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Abstract
A stand level growth model for primary and secondary forest in the Amazon region is presented. The approach is empirical

and relies on an extended amount of forest inventory data for model calibration. We used a total of 368 sample plots with

469 ha from primary forest and 330 sample plots with 30.8 ha from secondary forest. The data come from eight countries and

are distributed over tropical forests in all of Amazonia. We interpolated primary forest descriptors spatially in virtue of their

dependence on biophysical conditions. Secondary forest parameters were described by a set of differential equations, in

which the primary forest functioned as asymptotes of the growth processes. A state-space approach to growth modeling

allowed for derivation of other forest parameters from models for state variables by auxiliary relationships. The fitted models

offer a spatially explicit description of growth and increment over all the tropical forests in Amazonia on a large scale.

As a function of biophysiology and of forest age, the models specify individual secondary forest growth curves at the

level of grid cells. We calculated grids for forest parameters and their increments in primary and secondary forests of various

ages. In primary forest, total basal area ranged between 22 and 33 m2 ha�1, top height was 10–35 m, there were 400–850

individuals per hectare, and standing alive above-ground biomass ranged between 110 and 370 t ha�1. The biomass

model was validated by comparing predictions at various successional stages from different locations in Amazonia against

independent reference data. Despite a small negative bias, the RMSE for standing alive above-ground biomass amounted to

only 38 t ha�1.
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1. Introduction

The growth of the Amazon forest and its dynamics

receive scientific attention both in the context of forest
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management (Silva et al., 1996), and of ecology and

global change (Moorcroft et al., 2001; Zarin et al.,

2001). For some regions growth models have been

proposed (Neeff and dos Santos, 2005; da Silva et al.,

2002; Silva et al., 1996) and efforts are being

undertaken to unify data sources (Malhi et al., 2002).

However, science is still far from achieving accurate
.
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and comprehensive description of forest conditions and

dynamics over the vast and diverse Amazon region.

Biomass and its spatial distribution are key variables

for carbon budget estimation. The scientific community

recognizes the need for accurate methods to determine

biomass in theAmazon (Schimel et al., 2001;Houghton

et al., 2000). Vegetation models are considered

indispensable, because common remote sensing data

sources are incapable to directly measure biomass

(Houghton et al., 2001). While remote sensing could

provide information on distribution and extension of

vegetation types, models of vegetation characteristics

are required that would describe potential biomass

stocks and dynamics for a forest of a given type and a

certain age at a specific location (Neeff et al., 2005).

Forest growth models provide means to accurately

estimate forest biomass and carbon sequestration rates

when linked to data on primary and secondary forest

cover (Moorcroft et al., 2001).

In this paper, we venture to describe the growth and

increment of tropical forests in the Amazon region.

This research largely represents a generalization of

methods developed by Neeff and dos Santos (2005),

who applied a standard approach for stand level forest

growth modeling. Empirical models that base on

biophysical parameters were adjusted to a large

dataset of forest inventories. The presented growth

model encompasses the major descriptors of tropical

forests across Amazonia at arbitrary successional

stages. In a larger research effort, we intend to link the

growth model to large-scale remote sensing results

and a land-use change model (Neeff et al., in press).

Our ultimate goal is to extend methods for carbon

budgeting applied by Neeff et al. (2005) to all of

Amazonia in order to describe the carbon balance

arising from forest dynamics during the last decades in

a spatially explit way.
2. Material

2.1. Collection of forest inventory data

The classical experimental design to collect data

for forest growth modeling consists of permanent

forest plots, that are inventoried periodically over an

extended period of time (Vanclay, 1994). Such data are

not easily available for the case of tropical primary and
secondary forest (Vanclay, 1994). Therefore, we used

a collection of plots from several sites, various years,

and of different sizes. All of them were measured,

adopting similar methods in field work, and all of them

represent tropical forests in Amazonia. We compiled a

dataset of primary and secondary forest inventories

from a variety of different sources, both published

forest inventory results and original forest inventory

data were collected (see Appendix A).

Amajor problem in using published forest inventory

results is the incompatibility of the methodologies

for field work and data processing applied by the

researchers. Differing minimum measured diameters,

varying treatments of dead trees or nontree species, and

differing allometric equations can be an additional

source of variance and potentially introduce bias into

the analysis. Therefore, an effort was undertaken to

collect original tree-by-tree data from forest inventories

conducted by many researchers in Amazonia. Addi-

tionally, a number of sample plots were compiled from

literature. Here, we had less control over forest

measurementmethodology, butwe felt it was necessary

to complement the original tree-by-tree data with data

from other sources (see Appendix A).

A number of datapoints were excluded from the

analysis for one of the following reasons: minimum

diameters from field measurements were too high, the

plots were too small to compute the standard forest

parameters (particularly top height), the plot did not

correspond to a forest ecosystem, or supposedly

primary forest underwent logging before. In total, the

database on forest growth, that we deemed appropriate

for calibration purposes, contained 60.7 ha (172 plots)

of primary forest inventories on a tree-by-tree basis

and 385.9 ha (186 plots) from other sources.

Secondary forest inventories amounted to a total of

16 ha (230 plots) on a tree-by-tree basis and 5.3 ha (64

plots) from other sources. Validation data, where only

biomass measurements were conducted, were avail-

able for 22.4 ha (10 plots) of primary forests and for

9.5 ha (36 plots) of secondary forests. The data were

collected from the 1950s till present. The data come

from almost all countries that share the Amazon

forest: Bolivia, Brazil, Colombia, Ecuador, French

Guiana, Peru, Suriname, and Venezuela; the plots

were widespread over Amazonia (see Fig. 1).

Different minimum diameters are commonly

applied when dealing with forests at different ages.
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Fig. 1. Dataset of tropical forest inventories in the Amazon. Plots

come from a variety of different sources as listed in Appendix A.
We attempted to use a minimum diameter of 3 cm for

initial regrowing vegetation at 4 years or less of age, of

5 cm for secondary forest above age five, and of 10 cm

for advanced secondary forest above age 50 and for

primary forest. All data sources where the minimum

measured tree diameter was above 10 cm were

excluded. This is why forest inventories mainly

aiming for economic forest assessment (e.g. Radam-

brasil) could not be incorporated.

2.2. Processing of forest inventory data

We calculated standard forest parameters as

defined by Loetsch et al. (1973): total basal area B,

top height H, number of individuals N, mean basal

area b̄, mean diameter at breast height d̄1:3; and mean

height h̄. The concept of top height builds on taking

the arithmetic mean of only a subset of the tallest

individuals of a stand, such that H� h̄ (Loetsch et al.,

1973). Here, the subset corresponded to the tallest

20% of all individuals.

Above-ground biomass AGB was derived treewise

from an allometric equation published by Brown et al.

(1989) for tropical moist forest (n = 168, r2 = 0.97),

that draws on diameter at breast height d1.3 (cm) and

total tree height h (m) to arrive at the total above-

ground biomass (kg per tree):

AGB ¼ expf�3:1141þ 0:9719 logðd21:3hÞg: (1)

We used only one allometric equation for all types of

forest and all diameter ranges, and we made no
allowance for differences in tree shape or wood density.

Standwise biomass was computed by summing up all

trees. We did not deal with any other biomass fractions

than standing alive above-ground biomass of tree

species.

2.3. Biophysical dataset

A climatological and geophysical dataset for

Amazonia was collected for compilation of a database

on possible biophysical determinants of forest growth

(see Appendix B). All input grids were resampled

by a nearest-neighbor algorithm to a cell size of 0.1

decimal degrees (ca. 11 km at the equator). In

principle, other resolutions are possible. All data

processing took place in a geographical projection

system. In some cases data had to be reprojected

before incorporation into the database.

We recovered the area extension of the tropical

Amazon forest by a map of global ecological zones

that is based on the results of FAO’s Forest Resource

Assessment (see Appendix B).

The distance to the equatorDE and the distance to the

coastline DC were derived from a South America map.

Elevation over sea level E was derived from the

digital elevation model of the GTOPO30 project

(Appendix B). GTOPO30 is a global digital elevation

model at a spatial resolution of 30 arc seconds that has

been compiled from a number of different sources.

The vertical accuracy is specified by the providers by

an RMSE ranging mostly between 18 and 97 m.

An appropriate climate dataset was provided by the

LBA Hydronet collection, which contains long-term

monthly averages (1961–1990) of various climatic

variables gridded at 0.18 resolution (Appendix B).

These data have been interpolated from station data.

From the climatological dataset we generated the

following variables: T is the long-term mean annual

temperature, TD the difference between mean tempera-

ture of hottest and coldest month,P the long-termmean

annual precipitation, PD the difference between mean

precipitation of wettest and driest month, C the long-

termmean cloud cover, andV the long-termmeanvapor

pressure.

Our data on soil properties based on the FAO soil

map of the world (Appendix B). The classification

holds soil texture Tx in seven levels at coarse, medium,

fine and organic. Soil profile depth PD is an estimate
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of the depth from the soil surface to bedrock or other

impermeable layers.
3. Methods

3.1. Overview

We endeavour to model growth and increment of

tropical forests in Amazonia. Our model addresses

natural forests as it grows spontaneously at terrestrial

sites after disturbance. While plantations are not

included, the model describes vegetation at all

successional stages from early regrowth to primary

forests.

Stand level forest growth was modeled by a

classical ecological approach based on state variables

(Vanclay, 1994). The state space approach to modeling

forest growth images the stand by a few stand

parameters (here, total basal area, top height, and

number of individuals). Other forest parameters of

interest (diameter, biomass, etc.) are incorporated by

auxiliary relationships. It is assumed that the state

variables sufficiently summarize the stand, and that

growth can be predicted just by updating the state

variables (Vanclay, 1994).

Primary forest parameters at stand level as given by

forest inventories (Appendix A) were related to

biophysical parameters as given by regional maps

(Appendix B). In a first step, we derived equations that

described the statistical relationship of forest para-

meters to the biophysical site properties. In a second

step, we applied these equations to derive grids of

potential primary forest conditions for all tropical

forests of Amazonia. Later, the grids were used as

asymptotic conditions for secondary forest growth.

Secondary forest parameters were modeled as a

function of time by a set of differential equations. We

introduced a spatial component into a common model

for forest growth by an extension: we considered

growth asymptotes as locally differing according to

site properties, while maintaining the other growth

parameters as global variables. The local growth

asymptotes corresponded to the primary forest

conditions and were dealt with in the primary forest

model, separately from the secondary forest model.

The global parameters of secondary forest growth

were fitted using the forest inventory dataset. The
fitted model describes secondary forest growth on a

pixel grid.

All calculations, particularly the fitting of both

linear and nonlinear least-squares models, accounted

for different plot sizes. According to the approach

from Neeff and dos Santos (2005) all reported

statistics were area-weighted. Given the spatial

heterogeneity of forest descriptors even between

close-by locations, the use of plots at different sizes

with differing numbers of tree individuals would

otherwise lead to a nonconstant variance. Thus, the

variance function of any forest parameter Y must

include the forest area A, the parameter refers to:

VarðYÞ ¼ s2
Y

A
: (2)

3.2. Primary forest modeling

We consider a primary forest parameter Ya (i.e.

primary forest total basal area, primary forest top

height or primary forest stem density) as a function of

biophysiology:

Ya ¼ f ð~XÞ; (3)

where ~X represents a vector of biophysical site para-

meters: ~X = {distances, elevation, precipitation, tem-

perature, etc.} = {DE, DC, E, T, TD, P, PD, C, V, Tx, PD}.

On the other hand, these site parameters are given by the

biophysical dataset (see Appendix B), and thus are a

function of the location in Amazonia ~s = {latitude,

longitude} only, such that ~X ¼ f ð~sÞ, and therefore

Ya ¼ f ð~XÞ ¼ f ð~sÞ: (4)

Multivariate weighted linear regression models were

established for total basal area, top height and number

of individuals in primary forest

Ya ¼ ~X~bY þ e; (5)

where Ya is again the primary forest parameter in

question, ~X is a vector of biophysical site properties,

and ~bY is a vector of regression coefficients. We

assume the error e to be normally distributed with

the variance given by Eq. (2). In order to assure that the

model could be reproduced, weighted stepwise regres-

sion was run. Stepwise regression automatizes model

selection by a penalized likelihood criterion. The final
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model was defined, starting with an initial full model,

and iteratively dropping and adding terms.

3.3. Secondary forest growth modeling

Secondary forest growth was modeled as a function

of age adopting a set of differential equations with three

parameters, two of them relate to the shape of the

growth curve and were treated here as global

parameters, i.e. parameters that are equal for every

secondary forest in Amazonia. The third parameter is

the asymptote of thegrowth process andwas considered

local, i.e. it differs according to site properties. In a first

step, the primary forest model described the growth

asymptotes. In a second step, we plugged the

asymptotes into the secondary forest growth equation,

and the equation was fitted to the datapoints. The fitted

model described secondary forest growth pixel by pixel

with an individual growth curve.

The employed approach to secondary forest

description builds on the following assumptions:
(1) L
eaving site properties apart, tropical secondary

forest grows somewhat similarly within all of

Amazonia, independent of slight differences in

weather conditions between years, and indepen-

dent of site history, i.e. of former use and

circumstances of forest cutting. We did not

account for the differences in growth dynamics

caused by these factors (Brown and Lugo, 1990).
(2) S
econdary forest growth can be described by

global parameters. Differences in biophysical site

conditions result only in various asymptotes of the

growth process (Garcia, 1983). Growth in all

stands with the same local asymptote follows the

same pathway.
(3) S
econdary forest again develops towards a mature

forest with properties equal to those of the primary

forest before cutting (Brown and Lugo, 1990).

Mature forest is equal in properties to primary

forest. Hence, primary forest conditions can be

considered an asymptote for second growth.
The Bertalanffy–Chapman–Richards growth model

is a common model for ecological growth processes,

that has been used extensively for description of forest

growth (Vanclay, 1994). Neeff and dos Santos (2005)

used the following equation for the growth of a forest
parameter Y based on a convenient reformulation of the

original equations by Garcia (1983):

d

dt
YcY ¼ mYðYcY

a � YcYÞ: (6)

The forest parameter Y is a function of age t and of its

three growth parameters, where Ya is the asymptote of

Y (t ! 1); mYand cYare shape parameters, mY relating

to the growth rate, i.e. to when the curve approaches

Ya, and cY to the sigmoid shape of the curve.

The asymptote Ya was recovered from primary

forest characteristics, i.e. as a function of the location

~s = {latitude, longitude}. Hence, Ya is a local

parameter. Conversely, the shape parameters mY and

cY are global parameters, that do not depend on the

location. The parameter Y is thus considered as a

function of forest age t, the shape parameters mY, cY,

and the asymptotic Y, i.e. Ya that itself depends on the

forest location~s: Y = f(t, Ya(~s), mY, cY)

d

dt
YcYðt; Yað~sÞ;mY ; cYÞ ¼ mYðYcY

a ð~sÞ � YcYÞ: (7)

Eq. (7) can be integrated incorporating an initial

condition (t0, Y0). The starting point of the process

is age t0 = 0 and Y0 is the level of the forest parameter

at age t0 (which is not always 0)

Ŷðt;~sÞ

¼ Yað~sÞ
�
1�

�
1�

�
Y0ð~sÞ
Yað~sÞ

�cY�
e�mY ðt�t0Þ

�1=cY

:

(8)

Eq. (8) with fitted coefficients allows to compute the

level of a given forest parameter Y in a secondary forest

of a certain age t at a specific location. The first

derivative yields the increment of the respective forest

parameter IY:

IY ¼ d

dt
Y; (9)

d

dt
Y ¼ mY

cY
Ya e

�mYtð1� e�mY tÞð1=cY Þ�1: (10)

Eq. (8) was fitted to the data by weighted nonlinear

least squares. The weights were given by the areas of

the sample plots (Eq. (2)). The deviations between the

model and the observations are a function of the two

parameters to be fitted (mY and cY) and the results of
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the primary forest model (Ya). Hence, the function that

was minimized during model fitting is the sum of

squares over all secondary forest plots i:

SS ¼
X
i

Ai � ½Yiðt;~sÞ � Ŷiðt;~s; m̂Y ; ĉY ; Ŷað~sÞÞ�2;

(11)

where Yðt;~sÞ is the observed secondary forest para-

meter Y in field work for a forest of a certain age t at a

certain location~s, and Ŷðt;~sÞ comes from Eq. (8) with

fitted global parameters ĉY and m̂Y ; and fitted local

parameter Ŷað~sÞ. Model fitting in virtue of minimizing

Eq. (11) does not rely on distributional assumptions.We

understand the variance function to be given by Eq. (2).

3.4. Auxiliary relationships for other forest

parameters: biomass

We derived other forest parameters (mean diameter

at breast height, mean height, etc.) from the state

variables by auxiliary relationships. In all cases, the

functional forms developed by Neeff and dos Santos

(2005) were employed as auxiliary relationships. Other

forest parameters Z depend on the state variables~Y by:

Z ¼ f ð~YÞ ¼ ~Y~bZ þ e; (12)

where~bZ is a vector of fitted regression coefficients, and

e, is assumed to be normally distributed with noncon-

stant variance according to Eq. (2).The state variables

were given from previous model fitting as functions of

time, and their increment corresponds to the first deri-

vative in respect of time. Hence, the auxiliary relation-

ships describe other forest variables as functions of time

as well Z = f(t). The growth of other forest parameters

with increasing forest age can be expressed by updating

the state variables only. Increment in other forest para-

meters is therefore given by:

IZ ¼ d

dt
Z ¼~bZ

d

dt
~Y: (13)

There is particular interest in forest biomass in the

context of the discussion about carbon balances.

Therefore, we treat biomass in more detail as an

example of the derivation of other forest parameters.

The description of standing alive above-ground bio-

mass AGB as a function of forest volume is common

practice. Forest volume is given standwise from basal
area and height by a form factor F (Loetsch et al.,

1973): AGB / FBH.

The form factor was derived in a weighted linear

regression model with fixed intercept b0 = 0, b1 = F.

Hence, for the special case of biomass, the vector of

regression coefficients in Eq. (12) was ~bZ ¼~bAGB ¼
f0;Fg. The regression model corresponded to:

AGB ¼ FðBHÞ þ e: (14)

Increment in biomass per unit of time IAGB was

retrieved by derivation of Eq. (14):

IAGB ¼ d

dt
AGB ¼ F

�
B
d

dt
H þ H

d

dt
B

�
: (15)

3.5. Model assessment and validation

The fit of the model for mean secondary forest

growth was assessed by a Monte-Carlo approach with

1000 runs at level a = 0.05. The nonlinear regression

procedure does not provide a closed expression

for confidence intervals. However, by a normality

assumption on the distribution of the parameter

estimates, the intervals could be arrived at by repeated

simulation from a multivariate normal distribution.

In validating the presented growth models, we

validated the biomass model exemplarily. We presume

that models for other parameters entail less error,

because the biomass model accumulates errors from all

the relevant sources: the errors committed in fieldwork,

the errors in modeling primary forest top height and

primary forest basal area, the estimation errors of

secondary forest parameters, and the error of the

auxiliary relationship between forest volume and

biomass. Therefore, by looking at the errors of the

biomass model we considered a ‘‘worst case’’ scenario.

If the errors were small to tolerable for forest biomass,

we expectedmuch less error for other forest parameters.

We validated biomass predictions on behalf of our

growth model in general.
4. Results: primary forest

4.1. Data range

For all primary forest inventory plots, we extracted

the geophysical and climatological determinants of



T. Neeff / Forest Ecology and Management 219 (2005) 149–168 155
forest growth from the biophysical dataset. Fig. 2

illustrates the spread of the datapoints for total basal

area across the biophysical space of Amazonia. When

pairing and plotting the available biophysical vari-

ables, a predominant range of the respective para-

meters can readily be recognized. The datapoints from

field inventories encompass the predominant range,

and exceed at lower densities. We used the extreme

points to create domain boundaries that would provide

an indication of the validity of the forest growth

models in order to avoid extrapolation errors. These

limits are also provided in Fig. 2. The data range

encompasses most of the Amazon region.

4.2. Biophysical model fitting and assessment

Primary forest variables were regressed against

biophysical parameters. A step-wise approach to

model selection drew on a penalized likelihood

criterium. Therefore, model selection is automated

and the independent variables differ between the

primary forest descriptors. Table 1 displays the

coefficients of the final biophysical models. In order

to mirror the whole diversity of biophysical variables,

it was sensible to include a higher number of

explanatory variables in the models at the cost of

accepting lower limits of significance of the respective

parameters. Since the total number of points was also

large, we did not observe problems of over-fitting, and

all fitted coefficients are significant. We did not aim
Table 1

Results of stepwise weighted linear regression

Variable B H

b̂ ŝb Min Max b̂ ŝb

b0 66.42 8.67 NA NA �208.01 32.59

DE 0 0 0 16.2 �0.82 0.25

DC 0.32 0.12 0 11.03 0.94 0.15

E 0.01 0 0 3091.13 0 0

T �1.04 0.35 17.31 28 12.14 1.61

TD �3.22 0.42 0 5.26 0 0

P 0 0 777.78 2988.97 �0.01 0

PD 0 0 0 409.56 0 0

V �0.23 0.06 43.47 66.58 �0.68 0.21

C 0 0 1.47 3.02 �12.05 4.67

Tx 1.16 0.36 1 5 0 0

PD 0 0 10 600 0.01 0.01

Models of primary forest parameters in Amazonia from biophysical determ

N (ha�1) the number of individuals. Fitted coefficients b̂ are provided along

determination and number of datapoints amount to – B: 0.26, 348; H: 0.
for ecological interpretation of relative magnitude and

effect of the factors. Even though such interpretation

may be possible for identification of growth trends,

our research is merely descriptive, and the equations

served as a black box device for spatial interpolation.

The models feature coefficients of determination r2 of

0.26 for basal area, 0.49 for top height, 0.31 for

number of individuals.

The expected variance structure was compared to

the observations in order to assess the validity of our

presumptions. The expectations introduced the area of

sample plots as determinant in Eq. (2). Fig. 3 plots the

variance function of the model for primary forest total

basal area as an exemplary case.

The residuals frommodel fitting were used for area-

classwise empirical estimation of variance. The

coherence between estimated and modeled variance

for parameters that refer to a given forest area

underlines the sensibility of the adopted approach for

parameter estimation. For instance, for forest areas of

1 ha, standard deviation of total basal area amounts to

approximately 5.0 m2 ha�1. The standard deviation

comes down to less than 0.5 m2 ha�1 for larger areas at

the size of the grid cells used in data processing (about

100 km2).

4.3. Potential forest state

The models in Table 1 were applied to generate

grids of primary forest conditions in Amazonia.
N

Min Max b̂ ŝb Min Max

NA NA 1020.25 174.05 NA NA

0 16.2 �14.84 3.9 0 16.2

0 12.08 14.77 3.85 0 12.08

0 358.46 0.11 0.04 1 3091.13

24.75 27.06 0 0 17.31 28

0 5.26 �32.25 14.67 0 5.26

1155.41 2737.09 0 0 777.78 2988.97

0 385.13 �0.37 0.11 0 409.56

48.5 66.58 �7.58 2.42 43.47 66.58

2.25 3.06 0 0 1.47 3.06

3 5 �15.51 10.08 1 5

120 270 0.9 0.13 10 600

inants: B (m2 ha�1) is the total basal area, H (m) the forest top height,

with standard errors ŝ, and the respective data range. Coefficients of

49, 158; N: 0.31, 350.
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Fig. 2. Distribution of forest inventory dataset over the biophysical space of the Amazon region. Lat: latitude, Long: longitude, E: elevation, DC:

distance to coast line, T: mean annual temperature, P: mean precipitation, TD: difference between mean monthly temperature of hottest and

coldest month, PD: difference between mean monthly precipitation of wettest and driest month, C: mean annual cloud cover, V: mean annual

vapor pressure, Tx: soil texture class, PD: soil profile depth. The points correspond to all grid cells of the study area, sampled at an interval of 18.
Available forest inventory plots for total basal area are symbolized by circles. The dotted lines represent the data range.
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Fig. 3. Variance in the modeling of primary forest parameters. The

standard deviation of residuals ðB� B̂Þ from area-weighted linear

model fitting for primary forest total basal area was estimated

classwise (class width is 500 m2), and plotted against the square

root of the respective forest area A. The fitted line draws on the

variance function VarðBÞ ¼ s2
B=A (Eq. (2)).

Fig. 4. Primary forest parameters in Amazonia as derived from the biophys

of individuals N; (d) total above-ground biomass AGB.
The maps in Fig. 4 display the potential state of the

Amazon forests, i.e. they refer to the hypothetical

conditions of undisturbed primary vegetation. The

modeled basal area mainly varied between 22 and

33 m2 ha�1; top height ranged between 10 and 35 m;

and there were 400–850 individuals per hectare.

Total above-ground biomass ranged between 110

and 370 t ha�1. The maps in Fig. 4 suggest great

differences in potential forest conditions, thus

reconfirming the need for spatial explicitness in

dealing with forest conditions in Amazonia.
5. Results: secondary forest

5.1. Model fitting and assessment

The previously established primary forest models

provided the asymptotes Ya of the secondary forest

growth processes. The initial parameters at t0 = 0 for

total basal area and top heightwere zero,B0 = 0,H0 = 0.

The initial number of stems N0 was obviously different

from zero. Neeff and dos Santos (2005) described the
ical model. (a) Total basal area B; (b) forest top height H; (c) number
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initial stem density as a multiple of the asymptotic stem

density N0 = ratNNa, where the factor ratN was derived

by a weighted local regression approach on initial

succession forest inventory plots. Here, we approxi-

mated the number of individuals at initial forest growth

by the stem density of secondary forest plots at ages

2 � t � 5 year (n = 74). The ratio N0/Na came out as

ratN = 5.1, with a standard error sratN ¼ 1:1.
The shape parameters mY and cY were estimated by

minimizing Eq. (11) and fitting Eq. (8). Neeff and dos

Santos (2005)made positive experience in dropping the

power term from themodel for stemdensity (cn = 1),we

followed this procedure. In Table 2 the fitted model

coefficients are displayed along with the respective

standard errors. All coefficients are highly significant.

Fig. 5 plots the fitted secondary forest growth

models. We display the scatterplot of all available

forest inventory data along with fitted curves for

various asymptotes. Fig. 5 also displays a close-up of

three example regions (Rondônia state, Brazil; Pará

state, Brazil; Bolivia). The scatterplots of all data in

Fig. 5 feature a large variance. Only the identification

of growth trajectories (as we did in virtue of

asymptotes) providedmeans for statistical description.

When examining the case studies in Fig. 5, it must be

born in mind, that the models have not been fitted to

these observations only, but to the entire dataset. Due

to the large number of datapoints, variance in

estimation was far lower than the scatterplots suggest,

and the confidence intervals are quite narrow,

indicating a good model fit. The scattering width

does not provide any indication of the stringency of
Table 2

Growth models for secondary forest parameters in Amazonia

Y B H N

n 348 158 350

Ya Table 1 Table 1 Table 1

sYa Table 1 Table 1 Table 1

ratY0 0 0 5.1

sratY 0 0 1.1

n 273 219 270

mY 0.062 0.048 0.026

sm 0.012 0.008 0.006

cY 1.325 1.703 1

sc 0.24 0.208 0

The fitted parameters of Eqs. (8) and (10) are given: B is the total

basal area, H the forest top height, N the number of individuals. s the

standard errors, n the number of datapoints.
the relation, but the coincidence between modeled

growth trend and the mean of the observations does.

The concept of description of growth by only one local

parameter and the procedures utilized for parameter

estimation were successful.

5.2. Secondary forest growth

The models in Table 2 were applied to derive

grids of secondary forest properties at a sequence of

successional stages: 5, 10, 15, 25 years. In Fig. 6 the

results for the case of total basal area in secondary

forest are displayed. Corresponding grids could be

derived for other parameters or other ages as well.

Applying Eq. (8) with fitted coefficients allows for

computation of secondary forest parameters at

different locations and at any age.
6. Results: auxiliary relationships

6.1. Auxiliary models

Other forest parameters were described by auxiliary

relationships from the state variables.We employed the

functional forms fromNeeff and dosSantos (2005), that

were fitted to our new dataset from large areas across

Amazonia. Table 3 provides themodels for total above-

ground biomass, mean basal area, mean diameter, and

mean height. All fitted regression coefficients are

highly significant. The coefficients of determination

were high, even though in all cases we dropped the

intercepts from themodels. Standardmodel assessment

procedures provided confidence in model fit.

6.2. Potential biomass

Biomass receives special attention due to its

importance for the estimation of carbon balances.

The auxiliary relationship displayed in Table 3 was

stringent (r2 = 0.97, if the model had an intercept,

which is not significant). The form factor amounted

to F = 0.3873 with an estimated standard error

ŝF ¼ 0:0036.
Fig. 4 displays biomass of primary forest. We also

used Eqs. (14) and (15) to calculate forest biomass

and its increment for two successional stages of 5

and 15 years (Fig. 7).
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Fig. 5. Growth models for three example regions: (a) basal area B against age t for all data and in Rondônia, (b) top height H against age t for all

data and in Pará, (c) number of individuals N against age t for all data and in Bolivia. The points represent observations in field inventories. The

straight lines are estimates from fitting Eq. (8), on the left hand side corresponding to example growth trajectories, and on the right hand side

corresponding to the respective site. The dotted lines represent Monte-Carlo confidence intervals for the mean (n = 1000, a = 0.05).
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Fig. 6. Output of the model for secondary forest total basal area in Amazonia at different ages: (a) 5 years; (b) 10 years; (c) 15 years; (d) 25 years.
In 5 year old secondary forest, biomass largely

ranged between 25 and 50 t ha�1. At more advanced

successional stages the spatial pattern became more

heterogeneous. In some locations, biomass of 15 year

old regrowth exceeded 100 t ha�1. In other regions, e.g.

in the Brazilian Mato Grosso state, secondary forest

accumulated only half as much biomass at the same

age. Regrowth is fastest and most persistent in the

northern Brazilian Amazon where the biomass stocks

of 15 year old succession could exceed 150 t ha�1.
Table 3

Auxiliary relationships of other forest parameters to state variables (Neef

Parameter Unit Y(t)

AGB t ha�1 0.3873(BH)

b̄ m2 B
N

d̄1:3 cm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10191:6b̄� 28204:8b̄

2
p

h̄ m 0.9919H � 0.0229H2 + 0.0004H

Given are models for growth of forest parameters Y in time and respective in

total basal area, H (m) the forest top height, N (ha�1) the stem density. Othe

d̄1:3 the mean diameter, h̄ the mean height.
6.3. Validation

The biomass model in primary and secondary

forests was validated by testing against published

biomass inventory data from 46 locations

(Appendix A). In Fig. 8 the deviations between

predictions and field observations are plotted. In

one case the model underestimated forest biomass

by as much as 100 t ha�1. The biomass model was

negatively biased with an area-weighted mean error of
f and dos Santos, 2005)

IY ðtÞ ¼ d
dt YðtÞ

0:3873 B d
dt H þ H d

dt B
� �

N d
dtB�Bd

dtN

N2

10191:6d
dtb̄þ2ð�28204:8Þb̄d

dtb̄

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10191:6b̄�28204:8b̄

2
p

3
0:9919 d

dt H þ 2ð�0:0229ÞH d
dt H þ 3ð0:0004ÞH2 d

dt H

crement IY with fitted coefficients. State variables: B (m2 ha�1) is the

r variables: AGB is the above-ground biomass, b̄ the mean basal area,
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Fig. 7. Spatial distribution of Amazon forest biomass in secondary forest. Four maps are displayed showing standing alive above-ground

biomass AGB and its yearly increment IADB in secondary tropical forest.
ME = �10.5 t ha�1. The area-weighted root mean

squared error came out as RMSE = 38.4 t ha�1. When

regressing the fitted on the observed biomass values,

the coefficient of determination was r2 = 0.92, and the

slope was b1 = 0.92. The bias is slight, and the error

(38.4 t ha�1) is small when compared to primary

forest biomass levels (110–370 t ha�1). The deviations

are tolerable for secondary forests (20–70 t ha�1 at

age 5, 75–150 t ha�1 at age 15).

When looking closely at Fig. 8, we recognized a

tendency of the deviations to increase at higher biomass

levels. Applying a local-regression smoother to the data

clearly depicted, that errors were smaller for forests

with lower biomass than for forests with higher

biomass. Error of biomass estimation in secondary

forests was far below the previously reported RMSE of

38.4 t ha�1, that represented an average of all forest

types. We did not have sufficient datapoints at high

biomass levels to model the error, but even so,

calibration of final biomassmodeling results reinforced
confidence in the sensibility of the adopted methodol-

ogy and of the obtained results. Despite a tendency to

underestimate, the model generally describes total

above-ground biomass in different tropical forest types

with good precision in Amazonia.
7. Discussion

Tropical forests in Amazonia were described in

their growth parameters and their increment. The

presented methodology allows for computation of

any standard forest parameter at any location in the

Amazon forest. We generated corresponding grids for

the special cases of total basal area, top height,

stem density, total above-ground biomass, and their

yearly increments in primary and secondary forests

at various successional stages. Biomass predictions

were validated against independent reference data in

an exemplary manner.
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Fig. 8. Validation of biomass modeling results in primary and

secondary forest by independent biomass inventory data. Deviations

of observed AGB from predicted above-ground biomass dAGB are

plotted against predictions. Two separate smoothing lines for posi-

tive and negative deviations are also provided.
The proposed model builds on clearly stated

assumptions that itself are topics of extended

discussion in the literature. These assumptions arose

from the quality of the available data and from the

effort to employ simple mathematical relationships.

Assumption #1 assured methodological feasibility. It

also confined diversity and variability of the

ecosystems to the least possible amount. A great

deal of generalization was necessary to describe

secondary forest growth in all of Amazonia by only

one mathematical equation. Nevertheless, the

adopted approach for validation of model output by

independent reference data was convincing in the

final results. Assumption #2 related to the use of

global parameters in the mathematical description of

secondary forest growth. The issue of dependence of

growth on site history receives much attention in the

literature (e.g. Zarin et al., 2001). A given forest in the

field may grow somewhat unlike the broad averages

reported here, e.g. if the site has been subjected to

heavy prior use, if the soil has suffered from erosion,

or if maybe none of those has happened. Also, we

assumed (Assumption #3) that mature forest would

develop properties equal to that of the primary forest

before cutting. This idea underlies many pieces of
research when constructing chronosequences (e.g.

Moorcroft et al., 2001). However, the time frame in

which mature forest turns primary forest again is

vague (Saldarriaga et al., 1988). The assumptions

were indispensable for confining the diversity of

ecological patterns to the rigidness of a mathematical

modeling framework.

The adopted approach is statistically simple and

entirely empirical, as opposed to more sophisticated

models (e.g. Moorcroft et al., 2001). The structural

simplicity ensures reproduceability and easy compre-

hensiveness. The model allows for easy reparametriza-

tion to different or extended datasets. Computation is

fast and cheap. On the other hand, due to its empirical

foundation, the model performance depends on the

availability and quality of calibration data, and hence

we had to dedicate great effort to the collection of forest

inventory data from literature and from other research-

ers’ field work.

The establishment of centralized databases on

tropical forests and the proliferation of standard forest

inventory methodology still has a long way to go. In

particular, there is a need to develop databases from

permanent plot inventories in both primary and

secondary forests. We collected a large dataset with

698 sample plots. Similar endeavours to data collection

have been undertaken (e.g. ter Steege et al., 2003;

Houghton et al., 2001), and efforts are being made to

build databases on tropical forests (Malhi et al., 2002).

When using data from different sources, compatibility

of themethodologies for field work and data processing

poses a major problem. We found most reliability in

measures of total basal area, top height, and stem

density. Stem density and total basal area are quite

persistently reported in literature. We experienced

biomassmeasures in literature to be themost difficult to

deal with: biomass measures are derived (if not from

destructive methods) by one out of a number of

commonly used allometric equations; the biomass

fractions differ, and different treatments of dead

individuals or nontree species introduce additional

variance into comparison of biomass estimates. Despite

difficulties in gathering and processing data frommany

different sources, we managed to establish a repre-

sentative database for primary and secondary tropical

forests in Amazonia.

When analyzing forest biomass, we neglected a

number of factors that bear on composition of forest
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biomass. Vegetation changes rapidly and intensively

during succession inAmazonia (Uhl and Jordan, 1984),

herbaceous, shrubs, pioneer and forest tree species play

different roles in a sequence of successional phases.

There are considerable differences in wood density

between successional stages and even between primary

forests at different locations due to species composition

(Baker et al., 2004). We used only one allometric

equation, in order to avoid the variance that would have

arisen from the use of more than one allometric

equation. In some regionsbamboo, palmsor lianas exert

an important influence on the ecosystem (Houghton

et al., 2001).We disregarded these nontree species. Nor

were other biomass fractions accounted for (below-

ground biomass, woody debris, etc.). We addressed

standing alive above-ground biomass exclusively. Even

though other biomass fractions contribute significantly

to forest biomass, standing alive above-ground biomass

must be underscored to be the single most important

component for assessment of forest biomass in

Amazonia (Brown et al., 1989).

The regression models for primary forest serve as a

purely empirical algorithm for interpolation of forest

growth data. We do not aim for a physiological

analysis of ecological factors and the plants’

responses. In the literature, there are numerous

attempts to assess the effects of given biophysical

factors on structure and growth of primary and

secondary forests (ter Steege et al., 2003; Zarin et al.,

2001; Brown and Lugo, 1990). The available dataset

may allow for such an analysis as well, and future

research might embody a more profound treatment of

ecological aspects.

Previous estimates of forest growth and increment

acrossAmazonia are extremely variable and sometimes

even contradictory (Houghton et al., 2001). Houghton

et al. (2001) compared biomass maps of the Legal

Amazon and concluded that mapping results based on

ground inventories depict an accumulation of forests

with high biomass along the equator in Central

Amazonia. In this study biomass peaks in the north-

western Legal Amazon. Zarin et al. (2001) regressed

secondary forest biomass on a set of biophysical

parameters, including soil and climate variables. Their

estimates of accumulated biomass stocks (mainly 26–

50 t ha�1 at 5 years and more heterogeneous at 50–

200 t ha�1 in more advanced 10–20 year old succes-

sion) agreewith the results we obtained here. ter Steege
et al. (2003) applied regression techniques to a large set

of primary forest inventory data in order to estimate

forest diversity and density.

The consonance between their estimate of 400 and

750 individuals per hectare and the results we

obtained is remarkable. There also is agreement

regarding the spatial distribution of stem density,

which according to ter Steege et al. (2003) peaks in

southern Colombia and the western Brazilian Ama-

zonia state.

The signal-to-noise ratiowas fairly low in regressing

primary forest characteristics on biophysical para-

meters (r2 is 0.26, 0.49, and 0.31 for total basal area, top

height and stem density respectively). The biophysical

dataset only explained a small part of the observed

variation in forest characteristics at the small scale of

measurements. Obviously, large-scale information on

climate, soil conditions, etc. at grid sizes of 0.1 degrees

cannot explain in detail the variation in forest

parameters at a scale of square meters. Conversely,

variance of forest parameters drops considerably with

increasing respective forest area. The established

models do not allow for inference on small-scale

variability in the Amazon forest. However, at a larger

scale the models explain the bulk of the variation and

allow one to predict primary forest characteristics with

good precision. Therefore, the model does not aim for

being employed in a management context unless only

the prediction of general trends is required.Webuilt this

model for application in the context of large-scale

ecological processes, particularly for the estimation of

carbon balances.

The established model describes the potential and

not the actual forest conditions. Our model is useful

for predicting forest characteristics only if combined

with information on the distributional patterns of the

forest types and age distributions. Results on the actual

forest state as opposed to the potential described by

forest growth models, can be expected from the large

remote sensing campaigns. Eventually, we aim for

combining the forest growth description presented

here with land-use modeling results (Neeff et al., in

press). An integration of remote sensing, with land-use

models and a forest growth description, will even-

tually enable the spatial estimation of carbon balances

across the Amazon forest (Houghton et al., 2001); a

scientific result that has been demanded for a long time

(Schimel et al., 2001).
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ry Avail. Source

DH Prance et al. (1976)

DH Higuchi (2003)

DH Brondizio (2003)

D Lucas et al. (2002)

DH Alves et al. (1997)

DH Araujo et al. (1999)

DH Gavina Pereira (1996)

DH Schmidt (1997)

DH Steininger (2000)

DH Graça (1997)

DH da Silva et al. (2002)

DH Klink et al. (1999)

DH Moutinho and Nepstad (1999)
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Table A1 (Continued )

No. Year Area (ha) Type No. of plots Country Avail. Source

14 1999–2001 0.48 SF 3 Br DH de Carvalho et al. (2001)

15 1999–2001 8 PF 2 Br DH Camargo et al. (2003)

16 1999–2002 8.4 b 83 Br DH Neeff and dos Santos (2005)

17 2000 14 PF 14 E D Pitman et al. (2001)

18 2000–2001 2 PF 2 Br DH Brown and Esteves (2003)

19 2002 1.6 PF 11 P DH Jarvis (2003)

20 2003 3 PF 3 P D Pitman et al. (2003)

21 2003 0.52 SF 2 Br DH Coelho et al. (2003)

S 76.9 413

Plotwise data available

22 1956–1997 168.37 PF 96 Bo, Br, E, FG, P, V L Phillips et al. (2004)

23 1972–1985 9.99 PF 38 V L Veillon (1985)

24 1975 0.54 b 5 C F Fölster et al. (1976)

25 1975–1979 0.45 SF 6 V F Uhl and Jordan (1984)

26 1980 8.88 PF 6 p L Pitman et al. (1999)

27 1980 9 PF 1 Br F Rankin-de Mérona et al. (1992)

28 1984 1 PF 1 Bo L Boom (1986)

29 1985 0.28 PF 4 P F Paitán (1985)

30 1985–1986 2 PF 2 Br L Balée and Campbell (1990)

31 1986 2.07 b 23 V L Saldarriaga et al. (1988)

32 1986–1998 148.2 PF 15 Bo, Br, C, E L Malhi et al. (2002)

33 1988 1.77 b 15 Br F Uhl et al. (1988)

34 1988 3 PF 1 Br F de Lima Filho et al. (2001)

35 1989 1.5 b 2 Br F Lisboa (1989)

36 1993 0.5 PF 1 Br F Muniz et al. (1994)

37 1994 5 PF 1 Bo F Killeen et al. (1998)

38 1995 0.75 PF 1 Br F Klinge et al. (1995)

39 1998 3.75 b 6 Br F Salomão et al. (1998)

40 2000 0.75 PF 3 Br L Miranda (2000)

41 2000 0.7 b 7 Br F Vieira et al. (2003)

42 2002 7 PF 1 Br L Asner et al. (2002)

43 2002 0.4 SF 10 Br L Feldpausch et al. (2004)

44 2002 0.3 PF 2 Br L Gerwing (2002)

45 2002 17 PF 3 Br L Vieira (2003)

S 393.2 250

Plotwise biomass reference data available

46 1975–1998 25.19 b 14 Br, C, FG, V V Clark et al. (2001)

47 1980 3.25 PF 1 V V Grimm and Fassbender (1981)

48 1993 SF 6 Br V Fearnside and Guimarães (1996)

49 1993 1.4 SF 14 Br V Lucas et al. (1998)

50 1994 4.5 b 4 Br V Johnson et al. (2001)

51 1994 0.2 b 2 Br V Fujisaka et al. (1998)

52 1999 1.4 b 14 Br V Sorrensen (2000)

S 35.94 55

S 506.1 718

Plots are differentiated by forest type – PF: primary forest, SF: secondary forest, b: both; by data availability for tree-by-tree data, D: diameters,

H: heights, and for plotwise published data, F: full, L: limited, no height information, V: only biomass measurements; and by country – Bo:

Bolivia, Br: Brazil, C: Colombia, E: Ecuador, FG: French Guiana, P: Peru, S: Suriname, V: Venezuela.
Appendix B. Biophysical data sources

See Table B1.



T. Neeff / Forest Ecology and Management 219 (2005) 149–168166

Table B1

Dataset on climatological and geophysical determinants of forest growth in Amazonia

Variable Units Derived from Source

Global ecological zones Nineteen classes FAO (2001)

DE Distance to equator DD Latitude

DC Distance to coastline DD South America map

E Elevation over sea level m DEM USGS (2003)

T Long-term mean annual temperature 8C Gridded interpolation monthly station data WSAG (2003)

TD Difference between mean temperature

of hottest and coldest month

8C Gridded interpolation of monthly station data WSAG (2003)

P Long-term mean precipitation mm yr�1 Gridded interpolation of monthly station data WSAG (2003)

PD Difference between mean precipitation

of wettest and driest month

mm Gridded interpolation of monthly station data WSAG (2003)

C Long-term mean cloud cover % Gridded interpolation of monthly station data WSAG (2003)

V Long-term mean vapor pressure kPa Gridded interpolation of monthly station data WSAG (2003)

Tx Soil texture class FAO soil map GSFC (2003)

PD Soil profile depth cm FAO soil map GSFC (2003)
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Coêlho, L.S., Ramos, J.F., dos Santos, J.L., 2001. Inventário

fiorı́stico de floresta ombrófila densa de terra firme, na região do

Rio Urucu – Amazonas Brasil. Acta Amazonica 31 (4), 565–

579.

FAO, 2001. Global forest resource assessment 2000: main report.

FAO Forestry Paper 140, Food and Agriculture Organization of

the United Nations, Rome, Italy, Available online [http://

www.fao.org/forestry/fo/fra/index.jsp].
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Überschwemmungen und zur Überwachung der Rodungsdyna-

mik. DLR Forschungsbericht. DLR, Oberpfaffenhofen, Germany,

108 pp.

Silva, J.N.M., de Carvalho, J.O.P., Lopes, J.C.A., de Oliveira, R.P.,

de Oliveira, L.C., 1996. Growth and yield studies in the Tapajos

region, Central Brazilian Amazon. Commonwealth For. Rev. 75

(4), 325–329.

Sorrensen, C.L., 2000. Linking smallholder land use and fire

activity: examining biomass burning in the Brazilian Lower

Amazon. For. Ecol. Manage. 128 (1–2), 11–25.
Steininger, M.K., 2000. Secondary forest structure and biomass

following short and extended land-use in central and southern

Amazonia. J. Trop. Ecol. 16, 689–708.

ter Steege, H., Pitman, N., Sabatier, D., Castellanos, H., van der

Hout, P., Daly, D.C., Silveira, M., Phillips, O., Vasquez, R.,

van Andel, T., Duiven-voorden, J., de Oliveira, A.A., Ek, R.,

Lilwah, R., Thomas, R., van Essen, J., Baider, C., Maas, P.,
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