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Abstract Maximum light use efficiency (gna) is a
key parameter for the estimation of net primary pro-
ductivity (NPP) derived from remote sensing data.
There are still many divergences about its value for
each vegetation type. The &, for some typical
vegetation types in China is simulated using a modi-
fied least squares function based on NOAA/AVHRR
remote sensing data and field-observed NPP data.
The vegetation classification accuracy is introduced
to the process. The sensitivity analysis of &, to
vegetation classification accuracy is also conducted.
The results show that the simulated values of Emax are
greater than the value used in CASA model, and less
than the values simulated with BIOME-BGC model.
This is consistent with some other studies. The rela-
tive error of gnax resulting from classification accuracy
is -5.5%—8.0%. This indicates that the simulated
values of g, are reliable and stable.

Keywords: light use efficiency, remote sensing, simulation, NPP,
NDVI, China.

Maximum light use efficiency (&) is the use rate
of photosynthetically active radiation by vegetation in
an ideal condition without any constraints. It is a
physiological attribute of plant itself. The value of &,
is different for different vegetation types'' ' It is a key
parameter for the estimation of net primary productivity
(NPP) driven with remote sensing data. There are still
many divergences about its value for each vegetation
type . Potter er al.”! and Field er al"**' took the global
€max as 0.389 gC- MJ Raymond[ ! considered the up-
per limit of e,y as 3.5 gC-MJ™', and other studies indi-
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cated that the &, of some herbaceous plants and other
vegetations was 0.09 —2.16 gC-MJ™' without con-
7 Peng et al."* took 1.25 gC-MJ™" as the £y,
to estimate the spatial distribution of light use effi-
ciency in Guangdong Province of China. The result
showed that the &, used in CASA model (0.389
gC-MI™") was lower when comparing to that of Guang-
dong vegetation. All of these studies indicated that the
current values of &,,, for each vegetation type are not
consistent, and a comprehensive analysis for &,
should be conducted imperatively.

The &yax acquired from field measurement can only
represent the value in a little site, and it can not repre-
sent the éma, of one kind of vegetation types'”. The
value of &, for each vegetation type is not only af-
fected by its physiological attributes, but also the spa-
tial scale and the uniformity of vegetation coverage. It
can not be acquired by field measurement under the
current study conditions, and it can only be simulated
by models. Running et al'""" simulated the Emax Of some
typical vegetation types using an eco-physiological
model BIOME-BGC. The sample data used in the
simulation mainly came from North America. There are
some regional differences when they are used in global
or regional vegetation types.

In this paper, the &, for some typical vegetation
types in China is simulated using a modified least
squares function based on NOAA/AVHRR remote
sensing data and field-observed NPP data. The vegeta-
tion classification accuracy is introduced to the process.
The sensitivity analysis of &, to vegetation classifica-
tion accuracy is also conducted.

straints'?

1 Data acquisition and processing
1.1 Remote sensing data

The NOAA/AVHRR (National Oceanic and Atmos-
pheric Administration, Advanced Very High Resolution
Radiometer) Normalized Difference Vegetation Index
(NDVI) images came from the Pathfinder Data Set
(PDS) which was sponsored by the Earth Resources
Observation System (EROS). The spatial resolution is
8 km x 8 km. The monthly composite data were taken
from Januvary 1989 to December 1993. Atmosphere
calibration was conducted, and cloud contamination
was eliminated. The sensor degradation was revised
with the assumption that the NDVI in deserts was zero.
These images were rectified against the reference to-
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pographic map. The verification result showed that the
registration error was less than 1 pixel. The data were
then resampled according to Albers conical equal area
projection.

1.2 Meteorological data

Monthly meteorological data, derived from 726 me-
teorological stations in the same period as NDVI im-
ages, included total monthly precipitation, mean
monthly temperature, and total monthly solar radiation.
All these data were validated with the missing and sus-
picious data eliminated. The data were then interpolated
at the same scale with remote sensing data using
Kriging method and a new interpolation base on digital
elevation model (DEM)!"?).

1.3 Vegetation map

The vegetation map of China with a spatial resolu-
tion of one kilometer came from the Joint Research
Centre (JRC), which was compiled by the Institute of
Remote Sensing Application, Chinese Academy of
Sciences. The original remote sensing data used in the
classification came from SPOT-VGT in 2000. There are
22 kinds of vegetation types in the map, and the total
accuracy with the national statistical data is 61.8%.

1.4 NPP observed data

Data on biomass and NPP of major Chinese forest
types were compiled based on the inventories of the
former Ministry of Forestry, China, between 1989 and
1993 The data cover six major forest biomes, in-

cluding 690 study sites from 17 forest types in China,
ranging across a substantial geographical area, from
sub-boreal Larix forests in northeast China and north-
west China to tropical rain forests in southern China
and Hainan Island. Latitude, longitude, elevation, leaf
area index, total biomass, and total NPP (the sum of
aboveground and below ground components) are given
for each site. The observed NPP was provided in units
of dry biomass (organic matter). We converted these to
carbon units (gC-m‘z-a_l) using a mass fraction of 0.5
for woody components and 0.45 for grass and foliage
components''*' To determine whether the biomass
was predominantly wood or foliage, we used a ratio of
0.475 g C per 1 g biomass.

2 Method
2.1 Simulation description

The technology flow chart for the Emux Simulation is
given in Fig. 1. For an area, the NPP (gC-m™) equals
the amount of photosynthetically active radiation ab-
sorbed by green vegetation (APAR) (MI-m™®) multi-
plied by the actual light use efficiency (e) (gC-MJ ™) by
which the radiation is converted to plant biomass in-
crement.

NPP(x.t) = APAR (x,t) x £(x,1), (nH
where x is a pixel in a remote sensing image, and ¢ is
the period that NPP is cumulated, such as a month.

Vegetation has a maximum light use efficiency in an
ideal condition, but the actual light use efficiency (&)

Total radiation NDVI

Monthly
temperatiire

Monthly
precipitation

Loetati \% .
Vccu‘mon_’ND I...',\_ Optimal
map NDVI,,, temperature
FFPAR
APAR Temperature scale f Temperature scale /s Water scale 117
L l l [ T
Observed NPP APARX £ % NS Unknown varable v
Simulated maximum light use efficiency

Fig. 1. Flow chart for the simulation of maximum light use efficiency.
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will be affected by temperature and water. The ¢ for
each grid is the product of the &, (gC-MJ_I) and the
scales representing the availability of water (W) and the
suitability of temperature (f;, fz)[7J
e(xt)=fi ()X fo (x.0)xW (x,0)xe,. . (2)

The two temperature scalars in this function attempt
fo capture two aspects of the regulation of plant growth
by temperature. The water scalar is calculated in a
monthly time step as a function of the ratio of estimated
evapotranspiration (EET) to potential evapotranspira-
tion (PET). The specific functions of i, f> and W can be
found in ref. [16].

Formulae (1) and (2) can be combined to one ex-
pression

NPP(x,1) = APAR(x,0) X f; (x,1)
X ()XW (xt)xe,, . (3)

For any NPP observed site, the &nax €an be computed
when the field measured NPP, APAR, f|, /> and W are
known. The computed ¢,,, is then classified according
to the vegetation types. At last, the &, for each vege-
tation type can be simulated using a modified least
squares function based on the minimum error principle.

For one vegetation type, the errors between observed
NPP and simulated NPP can be expressed as a function

J

E(x)= 3. (m, ~na)

i=1
where i is the samples of one vegetation type; j is the
maximum samples; m represents the observed NPP; n
is the products of APAR; £, f, and W, x is an unknown
variable representing the maximum light use etficiency
that needs to be simulated: and / and u are the com-
puted lower and upper limits of maximum light use
efficiency based on formula (3). Formula (4) can be
expanded as

J J /
E(x)zz:nizx2 —ZZmin,-x+Zm,-2 xellul. (5)
i=l i=| i=|

xe[l,u], 4)

Formula (5) is a quadratic equation. It must have a
minimum value when x is in the close range [/, u]. The
X is just the simulated ¢,,, of one vegetation type when
the equation has a minimum value.

2.2 Estimation of APAR

APAR is calculated at each monthly time step. It is
the product of PAR and the fraction of photosynthetic-

1) Los, S. O., Linkages between global vegetation and climate: An anal
dissertation, National Aeronautics and Space Administration (NASA), 1998
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cally active radiation (FPAR)[(’J. PAR can be calculated
as 1/2 the total solar surface radiation (SOL) MJ ~m‘2).
APAR is represented by
APAR (x,1) = SOL(x,t) x FPAR (x,1) % 0.5 . (6)
The theoretical relation between FPAR and NDVI
was near-linear in some studies!>'” "', Assuming line-
arity, the equation for FPAR and NDVI can be solved
when two points are known. These two points are the
maximum and minimum NDVI values for each vegeta-
tion type and the corresponding FPAR values. The rela-
tion between FPAR and NDVI is then given by
FPAR(x.1) = (NPVIC.H) = NDVL, ;)% (FPAR,y,, ~ FPAR
(NDVI, .. — NDVI

min)

x,mm)

+FPAR

(7N

with

FPAR .« = 0.950,

FPAR i, = 0.001,
FPAR.x, FPAR,,, independent of vegetation type.
NDVI; 1, NDVI value corresponding to 95% of NDVI
population i. NDVI, o, NDVI value corresponding to
5% of NDVI population .

The landcover-type dependent NDVI values for 95%
and 5% different vegetation populations will be spe-
cifically computed in section 3.1.

Further studies indicated that FPAR is also linearly
related to the simple ratio (SR) which can be expressed
as a transformation of NDVI (formula (9))[8‘20‘2”. The
relation between FPAR and SR can be given by

(SR(x,1)-SR, . )x(FPAR, - FPAR
(SR

min)

FPAR(x,1) = SR ) (8)

fanax

+ FPAR

min*

where SR, .., and SR, ,,,, are respectively corresponding
to the NDVI, ...« and NDVI, ..

1+ NDVI(x.1 )J

9
- NDVI(x,1) @

SR(x,1)= [
To see if one model is to be preferred over the other,
FPAR was estimated with both models using the same
minimum and maximum NDVI values. Comparison
indicated a large bias in the estimate of FPAR from
NDVI. a smaller bias in the estimate of FPARA from SR,
and the smallest bias in the estimate of FPAR from the
mean FPAR estimated by the SR-FPAR and NDVI-
FPAR models". The intermediate model is given by

ysis bused on NOAA advanced very high resolution radiometer data, Ph. D.
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FPAR(x,1) = aFPAR ; + (1 - 2)FPAR g, ,  (10)

with e arbitrarily being set to 0.5. FPARNpv; is FPAR
estimated with the NDVI-FPAR model (formula @)))
and FPARgg FPAR estimated with the SR-FPAR model
(formula (8)). Given a situation without a priori infor-
mation from which to choose the NDVI-FPAR or the
SR-FPAR model, the intermediate model may be an
alternative.

3 Results and discussion
3.1  Computation of the maximum NDVI value

The NDVI,,, of one vegetation population is defined
as the NDVI threshold that vegetation Just came to fully
green conditions, and it is not the actual maximum
NDVTI value in order to avoid the saturation phenome-
non existing in NDVI. The vegetation classification
accuracy was introduced to the computation of NDVI .
It will be adjusted with the variation of classification
accuracy. This may eliminate the errors existing in the
classification and remote sensing data.

The processing chain of the NDVI,,, computation
contains the following three steps (Fig. 2): (1) The
NDVI normalized frequency distributions were calcu-
lated for each of the vegetation types with equal inter-

(1-x)/2

vals of 0.0001 (Fig. 3). (2) According to the classifica-
tion accuracy x, the pixels in the distribution range
[(1-x)/2, (1+x)/2] are selected for each of the vegeta-
tion types. (3) These selected pixels are then calculated
again to a normalized frequency distribution. The 95
percentile of the distribution for tall vegetation types
and agriculture is assumed to represent vegetation at
full cover and maximum activity with an FPAR value
close to 1 (here assumed to be 0.95). The 95% NDVI
value of agriculture was used to represent all short
vegetation types. The 5% desert value is assumed to
represent no vegetation and an FPAR value of 0.001 for
all landcover types (Table 1).

3.2 Maximum light use efficiency of typical vegetation
types in China

The maximum light use efficiency of some typical
vegetation types in China is listed in Table 2. Bush and
grassland had little measured data in this study. Their
émax Was calculated with some data from references.
The mean observed NPP of bush was 364 gC-
m a5 [s mean product n of APAR, f,, f; and W
was 847.6 MJ-m>a™'. So the €max Of bush was com-
puted as 0.429 ¢C-MJ™". The observed NPP of temper-
ate grassland was 230.6 + 64.9 gC-m2a""®. Its mean

(14x)2 5% 95%

NDVI image NDVI

NDVI

Fig. 2. Computation of NDVI,.« and NDVI,,.

18
F DNF
5 — — — - ENF
N EBF
- 12
= -
5 —-—--DBF
é 9r — - - — - Shrubland
g Cropland
= o6 -
:
S .
0 bt~y froe I N i L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
NDVI

Fig. 3. The normalized trequency distribution of some .vegetation types in China. DNF, Deciduous needle-leaf forest; ENF, evergreen needle-leaf
forest; EBF, evergreen broadleaf forest; DBF, deciduous broadleaf forest; Shrubland, shrub vegetation; Cropland, agriculture vegetation.
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Table 1 NDVI,,, and NDVI,;, of typical vegetation types in China

Code Vegetation type Pixels NDVI,x NDVI . SRpax SRin
1 deciduous needle-leaf forest 4339 0.738 0.023 6.63 1.05
2 evergreen needle-leaf forest 15104 0.647 0.023 4.67 1.05
3 evergreen broadleaf forest 6502 0.676 0.023 5.17 1.05
4 deciduous broadleaf forest 8690 0.747 0.023 6.91 1.05
5 bush 11905 0.636 0.023 4.49 1.05
6 sparse woods 958 0.636 0.023 4.49 1.05
7 seaside wet lands 287 0.634 0.023 4.46 1.05
8 alpine and sub-alpine meadow 11675 0.634 0.023 4.46 1.05
9 slope grassland 4364 0.634 0.023 4.46 1.05
10 plain grassland 7940 0.634 0.023 4.46 1.05
11 desert grassland 10184 0.634 0.023 4.46 1.05
12 meadow 11773 0.634 0.023 4.46 1.05
13 city 65 0.634 0.023 4.46 1.05
14 river 958 0.634 0.023 4.46 1.05
15 lake 1240 0.634 0.023 4.46 1.05
16 swamp 1015 0.634 0.023 4.46 1.05
17 glacier 1887 0.634 0.023 4.46 1.05
18 bare rocks 4528 0.634 0.023 4.46 1.05
19 gravels 13657 0.634 0.023 4.46 1.05
20 desert 12661 0.634 0.023 4.46 1.05
21 farmland 30046 0.634 0.023 4.46 1.05
22 alpine and sub-alpine plain grassland 10931 0.634 0.023 4.46 1.05
Table 2 Maximum light use efficiency of some typical vegetation types in China
_ Ena (BCMITY ‘ Standard error  Range of ob-  Simulated value
Code Vegetation type Samples . . Observij l\_JIP P of observed servged NPP  fromref. [11]
min. max.  simulated value (gC'm™>a™) NPP 2 !
R __ NPP~ (gCm?ah (gCMI™)
1 dec‘d“"‘f’;r';:fdle"eaf 39 0.159  2.453 0.485 490 160.9 179—824 1.103
2 e"e'g'eefgr‘;zfdle“eaf 110 0204 2553 0.389 396 1212 179--806 1.008
3 dec‘d“"fgf_et;"adleaf 356 0256 2.521 0.692 672 2719 114—1669 1.044
4 "V"’gref‘:;ebg’["ad'e“f 142 0407  2.194 0.985 1017 2789 4071913 1.259
mixed forest of nee- ]
5 dle and broad leaf 21 0.242 0.74 0.475 472 128.3 257—717
mixed forest of ever-
6 green and deciduous 22 0.461 1.295 0.768 723 141.4 414-—1098 1.116
broadleaf
7 bush 9 0.429 364 0.768
8 grassland i 0.542 231 64.9 0.608
9 agriculture 0.542 0.604
10 others 0.542

\,
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product n of APAR, f, f, and W was 425.6 MJ-m~2.a~"_
So the &, of temperate grassland was computed as
0.429 gC-MJ™". Other short vegetation types, such as
agriculture, meadow, and swamp, have the same &, as
grassland.

The simulated &,,, in this study is between the value
used in the CASA model (0.389 gC-MJ_') and the
simulated value of BIOME-BGC model''" except the
evergreen needle-leaf forest, which is just equal to
0.389 gC-MJ™". This is consistent with the study results
of Peng et al.lé], who concluded that the &,,,, used in
CASA model was lower when comparing to Guang-
dong vegetation. The simulated &nax of BIOME-BGC,
an eco-physiological processing model, is actually

www.scichina.com  www.springerlink.com

based on plot-scale with little area. Its spatial scale is
smaller and the vegetation has less heterogeneity in a
little area. However, the simulation based on remote
sensing data has a large spatial scale (8 km x 8 km in
this study) and the heterogeneity is very high. So the
simulated results should be lower than those of
BIOME-BGC. The lower and upper limits of & are
also closer to some other study results!' *!. This indi-
cated that the simulated values in this study are reliable.

3.3 Sensitivity analysis of &, to classification accu-
racy

The simulation of the g,,, was not ohly directly re-
lated to the vegetation types, but also indirectly related
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to the classification accuracy. In order to simulate the
&max, the FPAR value needs to be computed firstly, and
it was related to the NDVI,,,,, and SR, They are all
calculated based on the vegetation type and the classi-
fication accuracy.

The classification accuracy was evaluated based on
the field-observed data. There are some uncertainties in
the evaluation. (1) The samples of observed data are
relative less, and they are also not randomly distributed
because of some artificial factors. Some place is diffi-
cult to arrive at, and there may be little samples there.
(2) The spatial scale is not consistent between observed
data and remote sensing data. The spatial heterogeneity
will increase with the scale up. Several vegetation types
may simultaneously exist in a large area. (3) There are
some mixed types in the vegetation classification based
on remote sensing data because of the approximate re-
flectance spectrums.

The landcover classification accuracy is 61.8% in
this study. So the actual accuracy is assumed to be
35%—85% for each vegetation type, and then the 5%
intervals are used to analyze the sensitivity of the Emax
to the classification accuracy.

The sensitivity analysis results are shown in Table 3
and Fig. 4. The &, increases with the increment of the
accuracy for each vegetation type. The increasing
trends can be classified to three types according to the
sensitivity differences (Fig. 4). (1) The &, of ever-
green broadleaf forest is very sensitive to the accuracy.
Its absolute change is —0.054—0.079 gC-MJ™', and the
relative change is —5.5% —8.0%. The change speed is
very fast (Fig. 4(b)). (2) The sensitivity of deciduous
broadleaf forest, mixed forest of evergreen and de-

ciduous broadleaf, grassland and other short vegeta-
tions 1s middle. The absolute change of &,,, is about
~0.029—0.039 gC-MJI™', and the relative change is
about —4.2% —5.6%. (3) The en,, of deciduous nee-
dle-leaf forest, mixed forest of needle and broad leaf,
evergreen needle-leaf forest and bush has a smallest
sensitivity to classification accuracy. The smallest ab-
solute change is —0.013—0.016 gC-MJ ", and the cor-
responding relative change is —2.7% — 3.3%. Their
change speeds are very slow. The curves fluctuate in a
nearly horizontal line (Fig. 4 (b)). These sensitivity dif-
ferences of the &, to the classification accuracy
mainly come from the inner heterogeneity of each
vegetation type and its classification accuracy. Taking
evergreen broadleaf forest as an example, it has a high-
est sensitivity. Its classification accuracy is relatively
low because of some mixed types, such as high bushes.
On the other hand, it has a large heterogeneity because
of many different sub-types and its extensive distribu-
tion in the whole country.

In general, the effect of the classification accuracy
on the &y, simulation is little, and the maximal relative
error is just —5.5% —8.0%, which was found in the ev-
crgreen broadleaf forest. This indicated that the simu-
lated &py, for some typical vegetation types in China is
reliable and stable. Though the true value of the Emax
can not be rigorously simulated, the approximate value
can be given (Table 3). For example, the &,,, of de-
ciduous needle-leaf forest is 0.472—0.501 gC-MJ™,
and the evergreen broadleaf forest 0.931 — [.064
gC-MJ™.

Table 3 The g, under different classification accuracy

The &, under different classification accuracy (gC-MI)

Code” -—- - —— —— -— —— - St e o
61.8% 35% 40% 45% 504 55% 60% 65% 70% 75% 80% 85%
a lgﬂ‘():485 - 0.:177727 - 707.4773' ) 7(7):757 W();47() R ()-178 W (7);4781 - ()7487% ()486 7 7(7)74;19 (7);)6 : ();0‘1—”
2 0.389 0.374 0.377 0.378 0.381 0.384 0.387 0.391 0.395 0.40 0.406 0412
3 0.692 0.663 0.667 0.672 0.676 0.682 0.688 0.695 0.702 071 0.721 0.731
4 0.985 0.93] 0.939 0.948 0.956 0.966 0.979 0.992 1.006 1.023 1.043 1.064
5 0.475 (.462 0.464 0.464 0.466 0.468 0471 0.474 0.477 ' 0.48 0.484 (1.488
6 0.768 0.732 0.737 0.743 0.748 0.756 0.765 0.774 0.784 0.794 0.808 0.821
7 0.429 0.408 0.412 0415 0418 0.422 0.427 0.431 0436 0.442 0.448 0.454
8 0.542 0.509 0.513 0.519 0.524 0.332 0.538 0.549 0.556 0.565 0.577 0.589
9 0.542 0.509 0.513 0.519 0.524 0.532 0.538 0.549 0.556 0.565 0.577 0.589
10 0.542 0.509 0.513 0.519 0.524 0.532 .538 0.549 0.556 0.565 0.577 0.589
a) The vegetation code is the same as in Table 2.
462 Chinese Science Bulletin Vol. 51 No. 4 February 2006
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