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Abstract
Question: Can satellite time series be used to identify tree 
and grass green-up dates in a semi-arid savanna system, and 
are there predictable environmental cues for green-up for each 
life form?
Location: Acacia nigrescens/Combretum apiculatum savanna, 
Kruger National Park, South Africa (25° S, 31° E).
Methods: Remotely-sensed data from the MODIS sensor were 
used to provide a five year record of greenness (NDVI) between 
2000 and 2005. The seasonal and inter-annual patterns of leaf 
display of trees and grasses were described, using additional 
ecological information to separate the greening signal of each 
life form from the satellite time series. Linking this data to 
daily meteorological and soil moisture data allowed the cues 
responsible for leaf flush in trees and grasses to be identified 
and a predictive model of savanna leaf-out was developed. This 
was tested on a 22-year NDVI dataset from the Advanced Very 
High Resolution Radiometer.
 A day length cue for tree green-up predicted 86% of the 
green-ups with an accuracy better than one month. A soil 
moisture and day length cue for grass green-up predicted 73% 
of the green-ups with an accuracy better than a month, and 
82% within 45 days. This accuracy could be improved if the 
temporal resolution of the satellite data was shortened from 
the current two weeks.
Conclusions: The data show that at a landscape scale savanna 
trees have a less variable phenological cycle (within and 
between years) than grasses. Realistic biophysical models of 
savanna systems need to take this into account. Using climatic 
data to predict these dynamics is a feasible approach.

Keywords: Biophysical model; Combretum apiculatum; En-
vironmental predictor; MODIS; NDVI; Phenology.

Abbreviations: AVHRR = Advanced Very High Resolution 
Radiometer; MODIS = Moderate Resolution Imaging Spectro-
radiometer; NDVI = Normalized Difference Vegetation Index; 
PET = Potential evapotranspiration. 

Introduction

 The recognition of human-induced global climatic 
change has renewed scientific interest in the environ-
mental controls of vegetation dynamics – particularly the 
cues for leaf flush and leaf fall (Chase et al. 1996; Jolly 
et al. 2005; Menzel 2002). Small changes in temperature 
can result in large changes in the timing and duration of 
leaf display, which in turn, feed back to large changes 
in global CO2 cycles (Keeling et al. 1996; Myneni et al. 
1997). Reliable phenology models are therefore essential 
for predicting global change (Chase et al. 1996).
 Furthermore, the timing and duration of leaf display 
affect a range of ecosystem processes – from carbon, 
water and energy exchange to forage availability. A delay 
of a few weeks in the production of new leaves can make 
a difference to the survival and reproductive success of 
the herbivores that depend on them (Owen-Smith & 
Cooper 1989). Thus, climatic changes, by altering the 
length of the growing season, can have cascading effects 
on other ecosystem processes.
 Environmental cues of leaf phenology are well un-
derstood in temperate systems (Cannell & Smith 1983; 
Chuine & Cour 1999; Nizinski & Saugier 1988; Seiwa 
1999). Temperature and photoperiod (day length) control 
phenology in the high latitudes, but there are conflicting 
opinions on their importance in systems like tropical 
savannas where water, not temperature or light, is often 
the limiting factor for growth (Scholes & Walker 1993). 
Savannas cover about a sixth of the global land surface 
(Scholes & Hall 1996) and are second only to forests in 
their carbon fluxes and storage, so a robust understand-
ing of their phenology has implications for the global 
carbon cycle.
 Predicting savanna phenological patterns is compli-
cated for two reasons. Firstly, although water availability 
is identified as an important seasonal driver (Reich & 
Borchert 1984; Singh & Kushwaha 2005), it is difficult 
to measure at regional scales, and no phenology models 
have yet been developed that adequately incorporate soil 
moisture. Rainfall data and calculations of potential eva-
potranspiration (PET) both fall short – rainfall because 
it reflects only the input side of the water balance and 
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Fig. 1. Study site at the flux tower near 
Skukuza, in the Kruger park. The broad-
leafed Combretum and fine-leafed Acacia 
vegetation types (associated with sand 
and clay soils respectively) are distributed 
patchily through the landscape, according 
to the catenal sequence. The flux tower is 
placed at a transition between vegetation 
types (Scholes et al. 2001).

is an episodic rather than continuous variable, and PET 
because it is not known how much water is present to 
be evaporated.
 Unlike in temperate systems – where low winter 
temperatures pose a barrier to growth of most plant-types 
– in rainfall-driven systems there is the potential for a 
range of different strategies, depending on an organism’s 
ability to store/access water. Thus seasonal responses of 
savanna plant species are closely linked to their struc-
ture and function. Many tree species are known to put 
on leaves before the first rains of the season (Do et al. 
2004; Schackleton 1999; Milton 1989) whereas growth 
of grasses is always limited by water availability (Dye 
& Walker 1987; Prins 1988).
 Because trees and grasses have different seasonal pat-
terns of leaf display a generalised phenology model for 
savannas needs to incorporate both responses. The large-
scale, long term datasets provided by satellite imagery 
(Reed et al. 1994) are of little use in savannas unless it is 
possible to separate the contributions of these two main 
functional types to the landscape greenness.
 The problem of separating trees and grasses has not 
been adequately addressed in remote sensing studies 
of savannas. Jolly & Running (2004) ignored the grass 
component entirely, which resulted in over-prediction 
of early green-up in sites with a high grass cover. Chi-
dumayo (2001) assumed that tree and grass green-up 
times are distinctly separated – that before December, 
increases in the Normalised Difference Vegetation Index 
(NDVI) are due to tree leaf-out, and after December, due 
to grass growth. This is clearly not true: Van Rooyen et al. 
(1986a) report grass growth to begin as early as August 
in some years, while some trees only reached full leaf 
late in December.

 Describing soil moisture availability and separating 
tree and grass responses have been identified as the 
two main factors limiting our ability to model canopy 
dynamics in savanna systems (Jolly & Running 2004). 
This study attempts to resolve both of these issues. 
 Firstly, instead of using rainfall or PET as surrogates 
for water availability, a soil moisture model was devel-
oped, which was tested using a four year soil moisture 
dataset. The modelled soil moisture provides a realistic 
measure of water availability at a daily time-step over a 
40 year period.
 Secondly, ecological theory and data was used to 
separate tree and grass phenological patterns from a 
single remotely-sensed signal of greenness (NDVI). 
Trees have a much more deterministic pattern of growth: 
stored water reserves make them less dependent on the 
timing of rainfall than grasses and their maximum leaf 
area is limited by hydraulic and architectural constraints 
(Berninger et al. 1995; Woodward 1987). Our approach 
therefore involved quantifying the key characteristics of 
tree green-up, and using that to extract the more vari-
able grass response from a time-series of NDVI data at 
a site near Skukuza in the Kruger Park, South Africa. 
The environmental conditions associated with leaf flush 
of trees and grasses were then identified, and the results 
were tested on a 22 year NDVI time-series from the same 
site.
 This approach aims to use the great amount of facts 
that is known about savanna tree and grass ecology in 
order to add meaning to datasets that provide large-scale 
and long-term information. The ultimate goal is a predic-
tive model of tree and grass phenology that accurately 
represents the ecology of the system but is broad enough 
to apply at a regional level. 
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Material and Methods

Study area

 The Skukuza area of the Kruger National Park is 
a semi-arid savanna system (570 mm mean annual 
rainfall, 22ºC mean annual temperature). The 7 km × 7 
km landscape block for which regular MODIS imagery 
was collected is centred on a flux tower, 19 km WSW 
of Skukuza village (Fig. 1) which was set up in 2000 
(Scholes et al. 2001).
 The gently-rolling granite-based landscape is com-
posed of two main vegetation and soil associations: the 
soils on the ridge crests are sandy, and support a broad-
leafed savanna dominated by Combretum apiculatum. 
Some distance down the slope, a sharp transition, marked 
by a narrow seepline, to Acacia nigrescens-dominated 
fine-leafed savannas occurs. Sclerocarya birrea is a com-
mon tree on both soil types. There is a narrow strip of 
riparian vegetation associated with the N’waswitshaka 
river at the bottom of the slope.
 The flux tower is located on the boundary between 
the two vegetation types. Instruments on the tower 
measure a range of meteorological variables, as well as 
net ecosystem exchange of CO2, water and energy, at 
30 minute intervals. Soil probes measure soil water and 
temperature at four depths in the Combretum and five 
in the Acacia savanna.
 Daily weather data for the period 1960 to 2005 is 
available for Skukuza village from the South African 
Weather Bureau. The climate is characterised by a dry 
season which coincides with decreased winter tempera-
tures (April to November), and between-year variation 
in rainfall is high. In this it is typical of many tropical 
savanna systems. 

Data acquisition

Satellite data

 While Leaf Area Index (LAI) is the most accurate 
measure of the photosynthetic capacity of vegetation it is 
difficult to measure remotely, and there are no accurate 
LAI products yet available for savanna systems. The 
Normalised Difference Vegetation Index (NDVI) (Reed 
et al. 1994) is a good indicator of leaf area, especially in 
open systems like savannas where it never reaches satu-
ration values. Using NDVI as the measure of phenology 
also means long-term AVHRR datasets can be used to 
test results. 

Training dataset

 NDVI was calculated (near infrared-red)/(near infra-
red+red) from 16-day MODIS NBAR (MOD43B4) 
reflectance data for the Skukuza Flux site, obtained from 
the Oak Ridge National Laboratory ASCII subsets (www.
Modis.ornl.gov/Modis). This product is Bidirectional 
Reflectance Distribution Function (BRDF) corrected, 
and the algorithm excludes cloud-contaminated pixels. 
Only those data points classified as ‘good quality’ by the 
QA flag were used.
 The BRDF-adjusted dataset is a 16-day composite 
which is a rather coarse time-interval with which to study 
seasonal changes in phenology. However, year-to-year 
climatic variability at the site shifts the growing season 
by as much as three months, so even a 16-day resolution 
should be sensitive to the main cues. The MODIS bands 
used in calculating NDVI have a fundamental resolution 
of 250 m, but the spatial data resolution of the available 
product was 1 km. To further reduce variation, the 49 
pixels in the 7 km × 7 km study area were averaged to 
produce one value for each time step (see Kang et al. 
2003).
 This 5-year MODIS NDVI was used as a training 
dataset to find the environmental cues for green-up. 

Validation dataset

 A long-term 22-year NDVI dataset was used to test 
the predictive ability of the green-up cues. The Global 
Inventory Modelling and Mapping Studies (GIMMS) 
fifteen-day Advanced Very High Resolution Radiometer 
(AVHRR) NDVI data was used (Tucker et al. 2004). 
Because the data come from several different satellites 
in the NOAA series, there are problems with using 
AVHRR data for time-series comparisons (DeFries et 
al. 2000). The GIMMS data provide the best available 
corrections for calibration, view geometry, aerosols, 
and are corrected for sensor drift. The moving average 
method used to determine green-up date avoided some 
of the problems associated with sensor drift as it did not 
depend on minimum or maximum values. This method 
also meant that we could use data from two different 
sensors for training and validation without increasing 
potential error sources due to slight differences in NDVI 
between MODIS and AVHRR (Gallo et al. 2004).

High-resolution satellite data

 A 1 m resolution Ikonos image (available for the site 
through the Safari 2000 project) was used to quantify 
the percentage cover of tree, grass and bare ground in 
each 1000 m MODIS pixel in March 2002 (end of the 
growing season). 
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Table 1. Summary of environmental variables tested as potential green-up cues in a semi-arid savanna system in the Kruger National 
Park, South Africa. Temperature, soil water, and relative humidity variables were averaged to encompass the conditions over the 
2-week NDVI time step.

Environmental  Variable used 
factor in analysis Reference

Photoperiod Daylength Number of hours of sunlight. Found to be important in temperate systems, potentially important in savanna
     trees (Milton 1987; Van Rooyen et al. 1986b)
Temperature Tmin Minimum temperature. Possibly important in preventing growth during un-seasonal mid-winter rainfall events
     (Everson & Everson 1987; Leigh 1960)
 Tmax Maximum temperature — hypothesised as important in savanna tree green-up (Milton 1987; Rutherford & 
    Panagos 1982)
 15DayAvgMinT 15 day moving average
 15DayAvgMaxT 15 day moving average
 DegreeDay Cumulative average temperature (starting July 1). Found to be an important cue in temperate systems (Cannell 
    & Smith 1983; Chuine & Cour 1999)
Soil moisture Rainfall Daily rainfall. Affects soil moisture but not a good indication of water availability to plants on a daily level
 15DayAvgRain 15 day moving average
 CumRain Cumulative average rainfall (starting July 1). Suggested as a potential cue in savanna systems (Fuller 1999;
      Prins 1988)
 SM Soil moisture. Thought to be the driver of grass green-up (French 1974; Prins 1988). Potentially important for
     tree green-up (Borchert 1994; Childes 1989; Jolly & Running 2004; Prins 1988)
 15DayAvgSM 15 day moving average
Atmospheric 
  conditions RH Relative Humidity – found to be a predictor of tree green-up in Acacia tortilis in West Africa (Do et al. 2005).
 15DayAvgRH 15 day moving average

Soil moisture modelling

 A simple water-balance model was developed to 
provide a daily measure of soil moisture. Potential 
evapotranspiration was calculated from air temperature, 
humidity, wind-speed and radiation data using the Pen-
man-Monteith method. Daily rainfall and vegetation 
cover data (NDVI) were used as inputs in a four-layer 
bucket model calibrated to the soil properties at the 
site. This modelled data fit well with the available soil 
moisture data at the site.
 Using NDVI data as an input to the soil moisture 
model (one of the predictor variables), as well as the 
measure of LAI (dependent variable) is unavoidable as 
it is the only long-term measure of greenness available. 
However, there are several reasons why this should not 
invalidate the predictive power of the analysis:
• The relationship between NDVI and soil moisture in 

the model is non-linear, and mediated by numerous 
other independent factors.

• NDVI is used as an indication of the amount of 
transpiration that is occurring in the soil moisture 
model. Transpiration can only occur once vegetation 
has flushed. In this instance soil moisture is used as a 
predictor of vegetation flush, under conditions where 
there is no transpiration subroutine, and therefore, no 
circularity.

• Finally, the analysis was also run using the five years 
of available soil moisture data at the site with exactly 
the same results, indicating that the relationships 
found were real, and not artefacts of the NDVI data 
input.

 Environmental cues of leaf flush

 Daily meteorological data from Skukuza village was 
used to collate a dataset of all environmental conditions 
potentially affecting leaf phenology. Previous studies 
have identified temperature, day length, relative humid-
ity, and soil moisture as cues for leaf flush in savanna 
trees (Chidumayo 2001; Childes 1989; Do et al. 2005; 
Dye & Walker 1987; Jolly & Running 2004; Rutherford 
& Panagos 1982; Van Rooyen et al. 1986b). There is a lot 
of evidence that grass growth patterns are linked to water 
availability (Dye & Walker 1987; Prins 1988), but there 
could also be a temperature constraint (Leigh 1960).
 Cues found to be important in more temperate areas 
(Cannell & Smith 1983; Chuine & Cour 1999; Nizinski 
& Saugier 1988; Seiwa 1999) were also included. In 
total, eight factors were considered: day length, degree-
days (cumulative average temperature starting July 1), 
minimum temperature, maximum temperature, rainfall, 
cumulative rainfall, soil moisture, and relative humidity 
(Table 1).
 As the time step of the satellite data was two weeks, 
15 day averages for the relevant variables were also 
calculated, to see whether this improved the predictive 
capacity of the model.

Field data collection

 The pattern of tree green-up at the study site was 
monitored from September to January in 2005-2006 
using two methods.
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1. Eight trees of the four major species (Combretum api-
culatum, Sclerocarya birrea, Acacia nigrescens, and 
Acacia nilotica) were marked and photographed once 
a week. The amount of green leaves on each tree was 
classified as: 0 (no green leaves) 1 (a few green leaves) 
2 (some green leaves) 3 (half of the tree is green) 4 
(more than half of the tree is green) and 5 (in full leaf). 
These data were summed each week to give a green-up 
curve for the season.

2. Eight oblique photographs were taken from the top of the 
20 m flux tower each week. These were superimposed 
in image processing software and the greenness of each 
tree in the picture monitored using the same method as 
above. Trees were categorised as shrubs (< 2 m), small 
trees (2-6 m) or large trees (> 6 m). A green-up curve 
was produced for the entire landscape by multiplying 
the size of the tree by the greenness of the tree at each 
sampling date, and summing the values.

Data analysis

Extracting green-up dates

 Different methods for extracting green-up dates have 
been reported in the literature. White et al. (1997) used a 
seasonal time-course of AVHRR NDVI data, and defined 
the green-up date as the day of year when NDVI rose 
above a threshold of 0.5 of the maximum NDVI. Kang 
et al. (2003) expanded this technique using different 
green-up thresholds. Zhang et al. (2003) fitted a logistic 
function to each green-up period and looked for rates of 
maximum change in the derivative of the curve (local 
maxima in the second derivative).
 This analysis used a method modified from Reed 

Fig. 2. A five-year time series of MODIS NDVI data showing the method for determining green-up date. Unlike the more deterministic 
temperate and arctic vegetation types, the shape of the NDVI curve in tropical savannas varies greatly between years (2002/2003 
was a drought year). When the NDVI time series crosses a moving average of the previous four time steps, green-up is said to have 
occurred – indicated by arrows in the figure.

et al. (1994). A moving average of the previous four 
time steps was compared with the raw NDVI data. Tree 
green-up date was defined as the first date after July 1 
when the real-time NDVI value was greater than the 
moving average (Fig. 2). This method identifies times 
when the NDVI showed a sudden increase, a signal of 
the beginning of photosynthetic activity.
 For the Skukuza landscape and data this method is 
superior to other methods because it does not require the 
maximum and minimum NDVI values to be defined a 
priori. In savannas inter-annual variation in rainfall re-
sults in highly variable LAI between years. It is therefore 
not possible to determine a maximum or minimum value 
which applies for all years.
 Finally, the aim was not to isolate the period of most 
rapid change in NDVI (e.g. White et al. 1997) but the 
moment when green leaves first appear in the landscape. 
Reed et al. (1994) used a nine time-step moving aver-
age. However, in savannas many trees hold on to their 
leaves until late in the dry season, and the NDVI drops 
to its lowest value for only ca. 2 months. A shorter moving 
mean period of four time steps (2 months) was better able 
to represent the dry season values in the study system. 

Tree-grass separation

 In its simplest (linear) form a green-up curve can be 
defined by three variables: the date at which bud-burst 
occurs, the maximum LAI attained, and the time taken 
to get fully green. These values can easily be extracted 
from NDVI satellite data in homogeneous vegetation 
types. However, savannas consist of a quasi-continuous 
grass layer, overlaid by a discontinuous tree layer. The 
NDVI value recorded by the satellite at a spatial resolu-
tion of hundreds of metres is therefore a combination of 
the contributions by trees and grasses. It is not valid to 
use NDVI as a measure of leaf phenology in savannas 
unless its composite parts can be un-mixed.
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 There are various characteristic differences in the bi-
ology of trees and grasses that might make this possible: 
Grasses cannot start leaf expansion until there is water 
available in the soil, whereas many trees rely on water 
stored in the tree stem, or possibly very deep soil layers, 
to start greening up before the first rains (Borchert 1994, 
1999; Reich & Borchert 1984). Conversely, the leaf area 
that trees can support on a given stem in a single season 
is constrained by the cross sectional area and hydraulic 
conductivity of the sapwood and the number of active 
bud initials (Berninger et al. 1995; Woodward 1987). 
Grasses, on the other hand, can continue amassing leaf 
area until the self-shading limit is reached, because 
although each grass tiller has a limited leaf number, 
new tillers are easily produced throughout the season if 
conditions permit (O’Connor 1993). 
With this information, three basic assumptions about tree 
phenology can be made:

Fig. 3. Change in maximum growing season NDVI values 
between a very wet year (2004: MAR 760 mm) and a very dry 
year (2002: MAR 300 mm) shows a positive correlation with 
the percentage of grass in a plot. Extrapolating the fit back to 
0 percent grass (100 percent tree) gives a difference in NDVI 
of 0.07, but a 60% grass layer can result in variations in NDVI 
of almost 0.2 between years. This suggests that the grass layer 
is the major cause of variation between years.

Fig. 4. a. Theoretical contributions of trees and grass to total landscape LAI over a growing season. Trees go green earlier, and stay 
green for longer, but grasses have a higher LAI at the height of the growing season. b. Schematic showing how to extract the tree 
green-up curve from satellite NDVI data. The parameters required to derive a tree phenology curve are: (1) tree green-up date (the 
first sign of increased NDVI in spring); (2)  the maximum greenness trees can attain in the landscape (calculated from the percentage 
of tree cover) and (3)  the time taken to get from green-up to full leaf (green-up rate – observed from field data).

• The first greening signal shown by the NDVI data is 
due to tree leaf flush. This is a reasonable assumption 
except in very unusual years when rainfall occurs 2-3 
months earlier than usual (this happened only twice in 
the 46 year rainfall record available).
• Maximum tree greenness values are constant between 
years. A regression of variance in maximum NDVI 
against percentage tree cover (Fig. 3) shows that most of 
the variation in greenness between years is contributed 
by the grass layer (Scanlon et al. 2002). Field measure-
ments of NDVI for individual trees in full leaf, combined 
with information on the percentage cover of trees at the 
site can therefore be used to calculate the maximum 
NDVI contributed by trees (see App. 1), and this can be 
considered to be constant between years. 
• Tree green-up rates are constant between years. A 
10-year dataset of tree phenology records from Nylsvlei 
Nature reserve corroborate this assumption (unpubl. data, 
Scholes & Walker 1993). What is not known is whether 
tree green-up rates are similar between sites, so field data 
was used to determine the green-up rate for trees at the 
Skukuza site.
 Thus the three key green-up variables for the tree layer 
at the Skukuza site were identified: green-up date (directly 
from the satellite data), maximum greenness (measured 
values of tree NDVI modified by the percentage tree cover 
in a pixel), and green-up rate (quantified from data collected 
at the site during 2005). The green-up curve for grass could 
then be backed out of the NDVI data by subtracting the 
contribution of the tree layer (see Fig. 4). 
 Because of the multiple scattering of radiances within 
a multi-layered plant cover one should be cautious in us-
ing linear un-mixing to extract the different components 
of NDVI signals (Huete 1986; Myneni et al. 1995). 
However, one can approximate green-up dynamics by 
assuming that the total NDVI of a landscape is made up 
of the fractional NDVI sum of the of various cover types: 
trees, grass, and bare ground – because the overall leaf 
area is relatively low, as is the tree cover percentage. 
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Determining environmental cues

 Rather than looking for general correlations between 
NDVI and environmental data (e.g. Chidumayo 2001; Do 
et al. 2005) the aims of this research were more specific: 
first to identify the green-up date for trees and grasses 
and discover whether these were clearly associated with 
an environmental factor which could then be assumed 
to be a green-up cue. Second, to see how accurately this 
identified cue could predict green-up in a different NDVI 
dataset. 
 A classification tree approach was used to isolate the 
conditions necessary for green-up. A classification (or 
decision) tree is a non-parametric procedure that uses 
hierarchical decision-making to predict the occurrence 
of a certain condition based on the values of various 
predictor variables (Breiman et al. 1984; Anon. 2005). 
In this instance the procedure systematically searches for 
values of the predictor variables, which would separate 
‘green-up’ from ‘non green-up’. 
 Environmental conditions on all dates prior to and 
including green-up date were used as inputs, and each 
date was classified as 1 (green-up) or 0 (no green-up). 
 The classification method used was a Classification 
and Regression Trees (C&RT-style) exhaustive search 
for univariate splits (Anon. 2005). Fact-style directive 
stopping was used (Loh & Vanichestakul 1988), and 
the classification stopped when < 0.01 of the sample 
was misclassified. The probability of a green-up event 
was determined from the proportion of 1’s and 0’s in the 
dataset (i.e. about 1:10).

Table 2. Green-up statistics for the three main species at the Skukuza study site. Photographs of about eight individuals of each 
species were taken once a week over the 2005/6 growing season and classified on a scale of 0 (no leaves) to 5 (full leaf).
                                 Green-up date                                 Green-up time (weeks) 
 average std dev average std dev n

Sclerocarya birrea 15 Oct 2005 3 days 8.4 0.5 7
Acacia nigrescens 22 Oct 2005 17 days 7.9 2.1 9
Combretum apiculatum 11 Nov 2005 10 days 5.6 1.6 8

Results

Measured green-up characteristics of the tree layer

 The first significant rains in the 2005-2006 growing 
season (86 mm overnight) fell on November 5. All tree 
species monitored at the site had already started to put 
on leaves before this date, except for Combretum api-
culatum and C. zeyheri which started greening up at the 
same time as the grasses (16 November); see Fig. 5.
 Species varied in their dates of bud-burst and reach-
ing full leaf-out (Table 2). Trees such as Combretum 
apiculatum that started greening later in the season took a 
shorter time to get to full leaf than the early flushers, e.g. 
Acacia nigrescens. A regression of green-up date against 
green-up time had an r2 of 0.87 (P < 0.01; n = 24). Thus, 
despite differences in leaf out date, most trees reached 
full leaf at about the same date (16 December).
 It took 8 weeks from the date the first trees started 
leafing until all trees in the landscape were in full leaf. 
(Rutherford & Panagos 1982), in a similar savanna 
system, also found a tree green-up period of 8 weeks.
 Although the green-up curve for each species was 
functionally linear (Fig. 5), inter-species differences in 
date of first green-up meant that the tree layer overall 
displayed a sigmoidal green-up curve. Therefore the 
proportion of late-greening species like Combretum 
apiculatum in a landscape is likely to affect the shape 
of the green-up curve. The analysis in this paper used a 
linear simplification to describe the green-up curve, but 
this could be modified to fit the data more precisely.

Fig. 5. Showing tree green-up pattern over the 2005 rainfall year at the Skukuza flux site. Although varying in dates when green-up 
started, all species were fully green by mid December. Data were extracted from weekly photographs taken at the site. A. Landscape 
analysis (aerial photographs); B. species-specific analysis (individual photographs of the three dominant species). 
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Fig. 6. Tree and Grass green-up curves for each year of the MODIS NDVI dataset. The tree green-up curve was extracted from 
the raw data using field observations of green-up rates and theoretical computation of maximum greenness values for trees in the 
landscape. This was then subtracted from the total landscape NDVI to obtain the grass curve. In 2002 there was a drought, and very 
little grass growth occurred.

Green-up date

 The moving average algorithm identified the first 
greening signal in the NDVI data to occur consistently 
between the 29.09 and 16.10 (17 days – Table 3). Con-
sidering that the time step of observation was 16 days 
this represents a remarkable regularity in the timing of 
leaf flush for savanna trees at the site. Where field data 
was available (2005), it corroborated the tree green-up 
date identified from the NDVI signal (Fig. 5).
 The tree green-up curve was then defined using meth-
ods described above, which allowed the grass green-up 
curve to be extracted from the NDVI signal (Fig. 6). 
 The moving average algorithm was re-run to deter-
mine the grass green-up date. This data was much more 
variable between years – as would be expected from a 
life form that depends on rainfall for growth. The earliest 
grass green-up date identified was October 31 and the 
latest January 17 — a range of 78 days, or nearly three 
months (Table 3).

Environmental cues for green-up

 A classification tree procedure was used to see 
whether the green-up dates identified with the NDVI 
time series could be predicted from environmental data. 
The 6 year MODIS time series was used as training data, 
and the 22-year GIMMS time series was used as testing 
data for the classification tree.

Table 3. Green-up dates for trees and grasses at Skukuza – cal-
culated from NDVI data by extracting the tree green-up curve 
from the raw data and running the green-up algorithm on the 
remaining data to find the grass green-up date. Grasses vary 
more than trees do in the timing of green-up between years.

 Tree green-up  Grass green-up
Year Date Day of year Date Day of year

2000 29.09.2000 91 31.10.2000 123
2001 30.09.2001 92 17.11.2001 140
2002 16.10.2002 108 19.12.2003 172
2003 16.10.2003 108 17.01.2004 201
2004 29.09.2004 91 16.11.2004 139
2005 16.10.2005 108 17.11.2005 140
    
Average 07.10 100 30.11 153
Range 17 days  78 days
SD 9 days  29 days

Developing a predictive model

 The classification tree identified a mean soil moisture 
> 0.09 cm3/cm3 to be the threshold above which grass 
green-up will occur. This method correctly classified 
all six grass green-up events in the 6-year MODIS time 
series and falsely identified four green-up events. (N 
= 60, prior probabilities estimated from data, analysis 
stopped when < 0.5 % of sample was misclassified). 
 Day length was the most important predictor of tree 
green-up. A threshold day length of greater than 12.1 
hours correctly identified all tree green-up events, but 
also generated three false green-up events (N = 43, prior 
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Fig. 7. Frequency distribution of green-up dates predicted for 
the GIMMS time series using classification trees developed 
from the MODIS time series (y-axis shows number of green-
up events); 16 out of 22 (73%) of the predicted grass green-up 
events were within two time steps (one month) of the green-up 
date determined from satellite imagery; 19 out of 22 (86%) of 
the predicted tree green-up events were within two time steps 
(one month) of the date determined from satellite imagery. In 
the drought years of 1982 and 1991 the soil moisture data did 
not predict a green-up event for grass, and this is likely to be 
more realistic than the green-up algorithm, which always finds 
a green-up date each year.

Table 4. A. Importance values of each environmental factor 
determined from a classification tree run in STATISTICA 
software (Anon. 2005). It reflects how well each predictor 
performs in simplifying the tree into homogeneous groups 
and is calculated by summing the drop in node impurity for all 
nodes in the tree. Importance is a relative measure: the value 
of each predictor is scaled relative to the value of the predictor 
which decreases the impurity the most (which is given a value 
of 100). It is possible for a predictor to have a high importance 
value while not appearing in the final classification tree, as is 
the case with relative humidity in our analysis.  B. Correlation 
matrix showing which variables co-vary. Significant correla-
tions marked in bold. See Table 1 for abbreviations.

A. Tree green-up  Grass green-up

DayLength 100  83
Tmin 56  72
Tmax 68  13
15DayAvgMinT 79  66
15DayAvgMaxT 66  40
DegreeDay 79  35
Rainfall 16  63
15DayAvgRain 30  88
CumRain 34  33
SM 43  74
15DayAvgSM 38  97
RH 41  97
15DayAvgRH 32  100

B. DayLength Tmax Tmin Rainfall RH SM

DayLength — 0.44 0.68 0.19 0.04 0.09
Tmax  — 0.09 0.00 –0.63 –0.13
Tmin   — 0.20 0.49 0.21
Rainfall    — 0.24 0.35
RH     — 0.35
SM  

probabilities estimated from data, 0.5% misclassification 
threshold). 
 Importance values of the different environmental 
variables (Table 4) show the differences between the 
two life forms. Day length clearly emerges as the most 
important factor for tree green-up, followed by various 
indicators of temperature. Rainfall and soil moisture 
indicators were not important for tree green-up. Soil 
moisture and relative humidity were most important for 
grass green-up, followed by day length.
 Many environmental factors co-vary, and one would 
expect them to have similar importance values. Day 
length and temperature are an example. Interestingly, 
although it was not included in the final classification 
tree, relative humidity came out as the most important 
predictor for grass green-up. Relative humidity and soil 
moisture are significantly correlated (Table 4B).

Testing the model

 When the classification trees were applied to the 
22-year GIMMS time series, 73% of the grass green-up 
events were predicted to within 1 month (2 time steps) 
and 6 were predicted exactly (Fig. 7). The prediction 
was out by more than 2 months only 3 times in the 22 
years. Two of these were in severe drought years (1982 
and 1991), where no green-up for grass was predicted 
from environmental data at all. In these cases, it is likely 
the un-mixing of the satellite data is in error, and that in 
fact there was no grass green-up (Walker et al. 1987). 
 Tree green-up was exactly predicted four out of 22 
times in the GIMMS data. Thirteen of the 22 times the 
prediction was within one time step (15 days) of the satel-
lite-observed green-up, and 86% (19/22) of the predicted 
green-ups were within a month of the observed date (Fig. 
7). The outliers were three very early (August) green-ups 
in 1984, 1987, and 1990. In these years there were early 
rains, and soil moisture values rose above 0.09 cm3/cm3 in 
August. Therefore grasses could have been responsible 
for the first green-up seen in the data, which would have 
invalidated the analysis technique used which always 
assumes trees green-up first. 

Discussion

 This analysis shows, and other research has suggested, 
that trees and grasses in savanna systems have different 
seasonal leaf area dynamics, controlled by different 
environmental cues. Despite the coarse temporal reso-
lution of the satellite time series, clear patterns emerge 
from the long-term data, and the environmental cues 
identified were 70-80 % correct in identifying green-up 
to within two time steps of the observed date. If higher 



592 Archibald, S.  &  Scholes, R.J.

time-resolution data were available, they would in all 
probability improve this predictive power.
 In this analysis, day length was the best predictor of 
initial tree green-up, as suggested by the small variation 
between years in the date of first leaf flush (Table 3). 
Considering the risks of early or late bud-break in rela-
tion to the high variability in the onset of good growing 
conditions in savanna systems, the results are slightly 
surprising: plants such as trees, which are able to store 
water and carbohydrate reserves, can have deterministic 
phenological cycles even in these highly variable biomes, 
and apparently there is a selective advantage in doing 
so. Grasses are much more dependent on rainfall for 
their seasonal growth patterns and are the main source 
of the large variation between years in NDVI signals in 
savannas (Scanlon et al. 2002). When the grasses start to 
grow, the slope of the NDVI curve increases dramatically. 
The un-mixing analysis was able to pick up the start of this 
period of rapid grass leaf expansion (Fig. 6), and this date 
varies greatly between years. 
 The noisy NDVI signal in savanna systems is therefore 
hiding two important dates for savanna green-up: the date 
when the first trees start putting on leaves, and the timing of 
the rapid increase in NDVI when the grasses start growing. 
Methods for analysing greening patterns in these systems 
must be able to extract both values.
 Satellite-based phenology studies cannot have a 
mechanistic basis – there is no proof that environmental 
cues identified are related to the physiological controls 
on leaf flush. Results presented here support the general 
consensus in the literature that soil moisture controls 
the timing of grass growth (French & Sauer 1974; Pitt 
& Wikeem 1990; Prins 1988). However, it is likely that 
another phenological control prevents grasses from 
greening up during unseasonable wet periods in the mid-
dle of winter. Day length was the second most important 
predictor of grass green-up identified by the classification 
tree. Because day length and temperature are correlated 
(Table 4B), the causal factor behind this cue could also 
be temperature.
 Temperature limitations on grass growth have been 
found in field and laboratory experiments (Everson & 
Everson 1987; Leigh 1960), but at the Skukuza study 
site temperatures might never fall low enough to prevent 
grass growth (mean minimum temperature in June is 5.6 
°C).
 Similarly, the results presented here do not conclu-
sively show whether trees that flush before the first rains 
are cued by day length, temperature, or some co-varying 
factor like relative humidity. Performing this analysis at a 
regional scale could help to separate the roles played by 
temperature and day length; for instance by comparing 
green-up dates at sites on the same latitude, but higher 
elevations.

 Tropical trees have been shown to display a range of 
different strategies for dealing with their seasonally-arid 
and highly variable environment (Singh & Kushwaha 
2005). Thus evergreen, deciduous, semi-deciduous, and 
facultatively deciduous trees can be found in the same 
plant community (Borchert 1999). Moreover, it is likely 
that tree size, soil type, and landscape position affect the 
timing of green-up for individual trees (Novellie 1989; 
Seiwa 1999; Shackleton 1999). This poses a challenge for 
landscape level descriptions of phenology, which cannot 
represent the growth patterns of each individual.
While our observational data showed variation between 
individuals and between species in green-up dates and 
green-up rates (Fig. 5) it was possible to define a gener-
alised green-up curve for the tree community at the site. 
Further studies might choose to split the tree layer into 
two functional types – those cued by soil moisture and 
those cued by day length.

Savanna phenology and global change

 Organisms adapted to the variability displayed in sa-
vanna systems might be expected to adapt well to further 
rapid changes associated with global change. However, 
our results show that for many tree species in this system, 
green-up is uncoupled from water – the main limiting re-
source. They therefore run the risk of allocating resources 
to green leaves in an environment where they will not be 
able to support them. If rains are late, early flushing trees 
reportedly drop their first leaves, and re-flush after the 
first rain (Owen-Smith pers. obs.; Do et al. 2005). It is 
not known how often this happens in different savanna 
environments, and what the costs are to a tree (research 
in temperate tree species shows that they are able to re-
grow their entire leaf area twice before using up their 
stored reserves (Kaitaniemi et al 1999). 
 At Skukuza trees always flush in mid-October. The 
probability of having had good rains within two months 
(by the middle of December) can be calculated using the 
46 year rainfall record; 98% of the years had received 
more than 50 mm of rain by 15.12, and 83 % had received 
more than 100 mm. Under Skukuza’s current rainfall 
regime, therefore, the risks of early flushing do not seem 
too great. Productive future research would involve de-
termining the energetic costs of failed green-up events, 
and their probability in different savanna environments 
and climate change scenarios. 
 The early flushing of savanna trees has been explained 
as a strategy to make the most out of the pulse of nutrients 
that is released in these systems with the onset of the first 
rains (Scholes & Walker 1993). Compared with grasses, 
which still need to amass leaf material, early-flushing 
trees are ready to start photosynthesising the moment 
conditions become suitable. Other explanations involve 
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extending of the growing season (Fuller 1999). However, 
preliminary sap flow data from the site suggests that very 
little photosynthesis occurs in these trees before the first 
rains (M. Gush unpubl. data). 
 At a system level, the fact that the phenology of many 
tree species is uncoupled from the key environmental 
driver could make the ecosystem more resilient. Early 
flushing trees have been shown to be vital for the nu-
tritional ecology of kudu in a southern African savanna 
(Owen-Smith & Cooper 1989). These new leaves were 
the major source of food for these browsers (and prob-
ably most other browsers) at the end of the dry season, 
a time when all herbivores are struggling to fulfil their 
metabolic requirements. Even grazers probably make use 
of the new leaves offered by trees at this time of year 
(Botha & Stock 2005). The deterministic pattern of leaf 
flush shown by tree species means herbivores are assured 
of a food source in all years, and could buffer the system 
from the effects of variable, or changing climates. 

Conclusion

 This paper has demonstrated that it is possible to use 
satellite imagery to describe tree and grass phenologies, 
and that historical patterns of leaf flush can be predicted 
using climatic data. Due to the covariance of several of 
the predictors, more information on the causal mecha-
nisms involved is needed before confident predictions 
about long-term future patterns can be made. Ongoing 
work at this site involves reaching a similar level of 
understanding regarding the prediction of leaf-fall in 
trees and grasses with the aim of developing a regional 
phenology model.
 Resolving some of the questions raised in this paper 
requires repetition of this analysis at a regional scale, as 
well as large-scale phenology networks within African 
savanna systems. Including three different functional types 
– grasses, early-flushing tree species, and soil-moisture-
induced tree species – might also improve the accuracy of 
the model, but using satellite data with a finer temporal 
resolution is likely to make more of a difference. 
 Biophysical models that ignore the differences in 
tree and grass leaf dynamics are unlikely to be reliable 
in savanna systems.
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