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1 INTRODUCTION 

Precipitation is probably the most important component of a mixture of 
hydrologic cycle parameters (precipitation, soil moisture, evapotranspiration, 
runoff, etc.), mostly accountable for shaping the climatic state of water in 
the earth stores, its variability, and climatic trends. Understanding the inter-
actions and feedback between precipitation and land surface processes is key 

scale to regional and climate. Unfortunately, precipitation simulated by 
global climate models is not sufficiently accurate for directly forcing surface 
energy and water budgets in coupled land–atmosphere data assimilation 
systems. This uncertainty has an effect on the study of interactions between 
land surface process and atmospheric convection. A perceived solution is the 
use of radiation budget and precipitation estimates from ground and/or 
space-based sensors to force off-line land data assimilation systems (LDAS). 
In a recent report, Mitchell et al. (1999) emphasized on the viability of the 
land surface alternative to coupled systems. This approach uses uncoupled 
physically based LDAS systems (Koster and Suarez 1996; Liang et al. 1996; 
Mitchell et al. 2000) driven by surface forcing anchored by independent 
observation-based precipitation and radiation budget fields. 
     A critical aspect associated with such an approach is the need to resolve the 
precipitation variability over large regions with high temporal (of the order 
of 1–3 h) and spatial (0.05! " 0.25!) resolution. Precipitation estimates over 
large regions (in particular over the tropical convective zones) are primarily 
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to advancing the predictability of the water cycle at scales varying from meso-
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available from microwave (MW) and infrared (IR) sensor observations 
onboard earth-orbiting and geostationary satellite platforms, respectively. 
Overland MW channels measure the emission and scattering by precipitating 
ice and hydrometers, which is physically related to the water content, and 
indirectly to surface rainfall rate. The IR channel measures the thermal 
radiation emitted by clouds (or the surface) that is related to the temperature 
of the emitting media (cloud tops). As a consequence, cold clouds are 
assumed to have large vertical extent and be associated with precipitation 
beneath. Although, MW channels are associated with more definitive 
precipitation estimates than IR, observations from earth-orbiting satellites 

observations per day counting all available satellite platforms). Consequently, 
there has been significant effort to bridge those gaps estimating precipitation 
from proxy parameters inferred from the half-hourly geostationary IR 
observations (e.g., Anagnostou et al. 1999; Adler et al. 2000). 
     Improvement of geosynchronous satellite precipitation retrievals through 
regional calibration by the use of MW rain estimates, and by combining 
estimates from multiple sensors is currently approached in a number of 
studies (Hsu et al. 1999; Todd et al. 2001; Huffman et al. 2003). A common 
observation from these studies is that MW-calibrated IR-based rain retrievals 
are limited in terms of their ability to sufficiently characterize the surface 
rainfall variability. This is due to the weak physical relationship of IR 
measurement to convective rain processes. For example, Todd et al. (2001) 
showed 0.3 correlations and 350% standard error at high spatial (0.1 degree) 
and temporal (hourly) resolution in comparison with radar data. At coarser 
scale (1-degree daily) the same data comparison demonstrated a reduction of 
standard error to 90%. 
     To improve upon this limitation recent studies have combined hourly IR 
rain retrievals with the infrequent passive MW estimates using data fusion 
approaches (see papers in Section 4 of this book). It is not well understood, 
though, how to optimally combine rain products of different resolutions, 
sampling frequencies, and retrieval error characteristics. For example, which 

quent MW retrieval that is closer related to precipitation or a 6-hourly rain 
average from frequent IR observations but indirectly related to rainfall? A 
merging of estimates that is followed by spatial and temporal aggregation 
would most likely correspond to the best estimate. Given, though, the large 
influence that sampling and retrieval error characteristics have on the 
merged product, a definitive answer about data fusion cannot be obtained 
without proper error investigation studies. 
     The impact of satellite rain estimation error on the simulation of 
hydrological variables (else known as error propagation) has not been well 
investigated. Hossain and Anagnostou (2004) and Hossain et al. (2004) 
 

carrying MW sensors offer intermittent coverage (currently this is about six 

is better representative for a 3-hourly/0.5-degree grid rain estimate: an infre-
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 recently studied the adequacy of current satellite rain retrievals in terms of 
flood prediction for medium-sized watersheds. An earlier study by Nijssen 
and Lettenmaier (2003) examined the effect of precipitation error due to 
satellite sampling alone on the simulation of runoff and other hydrological 
variables derived from a macroscale hydrological model. Although, these 
studies offered valuable information on the hydrological error characteristics 
of satellite retrievals they are based on stochastic error models with limited 
representation of the true estimation error characteristics. There is a clear 
need to further our understanding on this issue on the basis of experimental 
investigations that would use actual satellite rain retrieval data and 
hydrologic models. 
     In this paper, we present such an experimental framework aimed at 
evaluating hydrologic relevant rain retrieval merging techniques. The frame-
work includes a physically based land surface model (LSM) implemented in a 
data-rich region, and uses satellite rain retrievals from MW and IR 
observations. The selected region for this experiment is an area covered by 
the Oklahoma hydrometeorological station network (MESONET). The area 
is under the coverage of the National Weather Service Weather Surveillance 
Radar (WSR-88D) network, and of an array of MW satellites (TRMM, 
SSM/I). The community land surface model (CLSM) (Bonan et al. 2002) 
was used in this study. It was forced by radiation and meteorological (winds, 
temperature, and relative humidity) field data measured by the Oklahoma 
MESONET. High-resolution (hourly at 4 " 4 km2) rain gauge-calibrated 
radar (WSR-88D) rainfall fields were used as ground reference of 
precipitation (Fulton et al. 1998). This experimental framework was the 
basis for assessing two satellite rain retrieval schemes and evaluating their 
error structure in the prediction of hydrological and other land surface 
parameters. We will argue that limiting the evaluation of rain retrievals at the 
level of rain rate estimation error is not sufficient to identify retrieval 
techniques that are optimal in terms of other hydrological variables (e.g., 
runoff, soil moisture). The propagation of rain estimation error charac-
teristics to the various hydrologic variables is complex and highly nonlinear, 
which calls for integrated error studies in rain estimation land surface 
modeling. 
     In the subsequent sections we present a short description of CLM followed 
by the study area and data. We will then describe the satellite rain retrievals 
and present the simulation experiment where we evaluated the error statistics 
in the estimated rainfall and land surface hydrological variables. We close 
with a summary of our findings, and suggestions on the research direction 
for developing hydrologic relevant satellite rain retrievals. 
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2 THE LAND SURFACE MODEL 

The CLM is devised in this study to simulate land surface parameters. It is a 

IAP94 LSM. CLM has one vegetation layer as in most LSMs, ten unevenly 
spaced vertical soil layers with variable hydraulic conductivity, and up to 
five snow layers depending on the total snow depth. The surface grid cell 
can be subdivided into a number of tiles that consist of a single type of land 
cover. The model performs the water and energy balance calculations over 
each tile at every time step. Most surface processes such as evaporation from 
the ground, transpiration from the plants root zone, soil and snow water 
propagation, leaf temperature and fluxes, soil and snow temperature, and 
phase change are parameterized through physical–empirical equations. Never-
theless, the parameterization of runoff-related processes in soil–vegetation–
atmosphere interaction is not well formulated, which is perhaps one of the 
weak points of CLM. The runoff parameterization is based on TOPMODEL 
(Beven and Kirkby 1979) concept, while river routing model is not included. 
With externally forcing data (precipitation, radiation, wind speed, air 
temperature, and humidity) CLM computes a number of prognostic variables 
that include runoff, soil moisture, temperature in the soil layer, water 
intercepted on the canopy, leaf temperature, latent heat flux, and sensible 
heat flux. 

3 STUDY AREA AND DATA 

The study region covers two 1-degree grid areas in Oklahoma associated 
with distinct vegetation cover. The center of the lowly vegetated 1-degree 
site (hereafter named Lveg) is at 34.6861N latitude and –99.8339W longitude; 
and it includes five MESONET stations. The dominant vegetation type is 
non-arctic grass (type 13 in CLM), while the soil sand and clay percentages 
are 47% and 19%, respectively. The average value of leaf area index (LAI) 
for this site in June is 1.3. The center of the highly vegetated 1-degree site 
(hereafter named Hveg) is 35.4360N latitude and –94.7740W longitude; it 
also includes five MESONET stations. The dominant vegetation type for 
Hveg is broadleaf deciduous temperate tree (type 7 in CLM), while the soil 
sand and clay percentages are 54% and 23%, respectively. The average value 
of LAI for this site in June is 5.3. 
     Two types of data are needed to run CLM: land surface data, and hydro-
meteorological forcing data. The land surface data that include vegetation 
cover type, vegetation fraction, monthly leaf and stem area index, canopy top 
and bottom heights, and soil texture and color are available in CLM global 

(1996) LSM, which was modified to incorporate the best features of the Dickson 
et al. (1986) Biosphere–Atmosphere Transfer scheme and the Dai et al. (1997) 

column (one-dimensional [1D]) model developed on the basis of the Bonan 
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database and considered along with the model parameterizations as true 
representations of the land surface processes. Those data are available at 1-km 
spatial resolution and were mostly derived from space-borne remote-sensing 
observations such as the IGBP DISCover data set (Loveland et al. 2000), 
University of Maryland tree cover data set (DeFries et al. 2000a,b), advanced 
Very High Resolution Radiometer (AVHRR), and the IGBP soil data set 
(Global soil Data task, 2000). The hydrometeorological data include grid-
averaged values of (1) meteorological measurements from the MESONET 
stations (Brock et al. 1995); and (2) rainfall rates from WSR-88D. The radar 
rainfall fields are extracted from the National Radar Rainfall Mosaic available 
at the Hydrologic Rainfall Analysis Product (HRAP) ~4-km resolution (Fulton 
et al. 1998). These estimates have been corrected for a number of radar error 
sources including mean field bias based on a scheme that uses hourly area-
averaged rain gauge-to-radar rainfall ratios (Seo et al. 1999, 2000). The WSR-
88D rain estimates are used here as the reference ground rainfall data set, 
against which we will assess the rainfall fields derived from the satellite 
retrievals. The experimental data span a period from 1 January to 30 
September  2002. 

4 SATELLITE RAINFALL ESTIMATES 

Two satellite rain retrieval schemes are evaluated in this study. The first is 
based on MW-calibrated IR rain estimates, while the second on a merging of 
those estimates with instantaneous precipitation fields derived from TRMM 
Microwave Imager and three Special Sensor Microwave/Imager (F13, F14, 
and F-15) passive MW observations on the basis of Grecu and Anagnostou 
(2001) overland algorithm. The IR rain retrieval is part of a variable rainfall 
product (VAR) array produced in real time at NASA Goddard Space Flight 
Center by Huffman et al. (2003), and is referred to as 3B41RT product 
(ftp://aeolus.nascom.nasa.gov). The VAR retrieval incorporates the NOAA 
Climate Prediction Center half-hourly Global IR composites (Janowiak et al. 
2000) aggregated to 0.25-degree spatial grid resolution and hourly accumu-
lations. The technique uses coincidental IR observations with MW rain 
retrievals from TMI and SSM/I observations to dynamically (on a month-to-
month basis) calibrate the IR rain algorithm at discrete 5-degree grid areas. 
The calibration is based on matching the probability density histograms of IR 
brightness temperatures and MW rain rates falling within a common data set. 
     The second technique is a merging MW/IR scheme. The scheme 
identifies for every hourly IR rainfall value at 0.25-degree pixel resolution 
all available instantaneous MW estimates that are within a #6 h time 
window. The following approach is then used to merge the MW and IR rain 
values for any given pixel: 
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$ If MW > 0 and IR > 0: the merged value is based on an error 

$ 
$ If MW > 0 and IR = 0 or MW = 0 and IR > 0: the rain/no-rain 

decision is made according to the sensor with the highest rain 

 
The error variance and HSS statistics for MW and IR rain retrievals were 
evaluated using as reference matched hourly WSR-88D rainfall fields. Table 
1 shows those statistics. Note a deviation in the rainfall error statistics 
between the SSM/I and TMI MW sensors. The MW error statistics were 
augmented by a representativeness error term used to account for the large 
time lags between a MW overpass and a certain hourly rain estimate. For 
this purpose we used hourly radar rainfall fields to determine the error 
variance and rain detection HSS score as function of time lag. The error 
statistics are shown in Fig. 1. 
 

 
Figure 1. Representativeness error variance (left) and HSS score (right) presented as function 
of time lag. 
 

Table 1. Error variance and HSS of MW and IR rainfall estimates. 
 

 MW (TMI) MW (SSM/I) IR 
Variance 0.65 0.8 1.65 
HSS 0.41 0.37 0.1 

5 SIMULATION EXPERIMENT AND RESULTS 

As mentioned in the Introduction, this study aims at studying the effect of 
rainfall retrieval error on the simulation of land surface parameters assuming  
 
 

variance-weighted averaging. 
If MW = 0 and IR = 0: the merged value is zero. 

detection Heidke skill score (HSS) (Heidke 1926). 
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that our knowledge of the physical processes and other input parameters is 
accurate. The CLM, which provides a physically based framework for land 
surface processes, is used to model the 1D grid-averaged processes at two 
distinct, in terms of vegetation cover, sites. Three simulation scenarios are 
considered where CLM is forced with the three different rainfall data sets 

(January to April) the grid-averaged radar rainfall was commonly used as 
input to the model. The other meteorological forcing parameters such as 
radiation budget, air temperature, wind speed, and relative humidity were 
based on grid-averaged MESONET measurements, which were considered 
to be associated with insignificant error. Consequently, the only source that 
would differentiate the predicted land surface variables among the three 
simulation scenarios is the differing precipitation input. This difference is 
defined in relative terms as following: 
 

ref

ref

x
x

V V
V

% &
'      (1) 

 
V is used to symbolize the different hydrologic variables (including 
precipitation). Subscript “x” refers to the variables predicted from satellite IR 
or merged rain estimates and subscript “ref” refers to variables predicted on 
the basis of grid-averaged rain gauge-calibrated radar rainfall. The land 
surface variables evaluated in this study are: latent heat flux (LE), sensible 
heat flux (SH), surface runoff (Roff), soil moisture content at 21 cm depth 
( S( ), and soil temperature at 21 cm depth ( T( ). 
     In Table 2 we summarize the relative error (%) statistics (mean and standard 
deviation [STD]) of the two satellite retrievals in terms of precipitation and 
CLM-predicted variables. The statistics are presented for three spatial scales 
(0.25, 0.5, and 1 degree) and the two vegetation regimes (Hveg and Lveg). A 
first general observation is that the merged rain retrieval is associated with 
less bias and error variance in all predicted variables compared to the IR rain 
retrieval. In terms of bias (or mean error) we note an almost 250% increase 
between low (Lveg) and high (Hveg) vegetation sites for the IR retrieval, while 
the corresponding increase in the case of merged rain estimates is moderate 
(~80%). An interesting observation for the IR retrieval is that the rain 
estimation bias magnifies significantly in runoff prediction (~3 times) in the 
case of Lveg, while the corresponding runoff-to-rainfall bias ratio for the 
merged rain retrieval is almost one. In the case of Hveg site the runoff bias  

(radar, IR, and merged MW/IR). During the spin-up period of the model 
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Table 2. Error statistics (bias and STD) of rainfall and CLM-predicted variables derived from 
the simulation experiment. 

 
Mean error (bias) STD 

  0.25! 0.5! 1.0! 0.25! 0.5! 1.0! 
Lveg P 60 (26) 60 (26) 60 (26) 124 

(113) 
129 

(113) 
130 

(109) 
 LE 34 (19) 31 (18) 32 (18) 76 (69) 74 (67) 68 (60) 
 SH –26 (–15) –25 (–14) –27 (–16) 35 (30) 34 (30) 32 (27) 
 Roff 115 (37) 115 (35) 116 (30) 187 

(144) 
213 

(148) 
232 

(146) 
 (S  

(21 cm) 
7 (0.5) 7 (0.2) 8 (0.2) 113 

(117) 
108 

(110) 
118 

(120) 
 (T  

(21 cm) 
–0.5(–

0.3) 
–0.4(–0.2) –0.4(–0.2) 40 (34) 39 (32) 36 (29) 

Hveg P –12 (–15) –12 (–15) –12 (–15) 93 (88) 88 (81) 76 (67) 
 LE –11 (–6) –12 (–7) –14 (–8) 49 (44) 49 (44) 47 (42) 
 SH 13 (7) 15 (9) 17 (10) 29 (26) 29 (26) 27 (24) 
 Roff –7 (–24) –7 (–25) –6 (–27) 93 (79) 91 (71) 92 (59) 
 (S  

(21 cm) 
–5 (–4) –5 (–4) –5 (–3) 71 (52) 63 (43) 60 (41) 

 (T  
(21 cm) 

0.02 (0.0) 0.02 (0.0) 0.05 (0.0) 15 (13) 15 (13) 13 (10) 

 
 
seems to reduce (smoothing effect) by about 30%. In terms of soil moisture 
and other variables, we note a significant reduction of bias for both satellite 
retrievals and vegetation sites. 

We demonstrate a moderate reduction of STD from Lveg to Hveg, and notable 
spatial scale dependence for STD in the Hveg regime. The STD of rainfall, 
runoff, and soil moisture error for the merged (IR) rain estimates reduces by 
an average of 23% (12%) going from 0.25 to 1-degree grid resolution. We 
show magnification in the error STD going from rainfall to runoff variable, 
and a smoothing effect for all other variables. The rate of STD magnification 
for the IR retrieval exhibits a spatial scale dependence (ranging from 60% to 
80%) in the case of Lveg, while the corresponding rate of magnification for 
the merged rain estimate is consistent across the scales at ~30%. In Hveg site 
the IR retrieval error STD magnification in runoff is shown to vary from 
about 5% (at 0.25 degree) to 25% (at 1 degree), while for the merged rain 
estimates we note a consistent smoothing effect (~10% error reduction). In 
all other variables the STD error propagation is associated with smoothing, 
which varies across the different variables. In soil moisture, for example, the 
STD reduces by about 12% (8%) in the merged (IR) retrieval case. The error 
STD smoothing is significant for the energy-related variables and fluxes 

     In terms of the relative STD error statistic our observations are the following. 
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((T, LE, and LH), indicating that errors in precipitation alone would have 
minimal effect in those variables. 
     We finally used our experimental data to investigate the spatial structure of 
error in the various hydrological and land surface variables. This is presented 
in Fig. 2 in terms of spatial correlation of error (%) as function of distance. 
We present two curves in each panel, one representing the IR and the second 
the merged rain retrievals. Left and right panels represent Lveg and Hveg sites, 
respectively. We make the following observations. First, error in rainfall and 
runoff decorrelate faster than in the other variables. Second, the IR retrieval 
error is associated always with lower lag-correlation than the corresponding 

significant STD reduction in the merged case compared to the IR retrieval 
case. 
 

Figure 2. Spatial lag-correlation of error. Left and right panels correspond to Lveg and Hveg 
sites, respectively. 

 

IR retrieval error. This explains why spatial averaging resulted in a more 
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6 CLOSING REMARKS 

satellite rain retrievals. The strategy adopted is, firstly, to compile the 
hydrometeorological variables needed by an LSM including three different 
sources of precipitation data, i.e., gauge-calibrated radar rainfall and two 
satellite retrieval (an IR and a merged MW/IR rain retrieval), assuming that 
the model parameters are well representative of the land surface processes. 
The CLM was selected to simulate the land surface processes at three scales, 
0.25, 0.5, and 1 degree, and two distinct vegetation conditions. Simulated 
results from the two satellite rain retrieval-forcing parameters were 
compared to corresponding simulations derived from the radar rainfall input 
considered as reference. The primary conclusions of the present study are as 
follows: 
 

$ Rainfall error propagates nonlinearly in hydrologic simulation 
uncertainty-precipitation error structure and land surface conditions 
affect this error propagation (we noted this specifically in the case of 

$ Error variance reduces (nonlinear smoothing effect) in most of the 

$ We noted lower error statistics when using the merged MW/IR rain 

$ Overall, spatial averaging reduces the error in most of the land 
surface variables, but this reduction depends on the rain retrieval 

 
An important observation from this study is that the effect of vegetation and 
structural characteristics of rain retrieval error are factors affecting the error 
propagation in land surface variables. This study investigated only a limited 
number of land surface conditions and satellite retrieval schemes and, thus, 
should only be viewed in a qualitative sense. Apparently, using different rain 

characteristics. We would like to view this experimental error propagation 
framework as the basis for achieving a more comprehensive hydrologic 
assessment of satellite retrievals, and/or for developing merging techniques 
that would optimize hydrological prediction error statistics. 
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