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ABSTRACT

This paper describes a new high-resolution multiplatform multisensor satellite rainfall product for south-
ern Africa covering the period 1993–2002. The microwave infrared rainfall algorithm (MIRA) employed to
generate the rainfall estimates combines high spatial and temporal resolution Meteosat infrared data with
infrequent Special Sensor Microwave Imager (SSM/I) overpasses. A transfer function relating Meteosat
thermal infrared cloud brightness temperatures to SSM/I rainfall estimates is derived using collocated data
from the two instruments and then applied to the full coverage of the Meteosat data. An extensive
continental-scale validation against synoptic station data of both the daily MIRA precipitation product and
a normalized geostationary IR-only Geostationary Operational Environmental Satellite (GOES) precipi-
tation index (GPI) demonstrates a consistent advantage using the former over the latter for rain delineation.
Potential uses for the resulting high-resolution daily rainfall dataset are discussed.

1. Introduction

The availability of water in southern Africa is spa-
tially highly variable (Houghton et al. 2001). Controlled
primarily by rainfall, water resources vary from abun-
dant in the tropical zones in central Africa to scarce in
the southwest of the subcontinent. Even in countries
where water resources are generally relatively abun-
dant, interannual variability of rainfall can be consid-
erable. For instance, Mozambique experienced drought
conditions in 1998 and severe flooding in 2000 and
2001. While the importance of information on precipi-
tation is not in doubt, much of the region suffers from
inadequate measurements. In Fig. 1 the spatial distri-

bution of daily reports of rainfall from the Global Tele-
communications System (GTS) network for the period
1990 to 2000 are shown. The figure shows large areas
over much of southern Africa where there are little or
no measurements of daily rainfall, most notably over
Angola and the Democratic Republic of Congo. It is
within this data void that satellites can provide vital
information on precipitation. The following work is ap-
plied to the area of southern Africa indicated in Fig. 1
bounded by longitudes 10° and 50°E and latitudes 0°
and 35°S.

The science of satellite precipitation retrievals was
first established over a quarter of a century ago using
data from the infrared (IR; 10.6–12.6 �m) and visible
(VIS; 0.4–0.7 �m) portions of the electromagnetic spec-
trum. Techniques using these data are based on the
assumption that clouds with high tops (discernable
from low IR temperature brightness) and substantial
vertical depth (bright in the visible wave bands) are
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most likely to precipitate. This assumption is most ef-
fective for convective conditions, where the majority of
the rainfall comes from tall, strongly precipitating cu-
mulonimbus. However, even in strongly convective re-
gimes complications remain due to the presence of
high, nonprecipitating cirrus. Methods based on ther-
mal IR imagery alone rely on empirical relationships
derived between cloud characteristics (e.g., cloud-top
temperature) and surface rainfall (for a review see Kidd
2001). The Geostationary Operational Environmental
Satellite (GOES) precipitation index (GPI) (Arkin and
Meisner 1987) is perhaps the most widely used example
of such “cloud indexing” methods. The launch of the
Special Sensor Microwave Imager (SSM/I) in 1987, on
board the Defense Meteorological Satellite Program’s
(DMSP) 5D-2 spacecraft F-8 increased interest in sat-
ellite-based precipitation retrievals. Unlike techniques
based on VIS/IR measurements, passive microwave
(PM) data from SSM/I allowed a physically more direct
means of monitoring rainfall due to the attenuation of
upwelling radiation by hydrometeors themselves and
precipitation-related ice particles. The physically more
direct nature of the relationship between satellite PM
measurements and rainfall was extended further with
the launch of the Tropical Rainfall Measuring Mission
(TRMM), in 1997, with a precipitation radar (PR) in-

strument on board. A number of international inter-
comparison projects have attempted to assess the de-
gree of accuracy possible with satellite-data-based pre-
cipitation algorithms (Barrett et al. 1994; Ebert et al.
1996; Smith et al. 1998; Adler et al. 2001). These pro-
jects have shown that PM estimates produced the best
instantaneous results.

Unfortunately, although PM sensors are able to pro-
vide accurate estimation of instantaneous rain rates,
they are mounted on low earth orbiting satellites, which
provide poor temporal sampling. This means that PM
data-based techniques are most suitable for estimation
of accumulated rainfall over longer periods of perhaps
a month or more. By contrast, IR imagery from geo-
stationary satellite systems has a higher temporal reso-
lution, resulting in a reduction of the sampling errors at
all temporal scales (New et al. 2000). To account for the
limitations inherent in both the PM and IR precipita-
tion estimates combined IR–PM techniques have been
developed (Adler et al. 1993; Huffman et al. 1997; Xu et
al. 1999; Bellerby et al. 2000; Sorooshian et al. 2000;
Miller et al. 2001; Todd et al. 2001; Joyce et al. 2004).
International intercomparison studies have illustrated
that combined IR–PM techniques are capable of pro-
viding high spatial resolution rainfall estimates at daily
time scales with greater accuracy than the IR only
methods (Ebert et al. 1996; Adler et al. 2001). In this
paper we introduce a 10-yr daily rainfall dataset for
southern Africa on a 0.1° grid, produced using one of
these combined algorithms, the microwave infrared
rainfall algorithm (MIRA) (Todd et al. 2001). Although
Todd et al. (2001) provide results of an extensive vali-
dation of MIRA over a range of space/time scales, the
validation at daily time scales was restricted to a rather
limited region covered by the EPSAT gauge network
(Lebel and Amani 1999). Here, we analyze the perfor-
mance of the MIRA over the entire subcontinent of
southern Africa, and we are able to describe some of
the characteristics of daily rainfall variability on a fine
grid over the region.

2. Methodology

a. Satellite data for the MIRA product

Infrared data from Meteosat and passive-microwave-
derived rainfall data from SSM/I were used in the con-
struction of the daily rainfall rates over southern Africa
between longitudes 10° and 50°E and latitudes 0° and
35°S for the years 1993–2002 at a resolution of 0.1°. The
Meteosat high-resolution (5 km) IR data used were at
2-hourly intervals and were obtained from the Euro-
pean Organisation for the Exploitation of Meteorologi-
cal Satellites (EUMETSAT) Archive Retrieval Facility

FIG. 1. Spatial coverage of the GTS gauge dataset (1990–2000);
0.5° cells containing one or more gauges are marked.
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for the years 1993–95. The data were converted from
raw counts to brightness temperatures (Tb) and pro-
jected onto a latitude–longitude grid at 0.05°. The re-
gridding scheme consisted of converting the Meteosat
coordinates of each pixel into latitudes and longitudes
and calculating the mean Tb of those pixel values falling
within the grid box of a particular latitude and longi-
tude. Some corrupt data were identified and removed.
Additionally, Meteosat high-resolution (5 km) IR data
at 2-hourly intervals were obtained from the Tropical
Applications of Meteorology using Satellite and other
data. (TAMSAT) group at the University of Reading
for the years 1996–2002. These data had already been
converted to Tb on a latitude–longitude grid and quality
controlled.

Instantaneous rainfall estimates were obtained from
SSM/I data using the Goddard profiling algorithm
(GPROF) (Kummerow and Giglio 1994; Kummerow et
al. 1996; Kummerow et al. 2001). The GPROF algo-
rithm is an inversion-type algorithm providing esti-
mates of instantaneous rainfall rates, the vertical struc-
ture of precipitation, and the associated latent heating.
It achieves this by first constructing large databases of
cloud-model–derived profiles, then producing radiative
transfer calculations at cloud model resolution. Sensor
resolution average quantities are determined by con-
volving the high-resolution Tb field to the observed
resolution using antenna gain functions. Using a Bayes-
ian inversion method the algorithm produces a
weighted sum of profiles whose Tb signatures are simi-
lar to those observed. The time period of interest
(1993–2002) was covered by the F10 and F14 satellites,
which were subsequently intercalibrated by the com-
parison of simultaneous readings from the F10 and F14
and the coincident overlap of the F11, F13, and F15
satellites. The data were obtained at a resolution of
0.5°. In addition to instantaneous passive-microwave–
based rainfall data, a monthly diurnally corrected
SSM/I rainfall product was used to normalize the daily
rainfall data (Andersson et al. 2003). The diurnally cor-
rected dataset was derived with the aid of data from the
Tropical Rainfall Measuring Mission. Unfortunately
TRMM data are only available from 1997. There are
two sensors on board TRMM that provide information
on rainfall; a passive microwave radiometer of the same
type as the SSM/I, known as the TRMM Microwave
Imager (TMI), and an active microwave sensor, the
precipitation radar. For each of these instruments there
are operational algorithms, which provide estimates of
rainfall. The TMI rainfall is estimated using the God-
dard profiling algorithm (Kummerow et al. 2001). In
addition, a rainfall product based on a combination of
PR and TMI is available, where the PR algorithm is

optimized for the distribution of rainfall particle sizes
given by TMI. However, the PR has a rather narrow
swath (220 km) such that the sampling in time is very
limited. The TRMM satellite is low earth orbiting, with
a non-sun-synchronous orbit such that every part of the
diurnal cycle is sampled for each location on the earth’s
tropical surface over the course of 23 days at the equa-
tor and 46 days at the highest latitudes (38°N and 38°S).
Rainfall estimates from TRMM if averaged over suffi-
cient time are therefore free from systematic sampling
error associated with the diurnal cycle of rainfall. Re-
moval of diurnal bias associated with the SSM/I-based
estimates in the monthly dataset was achieved by cal-
culating the ratio of the average rainfall for the region
from the SSM/I estimates (derived only at SSM/I over-
pass times) to the average daily rainfall calculated from
TMI for each month and removing this from the SSM/
I-based estimates.

In addition, to ensure the diurnally corrected SSM/I
monthly rainfall estimates have zero bias with reference
to a benchmark, cotemporal and collocated estimates
of rainfall from TRMM PR and SSM/I were compared.
The mean bias was derived and removed.

b. The MIRA algorithm

The following describes the step-by-step process used
to construct the MIRA daily rainfall dataset.

1) For every 0.5° � 0.5° grid cell over the study region,
for each month from 1993 to 2002, the cloud-top Tb

from Meteosat and the PM instantaneous rain rates
from SSM/I were binned for samples where the Me-
teosat Tb and PM rain-rate data were observed
within 30 min of each other. This gives a large
sample of Tbs and associated rain rates within each
grid cell from which to derive a Tb to rain rate trans-
fer function, although a significant amount of lower-
resolution PM data is not used due to the 30-min
threshold for acceptance. The PM rain rate to Tb

transfer function is calculated using a method
known as histogram matching and described below.

2) For each grid cell the histogram of both Tb and rain
rate for an area of 2.5° � 2.5° centered on that grid
box was derived. In some cases, the number of
points in the rain-rate histogram was insufficient to
build a representative histogram (�200), in which
case the 2.5° grid box was allowed to expand sym-
metrically in steps of 0.5° in each direction until suf-
ficient points were obtained. This was rare except in
very dry areas in the drier seasons where the area
would expand until it encountered an area of higher
rainfall. While the choice of the exact number of
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points used to construct the histogram is arbitrary,
we found too few values gave a stepped function,
and with too many the box had to expand to find the
required amount of values, meaning that the rela-
tionship is gathered over a larger area.

3) The histograms of Tb and rain rate were converted
to cumulative histograms by integration. Specifi-
cally, the histogram of Tb (number of observations
of each Tb plotted against Tb) was converted to the
proportion of data points that exist below a certain
Tb plotted against Tb. Similarly the histogram of rain
rate (number of observations of each rain rate plot-
ted against rain rate) was converted to the propor-
tion of data points that exist above a certain rain
rate plotted against rain rate. It should be noted that
in coastal locations Tbs over land and Tbs over ocean
are included in the same histogram with the assump-
tion that the relationship between rain rate and Tb is
the same for both surface types.

4) The histogram matching method was applied,
whereby the Tb associated with each rain rate is the
Tb at which the cumulative histogram of Tb is equal
to the cumulative histogram of the rain rate. For
example, where the value of each histogram is 0.5,
the Tb and the rain rate can be read off and associ-
ated with each other. Over all values, this gives the
transfer function f, where rain rate � f(Tb) for each
0.5° grid box for each month. Figure 2 shows an
example of a Tb–rain rate relationship.

5) The spatially (0.5°) and temporally (monthly) vari-
able function f was then applied to the Meteosat IR
Tb data at full resolution (2 hourly and 5 km) for the
full region (10° to 50°E and 0° to 35°S and 1993–
2002). The final rain rates were averaged over each
day, binned to 0.1° by simply averaging of 0.05° grid
box values and normalized such that the mean
monthly rainfall estimates over the entire study area
were equal to the mean monthly rainfall estimates
from the diurnally corrected SSM/I dataset de-
scribed above. The resulting dataset is referred to as
the MIRA rainfall estimate dataset.

6) An additional dataset of precipitation estimates us-
ing the GPI was created for comparison. The dataset
was constructed by applying the simple rainfall al-
gorithm to the Meteosat IR Tb data at full resolution
(if Tb � 235 K then rain rate � 0 and if Tb � 235 K
then rain rate � 3 mm h�1). Again, the final rain
rates were averaged over each day, binned to 0.1°
and normalized such that the mean monthly rainfall
estimates over the entire study area were equal to
the mean monthly rainfall estimates from the diur-
nally corrected SSM/I dataset. The resulting dataset
is referred to hereafter as the normalized GPI.

The sampling resolution for the MIRA product (10
km) is finer than its effective cell size (0.50°). The prod-
uct was generated at a high spatial resolution in order
to provide the user with maximum flexibility. For ex-
ample, rainfall estimates may be aggregated to yield
mean areal precipitation within a set of river basins or
subbasins. Of course, such an aggregation process will
reduce the variability of the resulting precipitation
product to some extent. However, this effect will be
offset by the spatial correlations present between
neighboring 10-km estimates. Validation statistics pre-
sented in this paper are for a 0.5° spatial resolution
aggregated product.

c. Validation data and methods

Validation of MIRA estimates at subcontinental
scales requires a spatially extensive set of independent
data at daily time scales. The most appropriate source
of such data is the GTS rain gauge dataset. This dataset
contains daily rainfalls interpolated to 0.5° for the Af-
rican continent. Each 0.5° � 0.5° grid box contains the
interpolated daily rainfall total and the number of
gauges contained within that grid box. The gauge den-
sity is greatest in South Africa and variable elsewhere,
with some large areas exhibiting very limited gauge
coverage, notably, Angola, Democratic Republic of
Congo, and Mozambique. This can introduce serious
error when interpolating into a significant void using
gauges in different climate regimes. In this study, there-
fore, only data grid boxes with nonzero numbers of
gauges were used. The proportion of grid cells with one
or more gauges within the area of interest was 5%, with
only 0.5% having more than one gauge.

For comparison, the MIRA and normalized GPI es-
timates were smoothed and resampled to 0.5°. For each
day, the coincident grid boxes of MIRA, normalized
GPI, and GTS (where nonzero numbers of gauges ex-

FIG. 2. The Tb–rain rate relationship for January 1993 for a grid
cell located in South Africa.
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isted) were collated and comparisons made between
MIRA/GTS and normalized GPI/GTS. The number of
coincident points for analysis per day was of the order
200–300. First, a contingency table was constructed and
a statistical analysis performed for each year. The con-
tingency table compares estimated (MIRA, normalized
GPI) and observed (GTS) rainfall in the following
ways. For some rainfall threshold (0.01 mm h�1) each
point is either estimated to rain or not and is either
observed to rain or not. This gives four outcomes: es-
timated rain/observed rain; estimated rain/observed no
rain; estimated no rain/observed rain; estimated no
rain/observed no rain. These are referred to respec-
tively as hits (h), false alarms ( f ), misses (m), and zero
zeros (z). Various scores assessing the skill of the rain-
fall algorithm to identify rain can then be derived from
these. The following measures are popularly used: ac-
curacy; bias; probability of detection (POD); false
alarm ratio (FAR); critical success index (CSI); equi-
table threat score (ETS); Hansen and Kuipers discrimi-
nant (HK); Heidke skill score (HSS); odds ratio (OdR)
(Stanski et al. 1989). The following are the equations
used in the analysis:

Accuracy � �h � z	��h � f � m + z	,

Bias � �h � f 	��h � m	,

POD � �h	��h � m	,

FAR � � f 	��h � f 	,

CSI � �h	��h � f � m	,

ETS � �h � expected_correct	��h � m

� f � expected_correct	,

where

expected_correct � � f � h	�m � h	��z � f � m � h	,

HK � �h	��h � m	 � � f 	�� f � z	,

HSS � 2�hz � mf 	�
�h � m	�m � z	

� �h � f 	� f � z	�,

OdR � �hz	��mf 	.

3. Results

a. IR rain/no-rain threshold values

During application of the algorithm, the function rain
rate � f(Tb) was obtained. Within this function we have
information about the threshold Tb, that is, the tem-
perature below which we assume rain occurs. This
threshold temperature varies spatially and temporally,
reflecting the variable relationship between cloud-top

temperature and surface rainfall, and is in contrast with
the fixed value of 235 K used in the GPI. This threshold
temperature shows a marked seasonal cycle, being
higher in the local summer. Over the southern African
region as a whole the threshold temperature has an
annual mean of 241 K and a seasonal range of approxi-
mately 20 K. Figure 3 shows the mean spatial variation
in threshold temperature for December–February
(DJF) over the 10-yr period. There is structure to the
pattern of IR thresholds indicating spatially coherent
variations in the relationship of cloud-top temperature
and rainfall and therefore the cloud–rainfall processes.
This structure does not appear to be associated with
that of the mean rainfall (see Fig. 5 later). There is also
considerable interannual variability in the magnitude of
IR thresholds in the DJF wet season, although the spa-
tial patterns remain relatively consistent (not shown).

b. Comparison with ground-based GTS rain gauge
data

Rain gauge data present the only ground-based vali-
dation source for satellite-based rainfall estimation
over the majority of southern Africa. Unfortunately
rain gauges are not without error themselves when
measuring precipitation due to interactions of the
gauge and their microenvironment. Additionally, as
mentioned above, gauge data over much of the subcon-
tinent are sparsely distributed. A number of authors
have explored the issue of the contribution of subsam-
pling by gauges to gauge–satellite differences (Ciach et
al. 2003; Gebremichael et al. 2003). In this study we
have made no attempt to separate gauge and satellite
errors and future research should attempt to decon-

FIG. 3. Threshold temperature (mean, K) for DJF.
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volve the contributions to differences between MIRA
and gauge representations of the rain field. Part of the
error apparent in the MIRA data will arise from the
PM data used to define the Tb–rain rate relationship. A
large number of PM rainfall algorithms have been de-
veloped for use with SSM/I and TMI data with different
error characteristics. The GPROF algorithm as applied
to the TMI has been shown to overestimate rainfall
over land, as shown by a positive bias of 17% when
compared to rainfall measures derived from 6700 rain
gauges globally, produced by the Global Precipitation
Climatology Centre of Deustcher Wetterdienst (Kum-
merow et al. 2001). However it should be noted that the
majority of these rain gauges were located over indus-
trialized countries.

Table 1 presents the overall statistics of MIRA and
normalized GPI versus the GTS dataset, for a typical
year 2000. It can be seen from this table that the MIRA
method is better than the normalized GPI at identifying
raining from nonraining grid cells. It can also be seen
(from the value of bias and OdR) that MIRA tends to
overestimate rainfall area whereas normalized GPI
tends to underestimate. This leads to MIRA having a
greater POD and FAR. The HSS shows the fraction of
correct estimates after eliminating those that would
have been correct due purely to random chance. A
value of 0 indicates the estimated is random, whereas a
value of 1 indicates perfect agreement. Any value
greater than 0 therefore indicates the method is
“skilled.” In this case, the result from MIRA is better
than that for normalized GPI, a condition that holds for
all years with similar improvement in MIRA compared
to normalized GPI. Figure 4 shows the MIRA–GTS
daily POD for 2000. From this figure it can be seen that
there is a far better agreement between gauges and
satellite estimates in the wetter months than in the drier
ones. This is because of the tendency to “overpredict”
(seen in a higher bias) when it is very dry, leading to a
high FAR in these months. Similarly, plots of CSI, ETS,
HK, and HSS show better agreement in the wet months.
The results for normalized GPI–GTS are visually very
similar. It should be noted that the results of this com-
parison are not greatly affected by the rain: no rain
threshold chosen with further processing showing little
difference between a threshold of 0.01 and 0.1 mm h�1.

Table 2 shows the values of the overall HSS for the 8
yr of the survey where the gauge data existed. It can be
seen from this table that there is a positive correlation

FIG. 4. MIRA daily POD (2000).

TABLE 1. Results of contingency table analysis for MIRA and
normalized GPI with GTS for the year 2000.

MIRA–
GTS

GPI–
GTS

Accuracy 0.75 0.71 Range 0–1, perfect score 1
Bias 1.14 0.85 Range 0–infinity, perfect score 1
POD 0.71 0.60 Range 0–1, perfect score 1
FAR 0.38 0.29 Range 0–1, perfect score 0
CSI 0.50 0.48 Range 0–1, perfect score 1,

0 indicates no skill
ETS 0.31 0.25 Range �1/3–1, perfect score 1,

0 indicates no skill
HK 0.49 0.40 Range �1–1, perfect score 1,

0 indicates no skill
HSS 0.47 0.40 Range �infinity–1, perfect score 1,

0 indicates no skill
OdR 8.46 5.91 Range 0–infinity, perfect score

infinity, 1 indicates no skill
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between the HSS skill of both satellite methods and the
mean number of grid boxes used in the comparisons
(shown in Table 2 and dependent on the number of
reporting gauge stations). A higher number of gauges
leads to a greater agreement between satellite methods
and GTS gauge observations. This is likely due to the
higher number of gauges reducing the problems of spa-
tial sampling in the gauge dataset. It also indicates that
a proportion of satellite “errors” in relation to the GTS
gauges is associated with poor gauge density in the vali-
dation GTS dataset. An alternative explanation for the
apparent positive correlation between gauge popula-
tion numbers and HSS scores may be that the addi-
tional grid squares brought into the validation by the
increase in gauge population are systematically located
in “easier” regions.

Overall, the MIRA algorithm gives a statistically sig-
nificant (at the 95% confidence level) accurate estimate
of rain occurrence, as does normalized GPI. To assess
whether MIRA is significantly better at rainfall delin-
eation, than normalized GPI, the HK scores for the two
algorithms were compared. By assuming the false alarm
and miss rates of the algorithms are independent, the
standard error in the HK skill score is the root of the
sum of the squared standard errors in the miss and false
alarm rates. This leads to a standard error in HK skill
score of �0.01 due to the large number of “events” over
the course of a year. Thus it can be concluded that the
skill score suggests that MIRA is statistically signifi-
cantly better than normalized GPI at estimating rain
occurrence, at above the 95% confidence level.

The ability of MIRA to capture the spatial variation
of rainfall can be seen in Fig. 5, which shows the mean
monthly rainfall over southern Africa (SA) during a
representative wet-season month (January 1999) de-
rived from MIRA compared with that estimated by the
normalized GPI (Fig. 6). It can be seen that MIRA
appears to identify finer detail in the spatial structure of
rainfall. Qualitative comparison with the coincident
GTS (Fig. 7) data indicates that the spatial structure of

the MIRA estimates better represents that of the GTS
gauge data than does the normalized GPI. This is per-
haps most notable over eastern SA between 30°–35°E
and 10°–25°S and over coastal eastern South Africa,
where gauge density is relatively high. Notably, there is
weaker agreement between both MIRA and normal-
ized GPI with GTS in regions where the density of
gauges is low (see Fig. 1) over Angola and the Demo-
cratic Republic of the Congo for example. Figure 8
shows a scatterplot of the MIRA estimates of rainfall
for the year 2000 verses those from the GTS gauges at
0.5° for grid squares where there is at least one rain
gauge present.

FIG. 5. Mean rainfall over southern Africa for January 1999
from MIRA (mm h�1).

FIG. 6. Mean rainfall over southern Africa for January 1999
from normalized GPI (mm h�1).

TABLE 2. HSS results for MIRA and normalized GPI with GTS
against number of GTS stations used in the comparison.

HSS
MIRA–GTS

HSS
GPI–GTS

Gauges used
(daily mean)

1993 0.46 0.34 187
1994 0.48 0.34 192
1995 0.34 0.30 153
1996 0.40 0.30 170
1997 0.42 0.40 199
1998 0.47 0.37 252
1999 0.46 0.35 223
2000 0.47 0.40 227
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When comparing MIRA and normalized GPI daily
rainfall amounts of rainfall at 0.5° resolution, MIRA
shows less improvement on normalized GPI. For the
year 2000, MIRA has a correlation coefficient of 0.38, a
mean absolute error of 0.12, and a root-mean-squared
error of 0.37 compared with the GTS data, while nor-
malized GPI displays a correlation coefficient of 0.23, a
mean absolute error of 0.13, and a root-mean-squared
error of 0.34. However in the year 1999, normalized
GPI performs better than MIRA when compared to the

GTS data with a correlation coefficient of 0.26, a mean
absolute error of 0.11, and a root-mean-squared error
of 0.27. MIRA statistics for 1999 are a correlation co-
efficient of 0.22, a mean absolute error of 0.11, and a
root-mean-squared error of 0.34. This suggests that
while the MIRA algorithm is better at delineating rain
from no rain (as indicated by the skill scores), it does
not offer any consistent improvement over normalized
GPI in terms of estimating rain amount.

4. Potential applications of the dataset

The MIRA algorithm was used to generate daily
rainfall maps at 0.1° over southern Africa for the years
1993–2002. These maps have higher spatial and tempo-
ral resolution than the SSM/I monthly 0.5° maps often
used for rainfall analysis over these gauge data-sparse
areas. Whilst, the rainfall estimated from the MIRA
algorithm is by no means perfect, owing to the physi-
cally indirect relationship between cloud-top tempera-
ture and rainfall, the technique dynamically accounts
for variations in cloud–rainfall relationships by using a
variable calibration scheme, with useful improvements
in accuracy relative to the IR-only normalized GPI.
The resulting MIRA rainfall product has a number of
potential applications, some of which are discussed be-
low.

It is possible with this dataset to record high rainfall
events over time periods short enough to be important
for studies of localized flooding. Figure 9 shows the

FIG. 7. Mean rainfall over southern Africa for January 1999
from GTS (mm h�1).

FIG. 8. Scatterplot of MIRA vs rain gauge estimates of daily rainfall at 0.5° spatial
resolution for the year 2000, for grid cells where there is at least one rain gauge present.
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average rainfall rate for a high rainfall event captured
between 21 and 25 February 2000. This period coin-
cides with Hurricane Eline entering Mozambique from
the Indian Ocean and combined with high rainfall in
the preceding weeks, resulting in widespread flooding
and over a million residents becoming homeless in the
region. The MIRA-integrated rainfall map clearly
shows how Mozambique bore the brunt of the disaster,
and the high spatial resolution allows the integration of
rainfall over river catchment subbasins.

It is also possible with a daily dataset to analyze sta-
tistical properties of the data such as the variability of
the daily rainfall distribution. Figure 10 shows the co-
efficient of variation (COV) of the daily rainfall over
southern Africa for the entire period 1993–2002. The
COV over the Mozambique Channel is higher than sur-
rounding areas, possibly associated with the passage of
tropical cyclones in this region.

Additionally, hydrological models of large basins re-
quire estimates of rainfall at the highest possible spa-
tial–temporal resolution. The MIRA dataset has al-
ready been tested in a hydrological modeling applica-
tion for the Okavango River in western southern Africa
(Andersson et al. 2003). Moreover, hydrological mod-
els can be designed to utilize information of the fre-
quency and persistence of rainfall to constrain esti-
mates of evapotranspiration. For example, interception
and evapotranspiration losses can be suppressed during
rainfall of extended duration. We have derived the
probabilities of a rain day followed by a rain day and a
rain day followed by a dry day for each grid cell. Figure
11 shows the difference between the probability of a
rain–rain day in an El Niño event minus the same prob-

ability in a La Niña event for the entire period 1993–
2002. A definite spatial pattern is evident with a higher
probability of a rain day followed by a rain day in an El
Niño year in the north of the region and a higher prob-
ability of this in the south of the region for La Niña
years, reflecting the spatial variation of teleconnections
with El Niño–La Niña in the region (Camberlin et al.
2001).

Figure 12 shows the number of dry spells (at least 5
days of rainfall of less than 0.01 mm h�1) between 1993
and 2002 for each 0.5° grid cell in DJF. DJF is the
dominant wet season over the region and therefore the

FIG. 9. MIRA-estimated mean rainfall between 21 and 25 Feb
2000—a high rainfall event (mm h�1).

FIG. 10. Coefficient of variation of the daily rainfall over
southern Africa for the period 1993–2002.

FIG. 11. Difference between the probability of a rain–rain day in
an El Niño year minus the same probability in a La Niña year for
the period 1993–2002.
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major growing period for rain-fed agriculture. Dry pe-
riods within the wet season are important for plant sur-
vival and growth. Thus the figure shows the areas
where the wet season is prone to interruption. It should
be noted that with this definition of dry spells, regions
where there are possibly long dry spells without inter-
ruption, such as the Namibian Desert, show low num-
bers of dry spells.

5. Summary

A high-resolution 0.1° daily rainfall dataset has been
created over southern Africa for the years 1993–2002.
This dataset may be used in climate and weather studies
where high spatial resolution is important or where a
statistical approach requires the use of daily data. A
comparison with ground-based rainfall measurements
(GTS) indicates that the MIRA dataset compares more
favorably with GTS measurements than the normalized
GPI rainfall estimates in its ability to delineate rain
from no rain. However no significant improvement is
noted in the ability of the algorithm to distinguish rain
rate, compared to normalized GPI. A number of ex-
amples of the applicability of the dataset were shown.
See Layberry et al. (2005) for the southern Africa
dataset.
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