the NDVI response to interannual
rainfall variations is strong/weak. The present study aims at
filling the gap, by examining the spatial patterns of this response
(discontinuities, regional differences) and seeking explanations
to them.

An important question is first to assess to what extent the
NDVI-rainfall relationship is dependent upon the mean amount
of precipitation. Is there any continental threshold of mean
annual rainfall after which the dependence would be reduced?

Fig. 1. Mean NDVI patterns over tropical Africa: (a) mean annual values; (b) beginning month of the vegetative season (BVS, see text).
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What is the part played by the type of vegetation cover? For
instance, forest ecosystems are considered to be less dependent on
interannual precipitation variability than grasslands, but are there
sharp spatial discontinuities in this dependence across the con-
tinent, or is there a gradual transition from grasslands to forests?
Second, if they are local and inter-regional differences in the
relationship, how can they be explained? For instance, do they
reflect uneven soil properties, exogenous water resources, or
human intervention? Or are they only a reflection of the imperfect
nature of the global precipitation data sets available, unable to
fully document the complex spatial variability of rainfall? On the
contrary, mayweak rainfall-NDVI relationships be ascribed to the
intrinsic characteristics of NDVI products in wet regions (where a
persistent cloud cover biases NDVI) and/or forested regions
(where NDVI saturates and reflects the “greenness” of the canopy
only, irrespective of that of undergrowth vegetation)?

Interannual relationships between NDVI and rainfall are
usually studied by computing correlation coefficients between the
two variables, possibly with a lag to take into account the delayed
adjustment of soil moisture content. In addition to the correlation,
the slope and intercept of the linear regression between inter-
annual values of NDVI and rainfall deserve an analysis of their
spatial patterns and dependence on mean annual rainfall. The
slope can be considered as the response of vegetation activity per
unit increase in rainfall (i.e., a marginal response; Verón et al.,
2005), which may be different from the rain-use efficiency per se.
The intercept is a descriptor of interannual variation in rain-use
efficiency, and partly reflects ecological attributes. How do they
vary across the African continent, especially in areas where the
NDVI-rainfall relationship is significant, and what aspects of the
ecosystems behaviour do they materialise?

To answer these questions, it is necessary to work on rela-
tively long interannual time-series, and use is made here of a
recently released version of bias-corrected NDVI data. These
data (Section 2) serve as a basis to study interannual variations,
after a determination of the “vegetative year”. Correlations
and regressions between NDVI and annual rainfall totals for the
period 1981–2000 are then computed using two different rain-
fall data sets. One-year lag-relationships are also considered. At
local scales, Oesterheld et al. (2001) found that the net primary
production (NPP) of Colorado grasslands was significantly ex-
plained by previous-year (in addition to current-year) rainfall.
For three regions of Africa, Martiny et al. (2005) demonstrated a
weak but distinct influence of a given year rainfall on NDVI of
the following year, though the relationship is not fully linear. The
spatial patterns of the zero-lag and one-year lag relationships
between rainfall and NDVI are thus presented (Section 3).
Finally, the way the NDVI-rainfall relationship is modulated by
mean annual rainfall, vegetation types, as well as soil properties,
is examined using a range of gridded data sets (Section 4).

2. Data

2.1. NDVI

The NDVI data set was obtained from the Global Inventory
Monitoring and Modeling Systems (GIMMS) group at NASA

(Tucker et al., 2005). The vegetation index is computed from
NOAAAdvanced Very High Resolution Radiometers (AVHRR)
satellite data, and covers a 23-year (1981–2003) period on a bi-
monthly time-scale. Data are from NOAA-7 (1981–1985),
NOAA-9 (1985–1988 and August 1994 to January 1995),
NOAA-11 (1989–1994), NOAA-14 (1995–2000), and NOAA-
16 since 2000. The GIMMS data set includes improved cor-
rections of problems related to calibration, illumination, volca-
nic aerosols, and other effects unconnected to actual vegetation
activity. Here, the original data (twice a month at an 8-km
resolution) were resampled to the monthly time-scale and a 0.5°
latitude and longitude resolution, in order to match the rainfall
data as described below. Despite the efforts undertaken in the
making of the data set, there remain some biases originating
from aerosols, water vapour and bare soil contamination in sub-
arid regions, mainly the saharo–sahelian belt (Martiny et al., in
press), cloud contamination in regions with a persistent cloud
cover, or the presence of surface water. A standard compositing
technique (maximum NDVI over 15 days) was used in the
computation, but a close analysis of the data revealed unex-
pectedly low values in some areas around the Gulf of Guinea and
around some water bodies. The data set was screened for values
below 0.05, and any pixel with one such value in the 23 years
was set to missing, since it was seen as potentially recurrently
contaminated. For this reason, parts of Ivory Coast and Gabon
have missing data (white areas on Fig. 1a). The possible
incidence of residual cloud contamination will be discussed
below.

To obtain the time-series of annual mean values used below,
the NDVI data are pre-processed as follows. The year is defined
as the vegetative season. In this study, the vegetative season is
considered to end on the month of the lowest long-term mean
NDVI, and to start a month later. The beginning of the year
therefore coincides with the first rise in NDVI, most often in
coincidence with (or slightly lagging) the mean rainy season
onset. Annual NDVI values are computed as 12-month averages
starting from this month. The beginning of the vegetative season
(BVS) is in February–March over most of the Guinea coast
regions of West Africa (Fig. 1b), gradually shifting to the north
(e.g., June in southernmost Niger). In equatorial regions, they are
often two rainy seasons and two dry seasons, and the BVS starts
after the drier/longer of the two dry seasons (for instance, in
September–October south of the equator and in much of eastern
Africa). In the Congo Basin, the two drier seasons (6-month
apart of each other) display almost identical NDVI values,
hence the equivocal shift between February and August at
about 0°N on Fig. 1b. Note that in some areas (esp. with all-
year round rainfall and high mean annual NDVI, Fig. 1a), any
delimitation of the vegetative year is arguable, but this actually
affects very few grid-points. Across southern Africa, the BVS
is quite uniform (around October), except for the Namib desert
and much of South Africa. The early onset in central South
Africa (July to August) is related to winter wheat growth, and
further south (March–June) to winter rains. Note that in a few
cases the selected month may not strictly be the BVS, since
NDVI may be biased by non-vegetative factors, as mentioned
above.
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2.2. Rainfall

The primary rainfall data set is that from the Climatic
Research Unit (CRU), which consists of land-only gridded (0.5°
latitude× longitude) monthly rainfall data (New et al., 2000).
The period 1980–2000 was extracted. Annual rainfall amounts
were computed, starting from 1 month before the beginning of
the vegetative cycle, as determined above. This one-month lead
was introduced in order to take into account the lag between
photosynthetic activity variations and those of rainfall, which is
on average of 1 month for the African continent (Poccard &
Richard, 1996; Shinoda, 1995). However, the results obtained
using zero-month or two-month leads were very similar, except
that the correlations were sometimes slightly lower. Note that the
CRU product is derived from station data only, and spatial gaps
are interpolated using angular-weighted averaging (New et al.,
2000). The station network was quite dense in the 1980s, but
much less so in the 1990s. Being a global product, it is not
necessarily reliable at small scales in all regions. For instance,
little data was available in Angola and the Democratic Republic
of Congo during the whole period. For these reasons, alternative
rainfall data sets were also considered.

Combined rain gauge/satellite estimates from the CPC
Merged Analysis of Precipitation (CMAP, Xie & Arkin, 1997)
were extracted for the same period as the CRU data set. This
product is available on a 2.5° latitude× longitude grid, therefore
it was interpolated to a 0.5° grid in order to match the resolution
of the CRU and NDVI products. In principle, the lower initial
resolution makes it inferior to the CRU data set, though it is
probablymore reliable than CRU in areas/years devoid from rain

gauge data, since the simple interpolation done in the latter may
not be always adequate.

2.3. Land-cover

The land-cover map of Africa (Mayaux et al., 2004) pre-
pared in the framework of the Global Land Cover 2000 project
(GLC2000) enables to distinguish 27 major vegetation types
and non-vegetated land surface formations. These mainly derive
from VEGETATION sensor data from the SPOT-4 satellite,
added to radar data, high resolution imagery and expert con-
sultation. It is to be noted that, although this product also
uses satellite (esp., NDVI) information, it can be considered as
relatively independent from the one used in the present study to
investigate interannual variability (GIMMS-AVHRR), since
GLC2000 vegetation types were identified mainly based on
mean annual values and seasonal variations (phenology). The
initial resolution of the digital GLC2000 product is 1 km. It was
downgraded to the same 0.5° grid as for the rainfall (CRU) data
set. In each 0.5° grid-square, the dominant land cover type was
determined. If for a given grid-square no single land cover type
exceeded 50% of the 1 km pixels, the grid point was set to type
25 (mixed land cover types).

A few classes in the GLC2000 data set depict croplands, but
the intensity of cultivation is not adequately portrayed. In order
to assess the role of cultivation, data on population density were
used as a rough indicator of the human pressure on the land-
cover (it is the primary predictor of cultivation percentage in the
models developed by Wint et al., 1999). These were obtained
from the Gridded Population of the World Version 3 (GPWv3)

Fig. 2. Zero-year-lag correlation coefficients between interannual variations of annual NDVI and annual CRU rainfall (1981–2000). Contours show the 200, 600 and
1000 mm mean annual isohyets.
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data set, produced by the Center for International Earth Science
Information Network, Columbia University, and by Centro
Internacional de Agricultura Tropical (CIESIN/CIAT, 2005).
The raster data are at 0.25° resolution, and were aggregated to a
0.5° resolution. They contain population densities for 2000,
adjusted to match United Nations totals.

2.4. Soil properties and soil types

Quantitative information on three soil properties was ex-
tracted from the World Inventory of Soil Emission Potentials
Database (WISE) at the International Soil Reference and Infor-
mation Centre (ISRIC), Wageningen, the Netherlands (Batjes,
2000). A first variable depicts soil pH (for topsoil up to 30 cm,
and subsoil between 30–100 cm). Over Africa, the two soil
layers show very similar distribution maps, therefore only sub-
soil pH is considered in the analyses below. A second variable
quantifies soil moisture retention (0–1 m) expressed as the total
available water capacity (AWC). Soil organic carbon density
(SC) is the third variable. It is expressed as kg C per square-
meter, to a 100-cm depth. All these variables are available on a
global 0.5° latitude× longitude grid. Caution must be exerted in
the use of this data set, since being a global, low resolution
product, it has a limited accuracy.

As a more qualitative approach, a digital, 0.5° grid square
version of the Zobler global soil map was additionally used (Post
& Zobler, 2000). It comprises 106 soil types classes, following
the Food and Agriculture Organisation (FAO) soil classification.
They have been regrouped into 26 basic groups (+ ice). Note that
the precision of the set is relative since it is a degraded version of
an original 1° square map.

3. Spatial patterns of the NDVI-rainfall relationship

3.1. Zero-year lag correlation

The relationships between interannual variations of NDVI
and rainfall (1981–2000) are assessed by computing a corre-
lation coefficient (r0) and a linear regression equation for each
0.5° grid-point. CRU (interpolated rain gauge) precipitation is
first considered. The correlation map (Fig. 2) shows contrasted
values, with large areas having nil or insignificant correlations,
while significant values (0.45 to 0.90) are found in three well-
defined areas: the sudano–sahelian belt (from Senegal to
Eritrea), west-central parts of southern Africa, including the
Kalahari desert and its surroundings, and parts of East Africa,
including north-eastern Ethiopia, eastern Kenya and central
Tanzania. In all, 32.7% of the grid-points display significant
(95% c.l.) correlations, with a slightly higher percentage during
the 1980s than during the 1990s, a reflection of the lesser quality
of the precipitation data in the latter decade. Correlations close to
zero or even negative are found in the Sahara, in several regions
around the Gulf of Guinea, in parts of the Congo Basin, from
Angola to northern Mozambique, in Madagascar, as well as in
smaller areas like western Ethiopia, north-eastern Somalia and
eastern South Africa. In order to account for possible non-linear
relationships between NDVI and rainfall (NDVI was found to

‘saturate’ above about 1000 mm rainfall in western and eastern
Africa; Davenport & Nicholson, 1993; Malo & Nicholson,
1990), log transformations of the rainfall data were carried out,
and the correlations recomputed. There was however very little
change in the results (only 0.2% of additional grid-points reach
95% statistical significance). Only a few pixels did show a
significant increase in their r-square, and some others showed a
decrease. Therefore the linear approach was retained in the rest
of the study.

The distribution of high correlations well matches that of
semi-arid areas (see isohyets of 200, 600 and 1000 mm on
Fig. 2). This is confirmed by the plot of the correlation coeffi-
cients r0 versus mean annual rainfall (Fig. 3): the temporal
(interannual) relationships peak around 300–400 mm. The r0
values quickly fall to nil or even negative values when rainfall is
low. Above 400 mm, r0 values also decrease but much more
gradually. On median they become insignificant above 600 mm,
but there is a large dispersion, for significant values may still be
found above 1000 mm (the cluster of slightly higher values
around 1700 mm is likely due to sampling). In particular, it is
found that in western Africa and parts of eastern Africa sig-
nificant values are found well above 600 mm (see smaller green/
grey circles on Fig. 2, for western Africa). Reciprocally, in
southern Africa, the correlations are higher for relatively dry
areas, then drop sharply from 400 to 600 mm (see smaller blue/
black circles on Fig. 2).

Fuller and Prince (1996), for southern Africa, using a few
sample sites, found temporal correlations to reach a threshold at
about 600 mm rainfall. Herrmann et al. (2005), for western
Africa, obtained highest temporal correlations (at a monthly-
time-scale, and mixing interannual and seasonal variations) in
the Sahel semi-arid zone. For tropical Africa as a whole, Martiny
et al. (in press) assessed the spatial relationship between the
long-term averages of NDVI and rainfall. They found a linear
relationship also in the 200–600 mm precipitation range, though
with some dispersion. Together with the above findings, this
indicates that in semi-arid areas both temporal and spatial var-
iations of NDVI are unequivocally controlled by rainfall. How-
ever, the upper and lower bounds of high correlations depend on
the region, with western Africa, in particular, contrasting with
southern Africa. The interpretation of these results and the cases
of the wetter and drier areas will be further discussed below.

Considering the small number of rain gauges incorporated
in the CRU data set in recent years, especially in the 1990s
and in some regions like Central Africa or war-torn coun-
tries like Somalia, the same analysis was carried out using
the CMAP gridded data set. The basic r0 correlation patterns
between NDVI and CMAP rainfall are the same as for CRU
rainfall (Fig. 4). On the whole, correlation are often marginally
higher, though there is a substantial improvement over some
countries (southern Somalia, Chad, central Nigeria) where the
satellite data, included in CMAP, compensate the virtual ab-
sence of rain gauge data in the 1990s. Cases of degraded
correlation are also found (central Tanzania, central Congo
Basin), which are likely to be due to an incorrect satellite
estimate of rainfall, and to the initial lower resolution of the
data set (2.5°) compared to CRU. However, in general, the
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smoothing resulting from this resolution is not found to alter the
correlations (34.7% of the grid-points display significant cor-
relations, as compared to 32.7% for CRU). In view of these
results, only CMAP data were used in the rest of the study, but
the above remarks should be kept in mind when analysing the
detailed patterns of the correlations.

On the whole, and whatever the rainfall data set, a noticeable
feature is the apparent poor response of NDVI to rainfall

variability in sub-humid to humid climates. Note that identical
results were obtained using detrended time-series, ruling out the
incidence of possibly different trends in rainfall and NDVI
(which could be the result of human activities; Herrmann et al.,
2005). Different factors may therefore explain these low cor-
relations. One of them is related to the signal itself, which
saturates above certain values (Mutanga & Skidmore, 2004;
Nicholson et al., 1990). A second one relates to plant phy-
siology: in very wet areas, photosynthetic activity (esp. that of
trees) is relatively insensitive to rainfall variations, provided that
a certain amount is guaranteed. However, we cannot rule out that
cloud cover contamination does not remain in the remote sensed
vegetative activity, despite the corrections carried out in the
NDVI product used here. This problem is usually fixed by using
a 10-day or 15-day composite, but contaminated NDVI values
may remain (as discussed in the data section, around Gabon for
instance). Though in given months and years this bias is likely to
be still present, we hypothesize that it only weakly affects our
results, which are based on yearly values. One of the clues to it is
that the mean seasonal variations (as exemplified by the BVS
map, Fig. 1b) are relatively conform to the observation, and
replicate rainfall variations. Incidentally, this remark could be
seen to contradict the hypothesis of an absence of vegetation
response to rainfall in these regions. Similar observations were
made in southern Africa by Fuller and Prince (1996) and Richard
and Poccard (1998), whereby in wet areas the interannual
correlations were found to be low, yet the NDVI mean seasonal
variations closely follow those of rainfall. This points to the fact
that phenology and interannual variations in photosynthetic
activity denote different physiological and/or ecosystems
responses to constraints in water availability.

Fig. 3. Scatter-plot of zero-year lag correlation coefficients between NDVI
and CRU rainfall ( y-axis), versus mean annual rainfall ( x-axis), for 7743
grid-points across tropical Africa. Dashed line: 95% significance level.
Circles connected by a thick line indicate the median correlation for all
successive 100 mm bins (i.e.: 0–100, 100–200, 200–300…). Thin lines:
same but for western Africa (7.5°N–20°N, 15°W–15°E, grey) and southern
Africa (south of 10°S, black). Squares: grid-points with a fire return period
lower than 3 years.

Fig. 4. Same as Fig. 2 but for CMAP rainfall.
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The very low r0 correlations found in arid areas (below 150
to 200mm) are related to the fact that only a very small portion of
the land surface is vegetated. Additionally, both rainfall and
vegetation “green-up” occur over a very short period of time
during the year. Hence, the annual signal is dominated by other
surface properties (e.g., colour of bare soil), and maybe strongly
biased by atmospheric effects. In the southern Sahara margins,
the increase in atmospheric water vapour content in wet years,
which results into lower NDVI values (Justice et al., 1991; Tanré
et al., 1992), offsets that of increased rainfall, and explains the
negative correlations sometimes found between NDVI and rain-
fall (Fig. 2).

The fact that maximumNDVI sensitivity to rainfall variations
is found in drier environments in southern than in western Africa
(Fig. 2) is related to the lower rainfall efficiency in the latter
region, as noted in Prince and Tucker (1986), Farrar et al. (1994)
andMartiny et al. (in press). Possible factors include, for western
Africa, greater seasonal rainfall concentration resulting into
higher runoff (though this aspect was discounted by Farrar et al.,
1994), more agriculture, lower soil fertility, higher temperature,
and biases such as those related to aerosol content.

Regression models between NDVI and rainfall were com-
puted. The intercepts of the linear relationships were first plotted
(not shown). They actually exhibit a simple pattern which is very
similar to that of mean annual NDVI. However, when identical
mean rainfall values are considered, some differences are found
among the semi-arid regions. For instance, relatively higher than
expected values are found in the Kalahari desert, and lower than
expected in the Sahel. This reflects contrasts in rain-use ef-
ficiency (higher in southern Africa than in western Africa) as
discussed above. The slopes of the regressions were next plotted
(Fig. 5), together with the corresponding mean annual rainfall.
As expected, the general pattern is similar to that of the
correlations scatter plot (Fig. 3, which was obtained for CRU
rainfall; the one for CMAP is essentially the same). The largest
values are again found in the 200–600 mm range, peaking

around 400 mm. It is remarkable that slopes obtained for higher
rainfall amounts fast drop to relatively low values. Paruelo et al.
(1999), for temperate grasslands, studied the slopes in
interannual models of NPP-precipitation relationships. They
found the maximum slopes at annual rainfall of about 475 mm,
which is close to what found in the present study, though for
tropical regions. These authors suggested that in drier environ-
ments (i.e., well below 400 mm, showing low slopes), the
dominance of species with low relative growth rates constrains
the response to interannual rainfall variations. Drought resis-
tance strategies have permanent implications on maximal pho-
tosynthesis and growth rates, even when precipitation is
temporarily higher, hence the low slopes. By contrast, in wetter
environments (i.e., well above 400 mm), the lower slope values
are indicative of a predominance of growth constraints (e.g.,
biogeochemical, thermal,…) other than precipitation amounts
(Huxman et al., 2004; Paruelo et al., 1999). This may also apply
to most wet areas in Africa.

There are some exceptions however, of wet areas displaying
small slopes but significant positive correlations between NDVI
and rainfall. Such cases (lower Zambezi valley, central Nigeria,
Rwanda), and the reasons for this apparent contradiction, will
be discussed in Section 4.1.

3.2. One-year lag correlation

One-year lag correlations (r1) were also considered in order
to detect possible persistence effects. Removing the effect of
current-year rainfall is done by computing partial correlations
between NDVI for year i and CMAP rainfall for year i−1
independently from rainfall in year i. On the whole, correlations
are quite low (Fig. 6). However, positive and significant (95%)
r1 values are found over extensive parts of West Africa, as
well as in the Republic of the Sudan and South Africa. In all, they
add up to 9.9% of the grid-points.

There is no particular coincidence with a particular rainfall
amount (Fig. 7). Similarly, significant one-year lag correlations
can be found in regions of otherwise either non-significant or
significant NDVI response to synchronous rainfall. Note that
some degree of “memory” had been found in 3 different semi-
arid regions of Africa (Martiny et al., 2005), though the lag-one
correlation observed in eastern Africa (Kenya) is not reproduced
in the present continental scale analysis (which uses coarser
rainfall data). The spatial patterns obtained in Fig. 7 are
somewhat noisy. This is suggested to be due to the coarse spatial
and temporal scales, which mix different signals. In some of
equatorial regions experiencing wet conditions almost through-
out the year, cases of high r1 values (e.g., eastern Congo Basin)
may locally be interpreted as the influence of late year-1 rains
onto the early year-2 vegetation activity, thus reflecting a
possibly inadequate delimitation of the vegetative year.

The possible role of land surface discriminating factors (land-
cover types, soil properties and soil types) on the correlation and
slope patterns, for both r1 and r0, is next explored. However, the
results for r1 failed to show systematic associations between
high one-year lag correlations and any of these discriminat-
ing factors. This may be related to (i) the spatial scale under

Fig. 5. Same as Fig. 3 but for the slopes of the regression between NDVI and
CMAP rainfall. Note that the mean annual rainfall on the x-axis is taken from
CRU, since whereas CMAP is adequate to depict interannual variability it does
not have a sufficient resolution to depict small-scale (0.5°) variations in mean
rainfall amounts.
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consideration, which is too coarse to accurately depict local
factors; (ii) the weakness of the signal, compared to zero-year lag
correlation. Therefore, only the results obtained for r0 will be
discussed in the following sections.

4. Role of land surface properties

4.1. Land-cover types

4.1.1. Zero-year lag correlation
The fact that the NDVI-rainfall relationship is stronger for a

given range of annual rainfall amounts suggests that it is also
related to vegetation types. For instance, forest and woodland
environments are expected to coincide with lower correlations.
This aspect is analysed by showing the distribution of the
indicators of the NDVI-CMAP rainfall relationship (correlations
and slopes, as discussed in Section 3) with respect to vegetation
types and land-cover classes as from the GLC2000 data set.

Fig. 8 shows the box-plot of r0 correlation coefficients for
the GLC2000 classes which are represented by at least 25 grid-
points. Five land-cover types are predominantly associated with
significant (95% level) NDVI-rainfall correlations: open grass-
lands (classes 13 and 14), sparse grasslands (15), croplands (17),
and croplands with open woody vegetation (18). The highest
median correlation is for the open grasslands (r0=0.67). It is
noticeable that for this vegetation type 80% of the grid-points
display significant correlations. Other land cover types (esp.,
tree-dominated ones) on average display non-significant cor-
relations (Fig. 8). However, the range of values is quite large for
some of them; for example, 30 and 27% of the montane forest

and open deciduous shrubland grid-points, respectively, show a
significant correlation (see below).

On the whole, these results are not unexpected: the land-
cover types which exhibit the largest NDVI-rainfall correlations
are characteristic of generally semi-arid environments (open and
sparse grasslands, croplands), in agreement with the largest
correlation being found in the 200–600 mm belt (Section 3.1).
However, is it possible to say whether the higher sensitivity is
dominantly related to a certain amount of rainfall or to a certain
vegetation type? Table 1 confirms that the highest sensitivity to
rainfall (median r0=0.66) is found at locations combining 200–
600 mm rainfall and an open grassland or cropland land-cover

Fig. 6. One-year-lag partial correlations (1981–2000) between NDVI for year i and CMAP rainfall for year i−1 independently from rainfall in year i.

Fig. 7. Scatter-plot of one-year lag partial correlation coefficients between
NDVIi and rainfalli−1, independently from rainfalli ( y-axis), versus mean annual
rainfall (x-axis). Legend as in Fig. 3.
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(A on Table 1). If we now compare sites with the same land-
cover but rainfall outside the 200–600 mm range (B), to semi-
arid sites (200–600 mm) but neither under open grassland nor
cropland (C), we find that they exhibit virtually the same me-
dian correlations. This tends to show that none of the two
factors (land-cover and annual rainfall) is more important than
the other in the sensitivity of NDVI to rainfall variability (as
confirmed by a two-way analysis of variance, not shown).

The question is further explored by focusing on those areas
where the NDVI response to rainfall is not what is expected.
First, there are some grid-points located in semi-arid regions
where non-significant correlations are found. On the contrary,
there are non-semi-arid areas which nonetheless exhibit a signif-
icant correlation between rainfall and NDVI. Are both features
associated with specific land surface conditions?

To illustrate the first point, the lower part of Table 1 dis-
plays the median correlation obtained for each land-cover type,
for all semi-arid areas (left column). What is noticeable is that
all the non-herbaceous land-cover types (shrubland, woodland)
show weaker correlations between NDVI and rainfall, even if
they fall within the 200–600 mm range. Such cases are found
for example in parts of the Limpopo Basin. However, the
presence of a significant tree-cover is not all since there are
other semi-arid regions which similarly display a low NDVI
sensitivity. They include parts of central Chad and Darfur, the
Ogaden and central Somalia, and the Namibia–Angola border.
These regions do not coincide with specific land-cover types.
For instance, in Somalia they include sparse grasslands, but
this formation both exhibit high (r0N0.7) and low (r0b0.1)
correlations, from south to north. Apart from the possibility of

inaccurate rainfall data (few rain gauges are available in most
of these areas), an hypothesis may be the influence of soil
properties. This will be examined in Section 4.2.

If we now concentrate on those non semi-arid areas, where
the NDVI sensitivity is nonetheless high, it is found that the
amount of rainfall still has an important role. Most of the cor-
responding grid-points have a mean annual rainfall quite close to
the above thresholds (100–200 mm, or 600–1000 mm). It is
logical to think that water availability still impacts NDVI var-
iations in such environments. However, it is also clear that a
fraction of these non-semi arid lands, even with rainfall below
1000 mm, has a weak sensitivity. What makes the difference
between the high and the low sensitivity areas in wet areas? An
inspection of the GLC2000map and data (Table 1, right column)
shows that high sensitivity is clearly associated with three land-
cover types: open grassland with sparse shrubs, open grassland,
and croplands with open woody vegetation. These land-cover
types are predominantly found in the sudanian belt from Senegal
to Sudan, and in East Africa (northern Tanzania and Kenya).
Non-significant correlations, on the contrary, tend to be asso-
ciated with woodland or shrubland. This contrast in r0 values,
depending on the land-cover, matches the differences between
southern Africa and western Africa, as displayed on Fig. 3. In
order to better discriminate the effects of land-cover and mean
rainfall, the case of western Africa is further analysed (Fig. 9). In
this region, the change from high to low r0 values is quite abrupt
(less than 200 km) and strongly related to the transition from
grasslands/croplands to woodland/forest. Though the separation
between the rainfall factor and the land-cover factor is not easy,
there are several instances (Mali, Burkina Faso…) where the high

Fig. 8. Box-plot of zero-year-lag correlation coefficients between NDVI and CMAP rainfall, for different GLC land-cover classes (see full denominations under
Table 1; type 23 stands for grid-points which include part of a waterbody; type 25 stands for grid-points with no dominant land-cover type). Only the land-cover
classes which are represented by at least 25 grid-points are shown. Top numbers: number of grid-points. Horizontal dashed line: 95% confidence level. Box-plots
are represented in the usual way (i.e., lower and upper limits of the box: lower and upper quartiles; central line: median; whiskers: lowest and highest values, with
‘+’ showing outliers beyond 1.5 times the inter-quartile range).
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correlation pattern more closely follows the latter than the
former. The effect of tree cover in the reduction of NDVI
sensitivity to rainfall is also apparent in southern Africa, at a
lower mean annual rainfall threshold than in western Africa.
Scanlon et al. (2002), along a Kalahari transect, show that the
sharp drop in NDVI interannual sensitivity north of 20°S can be

interpreted as a marked increase (decrease) in fractional tree
cover (grass cover).

In the northern part of West Africa (Fig. 9), towards the
Sahara desert, there is also a clear coincidence between fast
dropping correlations and a change from sparse grasslands to
bare soil, though occasional high correlations overlap the
GLC2000 ‘bare soil’ class in the south-western part of relatively
high ground areas (Adrar des Iforas in Mali and Aïr massif in
Niger). It is suggested that the latter exceptions are related to
surface and sub-surface water inflow (the numerous wet season
streams flowing down from the highlands induce local vege-
tation growth in wet years, which may be sufficient to enhance
grid-point mean NDVI). Cases of significant r0 for areas
classified as predominantly “bare soil” are also well shown in the
box-plot for Africa as a whole (Fig. 8).

In the context of the high correlations found in grassland/
cropland formations, there are however, for Africa as a whole,
two grassland formations which display low sensitivities
(Table 1): swamp grasslands (mostly represented by the Sudd
swamps of southern Sudan) and closed grasslands. The former
case is evidently associated with lateral inflow of water, which
makes vegetation weakly dependent on local rainfall. Farrar
et al. (1994) noted for Botswana, in a context of strong rela-
tionships between NDVI and rainfall, locally much lower
correlations, which they attributed to “run-in”, i.e. lateral inflow
of water, especially along the major valleys. The latter case of
low sensitivity (closed grasslands) is related to the fact that
much of this land-cover type consist of grasslands developed
under relatively wet conditions, as in southern Congo–Braz-
zaville or in Madagascar. These grasslands, of edaphic or an-
thropogenic origin, are not at equilibrium with present-day
climate (over 1000 mm/year in both regions). There is enough
water in any year to enable herbaceous growth, hence the
absence of significant correlation.

4.1.2. Zero-year lag slopes
Quite similar results are found when analysing the slopes of

the regression between NDVI and rainfall (Fig. 10). Open grass-
lands, and secondarily croplands, clearly display the steepest

Table 1
Median r0 correlation coefficients between the interannual variations of annual
NDVI and annual CMAP rainfall (1981–2000), for different land-cover types
and annual rainfall amounts

Mean annual rainfall

GLC types (and numbers) 200–600 mm Other amounts

All open grasslands (13–14) and
croplands (17–18)

A
0.66 (1060)

B
0.53 (800)

All other land-cover types C
0.52 (893)

0.15
(5012)

Evergreen lowland forest (1) ⁎ 0.15
Montane evergreen forest (3) ⁎ 0.21
Swamp forest (4) ⁎ 0.13
Mosaic forest/cropland (6) ⁎ 0.13
Mosaic forest/savanna (7) 0.44 0.15
Closed deciduous forest (8) 0.26 −0.05
Deciduous woodland (9) 0.44 0.11
Deciduous shrubland (10) 0.41 0.26
Open deciduous shrubland (11) 0.41 0.02
Closed grassland (12) 0.64 0.16
Open grassland with sparse
shrubs (13)

0.65 0.56

Open grassland (14) 0.69 0.71
Sparse grassland (15) 0.60 0.38

(N600 mm:
0.70)

Swamp grassland (16) 0.09 0.29
Croplands (17) 0.65 0.44
Croplands with open woody
veget. (18)

0.65 0.56

Bare soil (21) 0.58 0.18
Mixed land-cover types 0.42 −0.11

Significant values (95% c.l.) are in bold. The number of grid-points used in the
computation of the mean is in italics. Stars denote combinations represented by
less than 5 grid-points.

Fig. 9. Zero-year-lag correlation coefficients between NDVI and CMAP rainfall for West Africa. ‘X’: forest, woodland and shrubland (GLC2000 types 1–11). Vertical
strips: bare soil (type 21). White contours: mean annual rainfall in mm (CRU). Dashed black contours: elevations of 500 and 1000 m.
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slopes. Since the croplands categories listed above designate
rainfed crops, it is clearly demonstrated that in tropical Africa the
herbaceous and annual formations (either natural or not) exhibit
the strongest response of NDVI to interannual rainfall variability.
These formations are made up of relatively shallow-rooted plants
which are very sensitive to any variation in annual rainfall. This is
particularly so in regions which have a unique and rather short
rainy season, whereby any rain failure is very unlikely to be
compensated for by subsequent higher precipitation.

A noticeable feature is the fact that slopes in forest, wood-
land and shrubland environments are generally very small
(Fig. 10). The trees' greenness is therefore little affected by
year-to-year precipitation variations. As noticed above for wet
regions, this is so even in those (few) regions where the cor-
relation coefficients are relatively high, like parts of central
Nigeria, lower Zambezi valley, among others. What statistically
differentiates correlation and slopes is that the latter takes into
account the absolute variability of NDVI per unit variation of
precipitation. Thus, such an apparent contradiction (high
correlations, small slopes) actually denotes a combination of a
low NDVI variability and a high rainfall variability, but with an
in-phase evolution of the two variables. Physiologically, this
reflects a vegetation which is sensitive to any precipitation
variations (high correlations), but in a damped way (small
slopes). One possible interpretation would be a mixture of
evergreen and herbaceous (or crop) signals. A closer examina-
tion was carried out of these regions, as well as other areas (this
time within the semi-arid or ‘grassland’ belt) which also display
relatively low slopes but high correlations. There is evidence
that they often coincide with high rural densities (northern
Nigeria around Kano, Rwanda, Sukumaland in northern
Tanzania, Tigray in northern Ethiopia…). Reciprocally, in

semi-arid regions, the largest slopes (still with high correlation
coefficients) are often found in less populated areas.

Using the CIESIN/CIAT gridded population data set, an
attempt was made to assess whether a statistical influence of
population densities could be detected. Densities have been split
into four arbitrary classes (below 10, 10–40, 40–100 and over
100 h/km2). Analyses of variance have been computed, for each
land-cover type, to determine whether there was a significant
difference in slopes depending on density classes. For open
grasslands and croplands, slopes tend to be significantly smaller
over higher population density areas. By contrast, no incidence
of population densities on the distribution of correlation
coefficients can be detected. A scatter-plot of correlations
versus slopes confirms that the latter are, all things equal,
significantly smaller in densely populated areas (Fig. 11a). For a
given correlation coefficient, slopes are on average 50% greater
in areas of below 40 persons/km2 than in more densely
populated regions. For West Africa, Fig. 11b confirms, though
edaphic factors also play some part in the distribution, that the
slopes are relatively smaller (larger) in higher (lower) density
areas such as western Senegal (north-east Senegal), the Niger
valley around Niamey (Burkina/Niger borders), north-central
Nigeria from Kano to Sokoto (north-eastern Nigeria). We
hypothesize that these low slope, high human density areas,
correspond to densely cultivated areas. During crop growth and
maturation, interannual variations in precipitation amounts are
well reflected by those of NDVI, but after harvest, the NDVI
catches a bare soil signal. When averaged over a year, the NDVI
is a mixture of the pre- and post-harvest reflectances, thus the
remaining signal is still linked with seasonal rainfall but is
damped. A fairly similar mechanism may occur in heavily
grazed areas.

Fig. 10. Same as Fig. 8 but for the slopes of the regression between NDVI and CMAP rainfall.
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4.2. Soil properties

Three types of soil properties are examined: available water
capacity (AWC), organic carbon content (SC) and pH. Soil
properties have little relationship with NDVI sensitivity to
current-year rainfall (r0). Considering tropical Africa as a whole,
all SC classes and AWC classes actually display quite similar
median values of r0 (Fig. 12a–b). Only pH shows a more robust
incidence on the NDVI sensitivity to rainfall. The latter peaks for
pH ranging from 5.5 to 7.3, while more acid soils (pHb5.5)
much more rarely display high sensitivity r0 values (Fig. 12c).
Acidity may therefore be viewed as a biogeochemical constraint
which outweighs the influence of rainfall variability on
vegetative activity. Acid soils are found mainly in equatorial
regions in either forested or high rainfall areas. Reciprocally
neutral to moderately acid soils display a significant sensitivity
of NDVI to rainfall.

Since the impact of soil properties is expected to be
secondary compared to that of climate, the variations in r0 for
different rainfall and GLC classes were examined independent-
ly. It is confirmed that the water capacity has very little
incidence whatever the mean rainfall amount, as well as for
most land-cover types (not shown). However, for open grass-
lands and croplands, which were shown to exhibit very large r0
values, it is found that they are significant for low to moderate
water capacities (Table 2, top), whereas when AWC is above

150 mm, the response of NDVI to rainfall variability becomes
insignificant. In other words, a high soil moisture retention
slightly dampens the impact of precipitation variability, but
under selective land-cover types.

The incidence of soil organic carbon density (SC) was also
tested. There is no difference between SC classes within semi-
arid or wet areas, but in more arid environments, r0 increases
with the density of organic carbon in the soil, reaching 95%
significance when it is above 8 kg/m2 (Table 2, bottom). In such
harsh environments, this may be interpreted as the requirement
for the vegetation, in order to develop and react to rainfall
variability, to benefit from soils with sufficient amounts of
organicmatter. Finally, the analysis of pH values for the different
rainfall and GLC classes (not shown) confirms the above results,
of an overall lower r0 for highly acidic soils, while maximum
values are obtained for pH ranging from 5.5 to 7.3.

4.3. Soil types

The distribution of zero-year lag correlation with respect to
Zobler soil groups exhibits relatively small differences, compared
to those found for land-cover types. Only 4 soil groups display
median r0 values above the 95% significance level (in green/light
grey on Fig. 13): arenosols, vertisols, solonetz and solonchaks.
The latter two, which cover less than 1% of tropical Africa, are
saline and sodic soils mostly found in endoreic basins (e.g. Etosha

Fig. 11. Slopes and correlation coefficients of the linear relationship between interannual variations of NDVI and rainfall. (a) Scatter-plot for tropical Africa as a whole:
grid-points with population densities below (above) 40 inhabitants per km2 are shown as dots (pluses), with mean slopes for each 0.10 correlation bins joined by a solid
(dashed) line. (b) Ratio between slopes and r0, for all grid-points with a r0 above 0.40 in West Africa. Black contours: population densities. Light grey contours: mean
annual rainfall amounts.
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and Makgadigadi pans in southern Africa, and localised areas in
the Horn of Africa and in Chad). They are collocated with dry
environments. Vertisols are mostly found in alluvial clay plains.
Again, the coincidence with high correlations is mostly indirect.
For instance, in Sudan along the Ethiopian border, r0 correlations
over the vertisols strongly decrease southward as rainfall
increases. Arenosols have a loamy sand (or coarser) texture and
are mainly found in arid to semi-arid areas, especially in Niger,
Chad, western Sudan, and in the Kalahari Desert. In the Sahel
however, high correlations are found over both arenosols and
other soil types, suggesting that the high correlations are a result of
semi-aridity, not soils. Similarly, some presently wetter areas also
have arenosols (southernMozambique, Central AfricanRepublic,
and from southern Angola to Congo–Brazzaville), which do not
generally support high sensitivity values. Low median r0
correlations are found over 5 soil groups (in red/dark grey on
Fig. 13): lithosols, yermosols, acrisols, ferralsols and gleysols.
The first two correspond to very shallow and little evolved soils,
on which vegetation growth is in any case severely limited by
very low fertility. The latter three correspond to soils where water
availability is generally good, either due to high rainfall (esp.,
ferralsols) or to drainage (gleysols). In such cases local inter-
annual rainfall variations are expected to have a limited impact on
photosynthetic activity. However, there is again quite a strong
dispersion of r0 within each soil group. Inspection of climatic
maps reveals that much of the differences found across soil
groups, at this scale, are an indirect consequence of the depend-
ency of soil distribution to present-day precipitation conditions.

Given this dependency, the analysis was refined by
selectively considering a given range of rainfall amounts, or a
certain land-cover type (Table 3). Associations between soil
groups and NDVI sensitivity are similar as above, but the
contrasts between soil groups are weak, showing that the

Fig. 12. Box-plots of zero-year lag correlation between NDVI and CMAP
rainfall, for different soil properties. (a) Available water capacity (AWC, 0–1 m);
(b) organic carbon content (SC, 0–1 m); (c) subsoil (30–100 cm) pH. Top
values: number of grid-points.

Table 2
Median r0 correlation coefficients between the interannual variations of NDVI
and CMAP rainfall (1981–2000), for different combinations of soil properties,
GLC land-cover types and annual rainfall amounts

Land-cover types

Open grasslands
(13–14)

Croplands
(17–18)

Available water
capacity (AWC),
0–1 m depth

b90 mm 0.62 0.53
90–150 mm 0.59 0.45
N150 mm 0.35 0.37

Mean annual rainfall

b200 mm 200–600 mm N600 mm

Organic carbon
density (SC),
0–1 m depth

0–4 kgC/m2 0.14 0.57 0.41

4–8 kgC/m2 0.40 0.56 0.22
8–12 kgC/m2 0.56 0.55 0.16
12–16
kgC/m2

⁎ 0.31 0.18

N16 kgC/m2 ⁎ ⁎ 0.20

Significant values (95% c.l.) are in bold. Stars denote combinations represented
by less than 5 grid-points.
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climatic conditions have a much larger impact than the soil
types. Analyses of variance (not shown) indicate that r0 is
nevertheless significantly discriminated by the soil types. Three
soil groups recurrently emerge, whatever the rainfall amount and
vegetation type, as resulting into lower correlation values: these
are gleysols, acrisols and ferralsols. Even under land-cover types
which usually exhibit significant r0 values (croplands, open
grasslands), these three soil types generally show non-

significant relationships between NDVI and rainfall. The use
of soil moisture by the plants, over these soil types, is less
dependent on precipitation than on drainage and plants' ability to
efficiently tap these resources.

Nevertheless, it is emphasized that all cases of low NDVI
sensitivity, in semi-arid and/or grassland areas, cannot be as-
cribed to specific soil types: there remains quite a large
dispersion of correlation values within a given soil type. This

Fig. 13. Box-plot of zero-year lag correlation between NDVI and CMAP rainfall, for different soil types. Top values: number of grid-points. Horizontal dashed line:
95% confidence level.

Table 3
Median r0 correlation coefficients between the interannual variations of annual NDVI and annual CMAP rainfall (1981–2000), for different combinations of soil
groups, GLC2000 land-cover types and annual rainfall amounts

Zobler soil
groups

Mean annual rainfall (mm) GLC land-cover types (selection)

Above 1000 mm: non significant for any
soil group

Forest, forest mosaics and woodland : non-significant for any soil group

b200 200–600 600–1000 Deciduous
shrubland
(10+11)

Closed
grassland
(12)

Open
grassland
(13+14)

Sparse
grassland
(15)

Croplands
(17+18)

Bare soil
(21)

Solonchaks ⁎ 0.70 ⁎ ⁎ ⁎ 0.70 ⁎ ⁎ ⁎

Solonetz ⁎ 0.56 ⁎ ⁎ ⁎ 0.52 0.40 0.66 ⁎

Vertisols 0.59 0.60 0.42 0.37 0.28 0.67 0.60 0.54 0.52
Arenosols 0.62 0.67 0.18 0.24 0.41 0.69 0.71 0.62 0.57
Planosols ⁎ 0.69 0.26 0.35 0.21 0.66 ⁎ 0.57 ⁎

Nitosols ⁎ 0.62 0.57 0.42 0.01 0.62 ⁎ 0.52 ⁎

Fluvisols ⁎ 0.68 0.40 0.44 0.70 0.69 ⁎ 0.58 ⁎

Luvisols ⁎ 0.58 0.37 0.30 0.29 0.63 ⁎ 0.61 ⁎

Cambisols ⁎ 0.57 0.51 0.29 0.18 0.65 0.62 0.46 ⁎

Regosols −0.06 0.65 0.53 0.38 0.76 0.69 0.47 0.67 0.09
Xerosols 0.40 0.58 0.45 0.55 0.26 0.63 0.43 0.59 0.40
Yermosols 0.04 0.52 0.48 0.36 ⁎ 0.73 0.19 ⁎ 0.10
Lithosols 0.18 0.55 0.32 0.09 0.43 0.54 0.38 0.65 0.23
Acrisols ⁎ 0.44 0.28 0.13 0.50 0.51 ⁎ 0.32 ⁎

Ferralsols ⁎ ⁎ 0.11 0.10 0.11 ⁎ ⁎ 0.29 ⁎

Gleysols ⁎ 0.38 −0.10 −0.19 −0.10 0.40 0.49 0.44 ⁎

Significant values (95% c.l.) are in bold. Stars denote combinations represented by less than 5 grid-points.
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may suggest that the very low correlations found in some regions
(e.g., northern Somalia) are likely to be rather a reflection of
inadequate rainfall estimates. Actually, some soil types shown
above to be associated with quite low r0 values (i.e., lithosols
and regosols) for Africa as a whole nevertheless display sig-
nificant correlations under open grasslands and croplands. These
shallow soils, which are often found in arid environments, are
still able to support an herbaceous cover (and sometimes
marginal crops) which may strive well provided that an adequate
moisture supply exists (hence the NDVI signal).

Also noticeable is the fact that some soil types systematically
display higher r0 values than the average for any land-cover type
(if forests are excluded). This is the case for fluvisols, with a r0
of 0.69 for open grasslands, one of the largest values for any
land-cover/soil type combination, and a significant r0 even for
closed grasslands (0.70), a land-cover type whose NDVI is
generally not very sensitive to rainfall variations. Arenosols also
display high r0 values, particularly in sparse and open grasslands
formations (Table 3). These patterns suggest that these soil types
“magnify” interannual rainfall variability, inducing high NDVI
in wet years and very low NDVI in dry years.

On the whole, these results suggest a weak to moderate
impact of soil types (as well as soil properties, Section 4.2) on
NDVI sensitivity to rainfall. Stratification based on rainfall
amounts and land-cover types improves the results, but shows
that soil patterns are a secondary factor compared to climate
and/or land-cover. However, it should be recalled that soil
properties actually vary on generally fine scales, which are not
resolved in the present study; their impact is thus likely to be
underestimated.

5. Discussion and conclusions

The interannual variations in annual NDVI across Tropical
Africa during the period 1981–2000 were analysed with the aim
to map, and explain, the patterns of their relationship with
annual rainfall variations. Large spatial differences in the
response of photosynthetic activity to rainfall are found across
the continent. The highest correlations (r0 mostly over 0.60) are
found in the sudano–sahelian belt, and in parts of eastern Africa
and south-western Africa. The general patterns are relatively
robust, as demonstrated by the use of different rainfall data sets
(rain gauge only and mixed rain gauge-satellite estimates).

Associations between the distribution of these interannual
NDVI-rainfall correlations and different factors (mean rainfall
amounts, land-cover types, soil types, soil properties) were
explored. Mean annual rainfall amounts and land-cover types
are by far the leading determinants in the spatial patterns of the
correlations. A high sensitivity of NDVI to rainfall variations
mostly coincide with semi-arid areas (200–600 mm), and two
types of land-cover: open grassland and croplands. These two
determinants are actually strongly related with each other, but
relatively high correlations were also sometimes found when
only a single determinant out of the two is present.

The fact that annual NDVI is most sensitive to rainfall var-
iability at intermediate precipitation levels (200–600 mm) may
be compared to evidence collated by Huxman et al. (2004) who

analysed net primary production at 14 observation sites
representative of major world biomes. They found that annual
precipitation variations remained the best correlate of NPP at the
least productive sites. This is in line with the present results if we
consider that the low correlations found at very dry locations
result from the very weak (and partly biased) vegetation signal in
NDVI data. Paruelo et al. (1999) found a more distinct peak (at
around 475 mm) in the distribution of slopes (temporal re-
gression models of NPP with annual rainfall for temperate
grasslands) with respect to mean rainfall. This is in full ac-
cordance with our results, even if they are obtained using remote
sensing proxies rather than in situ measurements. In drier
environments, poor responses are explained by low relative
growth rates of the vegetation, even when rainfall is temporarily
higher (Paruelo et al., 1999). In wetter environments, water
availability is nomore a constraint, and the water stress may only
be temporary, occurring mostly as a seasonal constraint to which
the plants are well adapted. Nicholson et al. (1990), based on
observations from the Sahel and East Africa, suggested that there
is a rainfall threshold at 1000–1100 mm, above which NDVI is
insensitive to rainfall fluctuations. The present results indicate
that on average the relationship between NDVI and precipitation
becomes insignificant at a lower threshold, though there are
many instances on which significant correlations still occur in
the 600–1000 mm range. These are mainly found inWest Africa
and parts of eastern Africa, which does not contradict Nicholson
et al.'s findings.

The present study also suggests that vegetation formations are
almost as important as the mean annual rainfall, as a factor
accounting for the sensitivity to rainfall. It is of course difficult to
separate both effects since vegetation is to a reasonable extent at
equilibrium with climate, and smaller-scale studies should help
to understand the respective roles of climate and plant
physiology. However, the role of land-cover is suggested by
the strong gradients in r0 found over some regions, which
coincide with a change from grasslands/croplands to tree-
dominated vegetation formations. Forest ecosystems actually
almost always display non-significant relationships, which is not
an unexpected result for the evergreen forest, but is also apparent
in the deciduous forest (e.g., miombo of southern Africa). This
absence of NDVI response to interannual rainfall variability may
not be ascribed to NDVI biases, such as cloud contamination,
since seasonal variations are still found to match those of
rainfall. The hypothesis is that such vegetation formations are
generally supported by wet climatic conditions, whereby even
lower than average rainfall amounts are sufficient to induce
leafing. Additionally, trees are able to tap deep soil water
resources, therefore damping the effects of a moisture deficit.
This is true where the mean annual rainfall is above 1000 mm,
but it is noticeable that non herbaceous land-cover types
(shrubland, woodland) still show mostly non-significant corre-
lations between NDVI and rainfall, in both the 600–1000 and
200–600mm ranges. In addition to the role of deep soil moisture
storage, there are two explanations to this: (i) NDVI only
portrays vegetative activity of the canopy, and may not be
representative of the true leaf area, hence there is little apparent
change in NDVI between wet and dry years; (ii) contrary to open
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grasslands (and croplands), where higher rainfall may result in a
more extensive grass (and crop) cover, the area covered by active
vegetation does not change much in tree-dominated ecosystems.

Exceptions to the association between high NDVI sensitivity
and semi-arid grasslands take two main forms. First, there exist
several regions in Africa where the presence of one of the above
two determinants (semi-aridity and grassland/cropland land-
cover) is not sufficient to induce a strong NDVI correlation with
rainfall variability. These cases are often associated with
particular soil patterns. Gleysols, acrisols and ferralsols all
display low correlations of NDVI with rainfall, even under
otherwise favourable climatic conditions or vegetation cover.
This is related to the properties of these soils (especially in terms
of water storage and ability of the vegetation to tap the water
resource), which disturb the rainfall-photosynthetic activity
relationship. Most acid soils are also found to exhibit a lower
response of NDVI to rainfall, as compared to neutral to slightly
acid ones (5.5bpHb7.3) for which the response is distinctly
stronger. Finally, fluvisols and arenosols, outside forest
environments, tend to exhibit slightly higher correlations than
most other soils types. However, it is demonstrated that soil
types and soil properties are only minor factors in the overall
distribution of NDVI-rainfall correlations and regression slopes.
This is in agreement with results obtained for northern Senegal,
where Diouf and Lambin (2001) did not find much evidence of
soil type incidence on local discrepancies in the response of
vegetation to rainfall. In southern Africa, Richard and Poccard
(1998), using gridded 1° square data for the period 1983–1988,
found that the spatial variations of NDVI sensitivity to rainfall
anomalies were much better explained by the mean precipitation
amount and vegetation type than by the soil types. Nicholson
and Farrar (1994) and Farrar et al. (1994) in their study on
Botswana found significant differences among soil types. This
discrepancy could be due to the fact that they were considering
semi-arid environments only, in one region only, whereas the
present study deals with a large array of ecological conditions.

Second, evidence was provided of some cases of high
correlations between rainfall and NDVI outside the areas
featuring the above two determinants (200–600 mm mean
annual rainfall, and open grasslands/croplands land-cover).
The corresponding areas are neither found to display specific
soil properties, nor specific vegetation formations, though the
tree cover is generally limited. A puzzling observation is that
such locations exhibit small slopes in the linear regression
between NDVI and rainfall. It is suggested that this denotes in
part human influence on vegetative activity. A clear
correspondence is found between these low slopes (while
correlations are high) and high rural population densities. This
is interpreted as the effect of cultivation (and possibly grazing
pressure), in areas not necessarily detected as croplands in the
GLC2000 classification. In Senegal, Li et al. (2004) found
equally high correlations between NDVI and rainfall for
agriculture, steppes and savanna land-cover types, but cases of
very low correlations, at a local scale, were demonstrated to
be the result of land degradation due to strong human
pressure. However, the impact of agriculture on the NDVI is
complex: in arid areas of Syria, Evans and Geerken (2004)

noted that introduced rain-fed agriculture was resulting in a
strong increase in NDVI seasonal and interannual variability.
The nature of crops and farming practises are both likely to
affect the interannual NDVI signal.

Another important, man-related factor in vegetation dynam-
ics of semi-arid to subhumid tropical climates, hitherto not
discussed in this study, is fire (e.g., van Langevelde et al., 2003).
In the spatial distribution of woody cover in African savannas,
fire return is found to be second, after mean annual precipitation
and before soil characteristics (sand content) (Sankaran et al.,
2005). Frequent fires tend to reduce woody cover below an
upper bound controlled by precipitation. Fire frequency and fire
impact are constrained by the availability of dry fuel, and they
are maximum in the grasslands and open savannah woodlands at
intermediate rainfall amounts (about 550–750 mm per year),
though modified by agro-pastoral practises (Roy et al., 2005).
An attempt was made to evaluate the impact of fire frequency on
the relationship between NDVI and rainfall, by using statistics
on burnt areas in Africa for 1981–1991 (Barbosa et al., 1999),
derived from AVHRR data. Fire return periods were estimated
based on the number of years during which at least one fire
occurrence was detected in 5 km grid-squares, and then
resampled to a 0.5° grid. At this scale, there is very little evi-
dence that fire frequency impacts on interannual variations of
mean annual NDVI. In southern Africa, areas with short fire
return periods (blue/black squares on Fig. 3, to be compared with
the blue dots) only display a modest increase in their correlations
between NDVI and rainfall, in the 600–800 mm precipitation
range. This may reflect the lower tree cover associated with
frequent fires (Sankaran et al., 2005), combined to the fact that
trees are less sensitive than grass to rainfall variations. However,
the reverse pattern is found in western Africa (green/grey
squares on Fig. 3), where in the 500–800 mm precipitation
range, frequent fires result in a slightly lower correlation. A
possible explanation could be a direct incidence of burnt
surfaces on the NDVI signal, though the initial compositing
technique should eliminate much of it. These contrasted results
point to an overall limited influence of fire on the patterns of
vegetation sensitivity to rainfall, though further research is
required before reaching definitive conclusions.

Besides correlations, the present study also clearly showed the
association between semi-arid conditions and large slopes in
temporal regression models between NDVI and rainfall. Slopes
(and correlation) maps actually display spatial patterns which are
very different from those of rain-use efficiency (RUE), computed
as the ratio between net primary production (or scaled NDVI) and
rainfall (Le Houerou, 1984; Nicholson et al., 1990; Prince et al.,
1998). For instance, equally large slopes and correlations are
found in the semi-arid regions of East Africa, central Sahel, and
Kalahari. But for similar mean rainfall amounts, RUE is distinctly
higher in Kalahari (and to some extent East Africa) than in the
Sahel (Farrar et al., 1994; Martiny et al., in press). Veron et al.
(2005) recently insisted on the different interpretation of slopes
and RUE. The slope, in temporal models, can be viewed as the
(marginal) response of vegetation activity per unit increase in
rainfall. RUE, rather, implicitly includes runoff, evaporation and
drainage components which are not used by plants. Hence, RUE
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values are generallymuch larger than slopes (for semi-arid Africa,
typically 2 to 5 times larger, using NDVI data). Following Veron
et al. (2005), it is suggested that considering slopes and intercepts
(or slopes and RUE), rather than RUE alone, may facilitate
ecological interpretation of NDVI-rainfall relationships. The
significance of intercepts, when using NDVI rather primary
production, and at large scales (e.g., the African continent), is
actually not obvious, since they almost replicate the mean annual
rainfall distribution. However, if ratios of the intercepts to mean
rainfall are computed, we come to a meaningful map which
displays similarities with that of RUE, and shows the background
vegetative activity signal.

A last aim of the study was to detect possible lagged
relationships between annual rainfall and annual NDVI. As a
confirmation to other studies based on net primary production
or NDVI in semi-arid regions, but for local sites or limited
areas (Martiny et al., 2005; Oesterheld et al., 2001), a sig-
nificant one-year lag-impact of rainfall on photosynthetic
activity was also found in a number of regions of Africa,
representing about 10% of the grid-points. The spatial pat-
terns, however, are quite noisy, and it is was not possible to
find a distinct association of high lag-1 correlations with either
land-cover types (e.g., woody versus herbaceous cover), soil
properties or soil types. Martiny et al. (2005) noted, although
the signal could be detected through lag-1 partial correlations,
that the effect of previous year rainfall was not fully linear.
This area therefore deserves further investigation.

The latter remark recalls general limitations of this study, first
related to some shortcomings (and biases) of the NDVI data,
over very cloudy areas and over deserts, as well as in the rainfall
data sets in some regions with insufficient rain gauge infor-
mation. Another limitation is in the way the relationship between
rainfall and vegetative activity is considered: since the above
results are based on linear correlations, possible asymmetric
responses to drought and wet years are not treated. Beyond the
general patterns which appear at continental scale, a complete
assessment requires in-depth analyses at regional scales, or
comparative studies focusing on similar ecological domains, and
taking into account other possible determinants, especially fire
frequency, herbivory, and farming practises. Finally, there are
some limitations inherent to the use of annual data: the length of
the wet and dry seasons (and in some extreme instances the
virtual absence of any wet or dry season), the distribution of the
rain events within the rainy season, both have some impacts on
the NDVI signal, not only its regimes but to some extent its mean
annual intensity as well. A full understanding of interannual
variability therefore requires the seasonal cycle to be resolved.
However, the present study has the merit to establish an overall
hierarchy in some basic determinants of the vegetation response
to interannual rainfall variations.
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