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Can the invaded range of a species be predicted sufficiently
using only native-range data?
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Abstract

Predictions of species invasions are often made using information from their native ranges. Acquisition of native-range
information can be very costly and time-consuming and in some cases may not reflect conditions in the invaded range. Using
information from the invaded range can enable much faster modeling at finer geographic resolutions than using information
from a species’ native range. We used confirmed presence points from the native range, southern Africa, and the invaded
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range, the southwestern United States, to predict the potential distribution of the perennial bunchgrassEragrostis lehmanniana
Nees, (Lehmann lovegrass), in its invaded range in the United States. The two models showed strong agreement for
encompassed by the presence points in the invaded range, and offered insight into the overlapping but slightly different e
niche occupied by the introduced grass in the invaded range. Regions outside of the scope of inference showed less a
between the two models.E. lehmanniana was selected via seeding trials before being planted in the United States and the
represents an isolated genotype from the native-range population. Models built using confirmed presence points from th
range can provide insight into how the selected genotype is expressed on the landscape and considers influences not
the native range. Models created from locations in both the invaded and native ranges can lead to a more complete unde
of an introduced species’ potential for spread, especially in the case of anthropogenic selection.
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1. Introduction

Non-indigenous invasive species are a major threat
to native species diversity and ecosystem function,
causing economic impacts estimated at more than US
$100 billion annually (Pimentel et al., 1999). Invasive
species have been called the “single most formidable
natural disaster threat of the 21st century” (Schnase
et al., 2002). Hence, early detection of invaders is crit-
ical: predictive models can enable early detection by
focusing research efforts to areas most likely to be
impacted.

Ecological niche modeling and climate-matching
has gained momentum recently for predicting poten-
tial invasions (Hoffman, 2001; Peterson and Vieglais,
2001; Welk et al., 2002; McKenny et al., 2003; Peter-
son, 2003; Peterson and Robins, 2003; Peterson et al.,
2003; Arriaga et al., 2004; Drake and Bossenbroek,
2004; Iguchi et al., 2004). These methods are based
on the assumption that a species’ ecological niche
can be described as then-dimensional hypervolume
of environmental conditions under which it is able to
maintain populations without immigration (Grinnell,
1917). Almost exclusively, species’ invasions outside
of their native ranges have been predicted with this
method using locations where it is confirmed to exist, or
known presence points, from their native ranges. How-
ever, using locations from the native range assumes the
same factors determine the distribution of the species in
the invaded range. Depending on the species’ introduc-
t ate.
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To explore this idea, we selectedEragrostis lehman-
niana, a perennial bunchgrass with a unique intro-
duction history to the southwestern United States. In
the 1930s, several accessions ofE. lehmanniana were
brought from southern Africa to Arizona to counteract
low plant cover and highly eroded soils resulting from
decades of overgrazing and drought (Crider, 1945).
Seed from a single cultivar (A-68) was produced and
distributed widely in Arizona and neighboring states
from the 1930s through the 1980s (Cox and Ruyle,
1986). Geographic range predictions forE. lehman-
niana made using invaded-range points may be as
effective and potentially more appropriate than those
made using native-range points becauseE. lehman-
niana populations in the United States represent a
subset of genetic variation present in African popu-
lations (Schussman, 2002). Further, very little genetic
change is expected because the individuals brought to
Arizona and used to produce seed for erosion control
were apomictic (Burson and Voigt, 1996). Apomictic
reproduction allows for the production of seeds that
are genetically identical to the maternal plant. Given
its introduction history and reproductive biology, we
believe thatE. lehmanniana represents an ideal can-
didate for investigating the variability in models pre-
dicted using native and invaded-range information for
species with little genetic variability.

We built two models to predict the range ofE.
lehmanniana to explore differences in distribution pre-
dicted using two different sets of input data. The first
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ion history, this assumption may not be appropri
n addition, acquiring data from native ranges is o
ery expensive and time-consuming, and not alw
easible. Finally, the scale at which species’ po
ial invaded-range distributions can be modeled u
ative-range data is often too coarse for specific m
gement decisions.

Because of the drawbacks associated with ma
redictions for an invasion using native-range in
ation, the question of whether confirmed prese

n a species’ invaded range can be used to suc
ully predict its eventual distribution is fertile grou
or research, remaining relatively unexplored (but

elk, 2004; Hierro et al., 2005). The purpose of th
resent study was to investigate whether invaded-r
odels could be used effectively in place of nat

ange models in the case of a purposely introdu
pecies.
odel predicted the potential distribution ofE. lehman-
iana in the United States using the ecological ni
redicted from its native range in South Africa;
econd model predicted the potential distribution oE.
ehmanniana in the United States using the ecolog
iche predicted from areas already known to be inva
ithin the United States. The results of these mo
ere then compared to independent test points in

nvaded range to test model performance.

. Materials and methods

.1. Distribution data

We collected 350 point locations ofE. lehman-
iana within South Africa, Namibia, Botswana a
esotho from the Southern African Botanical Divers
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Network’s PRECIS database, the Natal Herbarium,
the C.E. Moss Herbarium, and Kruger National Park.
To minimize spatial autocorrelation, we randomly
selected a subset of 200 well-distributed points. The
native-range study area for predictions and sensi-
tivity analysis was restricted to a rectangular grid
containing southern Africa, from 16◦S to 36◦S and
11◦E to 38◦E.

We obtained over 1000 localities of species’ occur-
rences within Arizona and New Mexico from several
sources including the Santa Rita Experimental Range,
Bureau of Land Management, The Nature Conser-
vancy, U.S. Department of Defense, U.S. Fish and
Wildlife Service, U.S. Forest Service, U.S. Geolog-
ical Survey and the U.S. National Park Service. We
randomly selected 100 of the 1000 tightly-clustered
presence points to minimize spatial autocorrelation.
The invaded-range study area was restricted to the
United States, from 23◦N to 51◦N and 66◦W to 126◦W,
then subsetted to the region roughly bounded by the
state of Arizona, from 106◦W to 115◦W and 31◦N to
37◦N.

2.2. Environmental data

The base environmental data consisted of 19 global
geographic coverages. Elevation, slope, aspect, flow
direction, flow accumulation and topographic index
(U.S. Geological Survey, 2001) were generalized to
0.1◦ resolution from 0.01◦ datasets. Data averaged
f 0.5
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and Zobler, 2000) and resampled from 0.5◦ to 0.1◦
datasets.

2.3. Modeling

The genetic algorithm for rule-set prediction
(Stockwell and Noble, 1992; Stockwell and Peters,
1999) is a niche-based model receiving wide applica-
tion. GARP is an iterative artificial intelligence-based
approach that includes several inferential tools. This
model has proven successful at predicting species’
potential distributions under a wide variety of con-
ditions (Peterson and Cohoon, 1999; Peterson et al.,
1999, 2001, 2002a,b,c; Godown and Peterson, 2000;
Sánchez-Cordero and Martinez-Meyer, 2000; Peter-
son, 2001; Feria and Peterson, 2002; Stockwell and
Peterson, 2002a,b).

The GARP model predicts species’ environmen-
tal niches by identifying non-random relationships
between environmental characteristics of known pres-
ence localities in comparison with the entire study
region. Known presence points are divided into training
and test data sets. GARP works in an iterative process
of rule selection, evaluation, testing and incorporation
or rejection to create a rule-set that best represents the
environmental conditions under which the species is
found (Peterson et al., 1999). First, GARP chooses a
method from a set of possibilities (e.g., logistic regres-
sion, bioclimatic rules), and applies it to the data. Then,
a rule is generated and its accuracy is evaluated via test
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or the period 1961–1990 were resampled from◦
atasets to 0.1◦ datasets; these data included m
nnual precipitation; maximum, minimum and m
nnual temperatures; wet days; vapor pressure;
adiation and frost days (IPCC, 2004). We create
rids representing seasonal precipitation by s
ing monthly precipitation averages for the per
961–1990 (IPCC, 2004). Seasons were defined
inter (DJFM), spring (AMJ), summer (JAS) a
utumn (ON) in the United States and winter (JA
pring (ON), summer (DJFM) and autumn (AMJ)
outhern Africa (Cox et al., 1988a). Season definition
iffer from the convention of even 3 month seas

o capture the unique seasonality of precipitation
emperature in Arizona and southern Africa. Data
epresenting soil texture in the upper soil horizon
-m) were downloaded from the Oak Ridge Natio
aboratory Distributed Active Archive Center (Post
oints intrinsically re-sampled from both the kno
tudy region and from the study region as a wh
he change in predictive accuracy from one itera

o the next is used to select among rules for the
odel. Rules may change in ways similar to the w
NA mutates, hence, the name “genetic algorithm”

mplemented here, the algorithm runs either for 1
terations or until convergence. The final rule-set
cological niche model, is then projected onto a dig
ap as the species’ potential geographic distribu
nd imported into ArcView 3.2 (ESRI 1999) using
patial Analyst extension for visualization.

.4. Native and invaded range modeling

The general steps for the modeling were:

. Build models using native-range (southern Afric
datasets, select subset of 10 best models.
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2. Project rules onto native range (southern Africa) and
invaded range (southwestern United States).

3. Build models using invaded-range (southwestern
United States) datasets, select subset of 10 best mod-
els.

4. Project rules onto invaded range (southwestern
United States) and native range (southern Africa).

Specifically, we produced 300 replicate models of
E. lehmanniana’s ecological niche using the subset
of training points for southern Africa (native range).
For each model, points were randomly split into two
equally sized training and testing datasets of available
occurrence points. To choose the best subset of the 300
native-range models, we adopted a best-subsets selec-
tion procedure (Anderson et al., 2003; Peterson et al.,
2003). Following this method, we selected the best sub-
set of models by eliminating all models that had non-
zero omission error based on independent test points,
calculated the median area predicted present among
these zero omission points, and then identified the 10
models closest to the overall median area predicted.
These 10 models were summed to create a final out-
put grid of model agreement, ranging from 0 (areas not
predicted present by any of the 10 models) to 10 (areas
predicted present by all 10 models). The rule sets from
these 10 models were projected onto the same envi-
ronmental grids for the United States (invaded range)
to generate predictions ofE. lehmanniana distribution.
This procedure was repeated using the environmen-
t cted
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FollowingPeterson and Shaw (2003), we implemented
a Chi-squared test (1 d.f.) to test the significance of the
departure from random expectations. We used 147 ran-
domly selected extrinsic points to test the native-range
models, and 183 randomly selected extrinsic points to
test the invaded-range models.

To identify environmental dimensions important for
defining E. lehmanniana’s geographic potential, we
used a series of sequential jackknife manipulations in
which all possible combinations of a reduced set (e.g.,
N − 1) ofN environmental coverages were used to gen-
erate native-range models. We assessed model quality
by exploring correlation between variable inclusion
and omission error (Peterson and Cohoon, 1999). Vari-
ables that were positively correlated with improvement
in avoiding omission error were considered to be most
important in definingE. lehmanniana’s environmental
niche.

Using the subsets of known presence points in
Arizona and South Africa selected for the mod-
els, a correlation-based principal components analy-
sis (PCA) was performed on the environmental vari-
ables associated with the points using PRIMER v5
(PRIMER-E Ltd. 2001). Prior to analysis, skewed vari-
ables were transformed using the log or square-root
transformation.

3. Results
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al base layers and unique presence points colle
ithin the southwestern United States and then

ected onto both the South African and United St
nvironmental grids to determine how well GA
ould predictE. lehmanniana’s ecological niche within
outhern Africa and the southwestern United State
exico.

.5. Model testing and visualization

We tested the predictive power of the models
verlaying extrinsic test data and tallying observed
ect predictions. The proportion of the total study ex
redicted as present (occupied by the species)

iplied by the number of extrinsic test data point
sed as a random expectation of successful predi
oints if no non-random association existed betw
rediction and test points (Peterson and Shaw, 200).
.1. Model predictivity and influential variables

Ecological niche models developed in this st
ere highly predictive of the distribution ofE. lehman-
iana based on random subsets. All of the best-sub
odels were highly statistically significant when co
ared with random expectations (χ2 tests, d.f. = 1, a
est-subsets modelsP < 0.001).

Jackknife manipulations of the different enviro
ental coverages (Peterson and Cohoon, 1999) sug-
ested that the following variables were critical
onstituting the ecological niche ofE. lehmanniana
n its native range: spring, summer and fall pre
tation; radiation; silt; annual minimum temperatu
nnual number of freezing days and elevation. In

nvaded range, slope, aspect, fall precipitation and
ation appeared to be influential in defining the pla
iche.
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3.2. Model output comparison and visualization

The two approaches used to predict the geographic
distribution of E. lehmanniana in the United States
produced results with rather dissimilar patterns, except
for the region surrounding the known presence points
(Fig. 1). The results of the two methods had strongest
agreement for the region surrounding the known pres-
ence points in the United States, centered on Arizona.
The strongest disagreements occurred in Texas and
California, regions not represented by invaded-range
points. Models generated from native-range points pre-
dict much greater distributions for these areas than
models created using invaded-range points. Areas in
the northeastern and southwestern portions of the state
are more strongly predicted by the native-range model
(i.e., possessing higher values on the final model out-

put grid), and the central portion of the state is more
strongly predicted by the invaded-range model. The
two models also show strong disagreement for portions
of Mexico.

Using the invaded range rules to predictE. lehman-
niana’s distribution in its native range provides insight
into the different rules being formulated in the two
regions. When rules generated from invaded range
points are projected onto the native range, a very small
set of the known distribution is predicted.Fig. 2 dis-
plays the area predicted occupied byE. lehmanniana
using points from the native range (top) and from the
invaded range (bottom).

The first four components from the PCA of envi-
ronmental variables for confirmed presence points in
the native and invaded ranges accounted for 80.9% of
the variance (36.4, 20.7, 15.4 and 8.5%, respectively;

F
d

ig. 1. Eragrostis lehmanniana potential distribution using native-range d
ots. Increasingly dark shades of gray indicate greater model agreem
ata (a) and introduced-range data (b). Known presence points are black
ent.
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Fig. 2. Eragrostis lehmanniana potential distribution using native-
range data (a) and introduced-range data (b). Known presence points
are black dots. Increasingly dark shades of gray indicate greater
model agreement. Hatched region in (b) represents the origin of the
A-68 accession.

Table 1). Component 1 loads most highly on temper-
ature variables. Precipitation variables contribute the
highest loadings to Component 2. Components 3 and 4
are a mix of soil variables, radiation and precipitation
variables. Separation of known presence points in Ari-
zona from known presence points in southern Africa
occur primarily along the second axis (Fig. 3).

4. Discussion

Species invasions are often predicted using informa-
tion from their native ranges (Hoffman, 2001; Peter-

Table 1
Four-component solution generated by principal components analy-
sis for predicting distribution ofEragrostis lehmanniana in Arizona,
USA

Variable PC1 PC2 PC3 PC4

Max annual temperature 0.351−0.086 0.131 −0.175
Annual temperature 0.332 −0.205 0.214 −0.101
Min annual temperature 0.272−0.298 0.269 −0.014
Summer precipitation −0.145 −0.469 −0.112 −0.011
Frost days −0.211 0.266 −0.354 0.047
Fall precipitation −0.213 −0.256 −0.227 0.365
Elevation −0.173 0.126 −0.321 −0.023
Aspect −0.006 −0.025 −0.012 0.042
Winter precipitation −0.252 0.236 0.150 −0.371
Wet days −0.314 −0.272 −0.031 −0.124
Spring precipitation −0.246 −0.384 −0.002 −0.166
Slope −0.214 0.162 0.208 −0.132
Silt −0.229 0.209 0.393 0.121
Sand 0.241 −0.094 −0.417 −0.280
Radiation 0.259 0.005 −0.310 0.364
Annual precipitation −0.276 −0.327 −0.023 −0.277
Clay −0.170 −0.163 0.283 0.566

Eigenvalue 6.19 3.51 2.62 1.44
Explained variance (%) 36.4 20.7 15.4 8.5
Cumulative variance

explained (%)
36.4 57.1 72.5 80.9

son and Vieglais, 2001; Welk et al., 2002; Peterson
et al., 2003, 2004). However, building models using
data from the invaded range is also a common prac-
tice (e.g.,Zalba et al., 2000; Higgins et al., 2001;
Underwood et al., 2004). Acquisition of native-range

Fig. 3. Principal components analysis plot of environmental condi-
tions associated with knownEragrostis lehmanniana presence points
in Arizona, USA and southern Africa. Triangles represent known
points in Africa, crosses represent known points in Arizona.
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information can be very costly and time-consuming,
and in some cases infeasible, involving extensive litera-
ture searches of sources in different languages. Records
must be geographically referenced, which is rare for
many herbaria.Peterson et al. (2003)reported spend-
ing 2 months obtaining native-range records, versus
1 h obtaining invaded-range records for a study simi-
lar to this one. For this study, obtaining native-range
data took over double the time to obtain invaded-range
points (approximately 3 months), with the advantages
that many of the native-range records were already
entered into databases and that they were in English.

Another advantage of invaded-range models is that
they usually can be built using finer-scale input data
layers. To build models in the native range and project
the resulting rules onto the invaded range requires the
same environmental layers for the two regions. Cur-
rently, most environmental layers available on a global
scale are coarse, on the order of 0.1◦ to 1◦ cells. Lim-
iting models to only one continent enables finer-scale
datasets specific to that region to be included in the
models.

Few studies have explored the performance of
invaded-range versus native-range datasets for predict-
ing invaded-range distributions. A handful of studies
have suggested that species will occupy an overlap-
ping but different set of environmental conditions in
an invaded range than in their native range (Malanson
et al., 1992; Kriticos and Randall, 2001). Kriticos and
Randall (2001)suggested that a species’ invaded range
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distribution ofE. lehmanniana. Building models from
the species’ introduced range, or a combination of both
native and introduced ranges, may be the most appro-
priate approach for purposely introduced plants. This
is especially suitable when specific traits were selected
for during the introduction, for plants with limited
genetic variation due to asexual reproduction, or for
plants where a limited number of individuals were
introduced.

Four classes of factors determine a species’ distri-
bution: abiotic conditions, biotic interactions, regions
accessible through dispersal and the capacity of the
species to adapt to new conditions (Pearson and
Dawson, 2003; Soberón and Peterson, 2005). A
species’ fundamental niche is defined as the region
where the abiotic conditions are favorable; a species’
realized niche is often the more restricted region
where both abiotic and biotic conditions are favor-
able (Sobeŕon and Peterson, 2005). This region can be
yet further minimized when dispersal is considered. In
coarse-scale studies, such as the present study, disper-
sal is proposed to play an important role in describing
a species’ distribution, and that biotic interactions play
a weak role (Sobeŕon and Peterson, 2005). In this case,
models can be interpreted in a rather straightforward
manner, as the fundamental niche and realized niche is
essentially the same region.

4.1. Model visualization and interpretation
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n invading population with low genetic variability a

ew mechanisms to evolve. For these reasons, it s
ogical to build predictive models using both nat
nd invaded-range points to explore the pote
Predictions made of the distribution ofE. lehmanni-
na in the United States show similar patterns for A
ona and the region surrounding known presence p
n the United States; the largest differences occu
exas, California and New Mexico as well as Mexi
odels created using native-range points predict m
reater distributions for these areas than models cr
sing invaded-range points. Spatial coverage of kn
resence points used in this study come from site
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by the native-range model and the central portion of the
state is more strongly predicted by the invaded-range
model.

The disagreement in the two models’ output could
be due to a paucity of points in the invaded range, as
known presence points used in this study represent only
Arizona, where confirmed presence points are most
readily available. The invaded range is believed not
to be at equilibrium yet as the species is still spread-
ing to new areas. Therefore, building a prediction using
these points is likely to represent a smaller set of envi-
ronmental conditions, resulting in a smaller area being
predicted. However, the disagreement in the two mod-
els’ output also could be due to differences in the
ecological niches realized by the native-range popula-
tions and United States populations ofE. lehmanniana.
The results of the PCA depict the range of environmen-
tal conditions occupied byE. lehmanniana in both its
native and invaded ranges. Points in Arizona occupy an
overlapping but slightly different location in multivari-
ate space than those inE. lehmanniana’s native range
(Fig. 3), which coincides with the slight disagreement
in the two models for Arizona. These results suggest
that the niche occupied byE. lehmanniana in Arizona
is narrower and slightly different than that occupied
in its native range. The invaded-range model predicts
occupation under conditions of higher temperature and
lower total precipitation as well as lower precipitation
in all seasons than the native-range model.

The conclusion that the niche occupied byE.
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model predicted a region that exhibitedlower temper-
atures than the accession’s origin.

The inconsistencies in environmental variables
selected through the jackknifing procedure provides
support to the differences in the native and invaded-
range populations, suggesting that theE. lehmanniana
population in the invaded range is limited by different
variables than those which limit its distribution in its
native range. However, an equally plausible explana-
tion could be that the variables found to be influential
in the invaded-range model may represent the condi-
tions around the species’ present range, but not the
conditions that will eventually represent the limiting
factors around the whole invaded range of the species.
As the species continues to spread in its invaded range,
it will be possible to more fully answer this outstanding
question. Ultimately, it seems from the results of this
modeling effort that different abiotic variables define
the native and invaded-range environmental niches of
E. lehmanniana.

The invaded-range model prediction of occupation
under conditions of higher temperature and lower total
precipitation argues againstE. lehmanniana’s occupa-
tion of Texas and California. Field experiments and
expert observations have repeatedly supported this
notion (Cox and Ruyle, 1986; Barkworth and Capels,
2004; B. Carr, B. Rice, F. Miller, J. DiTomaso, per-
sonal communications). These observations suggest
that northern New Mexico, California, and Texas are
on the edge of the ecological niche that the A-68E.
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he conditions in Texas and California grasslands w
o become much drier,E. lehmanniana may be able t
etter compete and could become more dominan
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Based on field observations by experts, it seems the
model predicted using invaded-range points may more
accurately represent the potential distribution forE.
lehmanniana. In addition, building two separate mod-
els revealed the difference in environmental niches
occupied by the same species in the two locations,
demonstrating that different abiotic factors define the
niche in the native and the invaded ranges. The results
of this study suggest that models built using both native-
and invaded-range points can provide insight into how
the selected genotype is expressed on the landscape.
In addition, this study demonstrates that invaded-range
models may work as effectively and can possibly pro-
vide more information than native-range models, espe-
cially in the case of a purposely introduced species.
Therefore, species with little genetic variation and well-
known introduction histories may be best modeled with
invaded-range points, minimizing the costs and time
involved, as well as increasing model accuracy.

4.2. The role of ecotype in invaded range
predictions

The specific geographic origin of an invading
species is often unknown, as is the mechanism for intro-
duction. However, if an invader is introduced from only
a portion of its native range, only the portion of the
invaded range representing the set of environmental
conditions tolerated by that introduced ecotype may
become invaded. This appears to be the case withE.
l ted
a ased
o aller
t n its
n tive
r pro-
p lity
o d to
o hen
t sti-
m ange
c ake
m

ions
m ight
i t do
n uch
a sing

these factors are necessary to augment the predictions
made by correlative models. In addition, incorpora-
tion of predictive model output with invasibility models
(Shea and Chesson, 2002) could offer insight into areas
within the predicted habitat that are most threatened by
invasion.

5. Conclusions

The results of this study demonstrate that geo-
graphic distributions of invading species built on points
occupied in the invaded range may perform as effec-
tively and can possibly provide more information than
those developed from the native range, at least for
the region encompassed by confirmed presence points
in the invaded range. In addition, predictions made
using invaded-range points can offer insight into the
environmental conditions tolerated by the invader and
inconsistencies in the ecological niche between native
to invaded ranges. The sole use of invaded-range points
to make invaded-range predictions may be the most
appropriate method for modeling distributions of inten-
tionally introduced plants, especially when the intro-
duction involved intense selection of the plant, as in
the case ofE. lehmanniana. Intense selection, asex-
ual reproduction and limited introduction numbers all
function to create a non-native population with an envi-
ronmental niche that represents a subset of the native
range niche. Since not all invaders can be predicted
t most
l the
i om
t

A

nva-
s nc.,
a nt.
T is
t bar-
i tem
( m,
a uth
A ni-
z Rita
ehmanniana, where the invaded range already affec
nd the region expected to be at risk for invasion b
n the ecotype introduced to the United States is sm

han that predicted from the entire niche realized i
ative range. The practice of using the entire na
ange to predict a species’ invaded range is inap
riate when only a portion of the genetic variabi
f the native population is introduced, and can lea
verprediction of the species’ invaded range. Yet, w
he origin of the invader is unknown, conservative e
ates may be desired, and using the entire native r

an yield “worst case” scenarios from which to m
anagement decisions.
Experiments are the best way to test predict

ade by models. Predictive models can offer ins
nto the potential spread of invasive species, bu
ot consider factors affecting species distributions s
s biotic interactions. Mechanistic studies addres
o represent a subset of the native range and
ikely occupy an overlapping but different niche in
nvaded range, it is likely best to use information fr
he plants’ native and invaded ranges.
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