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[1] Using the global terrestrial NPP and climate data from International Satellite Land
Surface Climatology Project Initiative II (ISLSCP II) and additional NPP data, we
validated the NPP simulations and explored the relationship between NPP and climate
variation in a global two-way coupled model AVIM-GOALS. The strength of this study is
that the global simulations produced will enhance interactive climate and vegetation study;
however, the weakness is that the NPP distribution is not fully reproduced in some
regions, because of the coarse model resolution and climate biases. Global NPP is spatially
consistent with IGBP NPP and MODIS data, though there is a discrepancy in NPP
(significantly lower values) for boreal forests and tundra, due to the underestimated
temperature. The NPP distribution in China indicates agreement with IGBP data, but the
IGBP data in northeast China (around 48°N) seem to be slightly high in contrast with
other modeled and estimated NPP. The spatial structure of NPP in USA and Australia
roughly corresponds to the IGBP NPP data and GPPDI Gridded data, and a possible lower
value of GPPDI data in central Australia exists, in contrast with other NPP data. The
globally averaged NPP of 447.47 g C m~> year~! is close to the 450.42 g C m~? year™!
from IGBP data. The global relative error of simulated NPP against IGBP data is

about 20% and is comparable to other global biogeochemical models. The meridional
variation of globally zonal mean NPP corresponds more to the meridional change of
precipitation than temperature. The global NPP for all vegetation types is highly

statistically significant in correlation with precipitation.
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1. Introduction

[2] Net primary production (NPP) is an important vari-
able for global carbon cycle and the feedback between
terrestrial ecosystems and atmosphere, and many studies
have addressed the view [Ciais et al., 1995; Cramer et al.,
1999; Ruimy et al., 1999; Running et al., 1999; Nemani et
al., 2003; Williams et al., 2005]. NPP integrates climatic,
ecological, geochemical, and human influences on the
biosphere [Nemani et al., 2003]). NPP is the difference
between total photosynthesis (Gross Primary Production,
GPP) and total plant respiration in an ecosystem [Clark et
al., 2001]. The process regulating NPP at regional to global
scales can only be addressed with observational studies and
models [Williams et al., 2005], and modeling is required
when measurements cannot provided a complete view of
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biospheric biogeochemical activity [Running et al., 1999].
There have been many biogeochemical models designed to
simulate NPP, so the observed or field data are needed to
calibrate and validate the models. Scurlock et al. {1999] also
cited the importance of obtaining high-quality data of NPP
from around the globe for comparing various models.
Terrestrial NPP data are more widely available than other
estimates of biosphere-atmosphere exchanges of carbon
such as GPP and net ecosystem exchange (NEE), but there
are significant problems with inconsistency in measurement
techniques between NPP studies separated in space and time
[Scurlock and Olson, 2002]. As a result, although there are
many site-level or point NPP field measurements, the data
cannot be used as direct validation of NPP simulations at
regional or global scale without the appropriate scale
transformation [Running et al., 1999; Scurlock and Olson,
2002; Zheng et al., 2003; Ahl et al., 2005]. A consistent
NPP data set suitable for global NPP model validation is
long overdue [Zheng et al., 2003]. Compared to the more
studied model validation of climate simulations using ob-
servation data, the simulated NPP needs more validations
because of the relatively insufficient global data. Thus much
work needs to be carried out at the regional and global scale
for model validation of NPP.
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[3] Many studies have been implemented on the NPP
simulations with the spatial scale ranging from some sites
and local plots, to the entire country and continent for some
ecosystem types, and even to global distribution like Field
et al. [1998] and Cao et al. [2005]. The studied temporal
scale of terrestrial carbon cycles can be arranged in order as
weekly, seasonal, monthly, annual, decadal to geological
time [Zeng, 2003] (geological time including such examples
as the Holocene [Wang et al., 2005] and the last glacial
maximum [He et al., 2005]). Projected simulations under
several emission scenarios have been made, e.g., the work
of Cox et al. [2000], to explore the long-term carbon
absorbed by global terrestrial ecosystems from the year of
1850 to 2100. The NPP model intercomparison work
[Cramer et al., 1999] can compare the simulated model
results and reveal the spatial change of the global terrestrial
carbon cycle, however, the same problem of the less model
validation still exists because of the inadequate gridded NPP
field data.

[4] In recent years, NPP, which is representative of the
terrestrial carbon cycle has been incorporated into general
circulation models (GCMs), and the terrestrial carbon cycle
has been linked to climate change. The physical and
biological processes at the land surface coupled to GCMs
has been called two-way coupling [Dan et al., 2005]. The
two-way coupled model AVIM-GOALS integrates the var-
jation of the terrestrial carbon cycle and climatic change
such that the interactive biosphere and atmosphere is
revealed, compared to the prescribed structure of terrestrial
vegetation like leaf area index (LAI) of some land surface
models [Dan et al., 2005].

[s] The objectives of this paper are to (1) use modeled
and estimated NPP data sets including the IGBP Global
NPP Intercomparison Data and GPPDI Gridded NPP Data
to intercompare and validate the NPP simulations at
regional (the range of a country, such as China, USA and
Australia) and global scales, respectively; (2) reveal the
strength and weakness of the IGBP and GPPDI NPP data in
the spatial distribution; and (3) explore the relationship
between NPP and climate variation in the climate-
vegetation coupled model.

2. Model and Data Descriptions
2.1. Atmosphere-Vegetation Interaction Model (AVIM)
[6] AVIM [Ji, 1995] is the land surface model incorpo-
rating the physical [Ji and Hu, 1989} and ecophysiological
processes. The energy, momentum, and water exchange
between land and air is linked with vegetation growth
processes and terrestrial ecosystem carbon cycles, which
enables the interaction between terrestrial ecosystems and
climate. The model has one canopy layer and ten uneven
soil layers, and the physical and chemical boundary con-
ditions in the deepest soil layer are assumed constants. The
surface hydrological processes include the interception of
precipitation and drainage, evapotranspiration from the
canopy and evaporation from the ground, surface runoff
and infiltration, snowpackage and melting, and water trans-
fer into atmosphere. The canopy photosynthesis, plant
respiration and the soil carbon loss through respiration are
related to the temperature of the canopy and soil. The
vegetation morphology is affected by the accumulation
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and consumption of dry matter, and the surface dynamical
parameters (such as albedo, zero plane displacement and
roughness) as well as resistance parameters, including the
stomatal resistance, are affected by the physiological
processes.

[7] The NPP equation can be expressed as follows:

NPP = GPP — R, ~ R, (1)

where GPP is the gross photosynthesis rate excluding
photorespiration, R, is the maintenance respiration rate and
R, is growth respiration rate. GPP is a function of: CO;
concentration in the stomata, foliage temperature, leaf water
potential, the photosynthetic active radiation at the top of
canopy and the leaf area index. R,, is function of biomass
and vegetation tissue temperature. Ji [1995] has described
the details of all the functions.

{s] AVIM has simulated the spatial pattern of NPP and its
temporal variation at a seasonal/interannual scale in many
basic ecosystems including forests, grasslands, shrublands
and croplands [Ji and Yu, 1999; Li and Ji, 2001; Lu and Ji,
2002, 2006]. The simulations reveal the satisfactory varia-
tion values of NPP related to changes of air temperature and
precipitation. AVIM has participated in the Ecosystem
Model-Data Intercomparison (EMDI) organized by IGBP
project on Global Analysis, Interpretation and Modeling
(GAIM), and the simulated NPP of AVIM agrees well with
the measured NPP. The intercomparison result can be found
in the figure “EMDI Initial Results: 11 models and field
NPP data at 87 sites” and AVIM is the lefimost model,
which is detailed at the following website: http:/gaim.
unh.edu/Structure/Intercomparison/EMDV/phasellinfo/
ESA_EMDI p2.ppt.

2.2. Global Ocean-Atmosphere-Land System (GOALS)
and the Coupling Strategy

[s] The TAP/LASG GCM GOALS has 9 layers in the
atmosphere and is truncated rhombically at the 15 wave
numbers [Wu et al., 1996, 1997]. The reduction of a
standard atmosphere proposed by Zeng [1963] and Phillips
[1973] was used in the dynamical framework to improve the
GCM performance. A new k-distribution radiation scheme
[Wang et al., 2000] was introduced to make the cloud
radiation processes more reasonable. The horizontal resolu-
tion is 7.5° longitude by 4.5° latitude. The 1979-1988
monthly mean climatologically observed SST and sea ice
were taken from the Atmospheric Model Intercomparison
Project (AMIP). The integration time step is 30 min and the
land-air coupling is synchronous.

[10] The GOALS GCM developed at the Institute of
Atmospheric Physics/State Key Laboratory of Numerical
Modeling for Atmospheric Sciences and Geophysical Fluid
Dynamics (IAP/LASG), performances well in global cli-
mate simulations, especially for the large-scale features and
seasonal cycles [Liu et al., 2001]. It has been used to study
such climate changes as the maintenance mechanism of the
subtropical anticyclone [Liu et al., 2004]. This model was
cited in the third TPCC report [Houghton et al., 2001] and
used by other scientists to make the future climate projec-
tion [e.g., Coquard et al., 2004].

[11] For the purpose of terrestrial ecosystem simulations,
the resolution of GOALS is coarse. The land surface model
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Table 1. Global Vegetation Classifications [Dan et al., 2005]

Index Types

1 tropical rainforest

2 broad leaf deciduous trees

3 broad leaf and needle leaf trees

4 needle leaf evergreen trees

5 needle leaf deciduous trees

6 broadleaf trees with ground cover
7 ground cover only

8 broadleaf shrub with ground cover
9 broadleaf shrubs with bare soil

10 dwarf trees with ground cover
11 bare soil

12 crops

13 ice

0 water

AVIM is designed at relatively fine grid of 1.5° by 1.5°, and
the interface coupling adopts the nesting technique to link
the two models. In other words, a unit grid of the GCM is
subdivided into 15 grid cells down to the surface. The two-
way coupled model AVIM-GOALS has run for 30 years,
and we selected the last 15 years outputs for analysis.

[12) The initial values at land surface were derived from
climatological averages of the offline run. The global
terrestrial ecosystems were classified into 13 types listed
in Table 1 [Dan et al., 2005], and the land cover data was
derived from Dorman and Sellers [1989] with modifications
for China according to the China Vegetation Map. The
global soil texture data were taken from Zobler [1986] with
6 types of classification.

2.3. Climate Data, IGBP NPP Intercomparison Data,
GPPDI Gridded NPP Data, and Other Modeled and
Estimated NPP Data

[13] In this paper, the global terrestrial surface air tem-
perature and precipitation data were provided by the Inter-
national Satellite Land Surface Climatology Project
Initiative II (ISLSCP II), and the data originated from the
Climatic Research Unit (CRU), University of East Anglia.
The data set is called CRUO5 Mean Monthly Climatology
(1961-1990) and its annual average is abbreviated to CRU
temperature and CRU precipitation in this study (or CRU
data). The data are 0.5° by 0.5° for global land areas
excluding Antarctica and have been detailed by New et al.
[1999].

[1a] The International Geosphere Biosphere Programme
(IGBP) Global NPP Model Intercomparison Data (abbrevi-
ated to IGBP data here) were used to intercompare the
simulated NPP of the two-way coupled model AVIM-
GOALS. Global Primary Production Data Initiative
(GPPDI) Gridded NPP Data (abbreviated to GPPDI data)
were adopted to validate the NPP simulations of the global
two-way coupled model. All of the annual mean IGBP and
GPPDI NPP data were taken from the Website of ISLSCP I
with the resolution of 0.5° by 0.5°. Global terrestrial half-
degree IGBP data were derived from the original data
containing gridded average NPP for 17 global models of
biogeochemistry [Cramer et al., 1999]. GPPDI data [Olson
et al., 2001; Zheng et al., 2003] contain 2335 half degree
cells, and the field NPP data used to develop 0.5° grid cell
estimates come from 15 sources worldwide.
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[15] To compare and evaluate the simulated NPP spatial
pattern, other NPP data from two global biogeochemical
models (CASA and GloPEM), remote sensing data
(MODIS NPP) and estimated NPP (ORNL NPP) were
adopted in this study. CASA and GloPEM are two repre-
sentative satellite-based models participating in IGBP NPP
Model Intercomparison, and they are driven by NOAA/
AVHRR data. The uniqueness is the entire model uses of
satellite data of GIoPEM without using any climatic driven
variables observed on the ground [Cramer et al., 1999]. The
multiyear averaged global NPP of CASA model at half
degree resolution [Potter, 1999; Potter et al., 2003] can be
downloaded at the Website ftp://geo.arc.nasa.gov/pub/
glemis/glemis_05/. The global NPP of the GloPEM model
at 8 km spatial resolution [Prince and Small, 2003] can be
found at the Website http://glcf.umiacs.umd.edu/data/
glopen/. The multiyear mean GloPEM NPP has been
aggregated to global 0.5° grid cell in this study. Improved
global 1 km MODIS NPP data averaged during 2000—-2003
[Zhao et al., 2006] can be downloaded at fip:/fip.ntsg.
umt.edw/.autofs/MODIS/.5/MOD17A3.105.LATEST/. The
data were aggregated to global half degree by Dr. Zhao
for our study. The estimated ORNL NPP data for global
2335 0.5-grid cells [Zheng et al., 2004} were taken from
Oak Ridge National Laboratory Distributed Active Archive
Center (ORNL-DAAC), which is an update version of the
GPPDI data and cover more areas of the three countries in
this study.

3. Results and Analysis

3.1. Spatial Distribution of Global and Regional NPP
at the Country Level

[16] Prior to presenting the global and the country-level
NPP distribution, we make a short validation between the
CRU data and the relevant simulations of the global climate.
Figure 1 shows the temperature and precipitation of CRU
data and the two-way coupled model, and the difference
between simulated climate interpolated to a half degree
using the bilinear interpolation method and CRU data is
also presented. The globally annual mean temperature of
AVIM-GOALS (Figure la) agrees with CRU temperature
(Figure 1b), however, some marked regional biases exist
across the globe, such as the cold bias of up to 8°C at
northern high latitudes, especially in Eurasia and Greenland
(Figure le). The lower surface air temperature can be
attributed to the insufficient incident radiation in the region
with underestimated downward shortwave radiation [Zhang
et al., 2002]. A strong warm bias up to 8°C (Figure le)
occurs along Tibetan Plateau because of the lower surface
albedo of thin snow coverage. The simulated annual mean
precipitation (Figure 1c) is generally consistent with CRU
data (Figure 1d) in the global spatial distribution, but some
regional biases are present (Figure 1f). The simulation in the
tropical rain forests of Africa, Southeast Asia and South
America is higher than CRU precipitation and magnitudes
possibly exceeding 4 mm/day. The 2 mm/day overestimated
precipitation occurs in eastern China and Australia, and a
slightly lower simulation in eastern USA. The area-
averaged temperature and precipitation at global and re-
gional scale excluding Antarctica (Tables 2 and 3) shows
the overall agreement with CRU data in magnitude despite
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(a) Annual mean surface air temperature of the coupled model; (b) annual mean CRU air

temperature from ISLSCP II, with units of °C; (c) annual mean precipitation of the coupled model;
(d) annual mean CRU precipitation from ISLSCP II, with units of mm/day; (¢) annual mean simulated
temperature minus CRU temperature; and (f) annual mean simulated precipitation minus CRU
precipitation. (Correlation coefficients of global climatological state are 0.96 for simulated and observed
temperature and 0.73 for precipitation, at 99.9% confidence level of t-test.)

the discrepancy of generally higher simulated temperature
and precipitation. The global and regional differences
between simulated climate and CRU data are comparable
to other GCM simulations in the magnitude of the discrep-
ancy with observations, such as the global climate simula-
tion of Foley et al. [1998]. The spatial correlation
coefficient between simulation and observation is another
method to evaluate the performance of the GCM or RCM
[Zhou and Qian, 1995; Lau and Nath, 2004] because it can
represent the degree of agreement between two spatial
patterns of temperature or precipitation [Haywood et al.,
1997]. The global spatial correlation coefficient is 0.96 for

temperature and 0.73 for precipitation, which accounts for
the fact that precipitation is inherently much nosier spatially
than temperature. The values are similar to the coefficients
of temperature and precipitation in previous studies, e.g.,
0.92/0.5 for GCM and 0.94/0.7 for RCM of Ju and Wang
[2006].

[17] NPP means the amount of net fixed carbon by
vegetation per unit area and per unit time. The vegetation
utilizes the photosynthetic active radiation from sunlight to
convert the CO, into dry matter, which contains the matter
and energy for the basic needs of humans. It is a major
determinant of carbon sink on land and in the ocean, and a
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Table 2. Area-Averaged Surface Air Temperature®
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Area
Time Global T Sim/Obs China T Sim/Obs USA T Sim/Obs Australia T Sim/Obs
DJF mean 6.38/5.70 -1.71/-4.17 —1.09/0.30 32.72/27.58
JJA mean 20.89/19.52 21.41/19.62 25.79/21.96 17.44/15.07
Annual mean 14.29/12.96 11.34/8.55 12.97/11.36 26.11/21.76

Units are °C. T, temperature; Sim, simulation; Obs, CRU observation data; DJF, December-January-February; JJA, June-July-August.

key regulator of ecological processes [Field et al., 1998].
Consequently, many studies [Tian et al., 1999; Cox et al,
2000; Nemani et al., 2003; Lu and Ji, 2006] have been done
to determine a quantitative estimate of global and regional
NPP, especially under the background of global warming.

[18] Global terrestrial NPP of AVIM-GOALS, IGBP data
and MODIS data are shown in Figures 2a—-2c. The model
intercomparison NPP data (IGBP data) averaged for all 17
models is considered to a comprehensive representation of
NPP fluxes [Cramer et al., 1999]. MODIS NPP is the first
continuous satellite-driven data set for repeated monitoring
of global vegetation productivity at 1-km resolution over
vegetated land at an 8- day interval [Zhao et al., 2005,
2006]. The simulated NPP is similar to the IGBP data and
MODIS NPP, with the hlghest NPP (>1000 g C m™
year ') in the troplcal ram forests, the intermediate NPP
(500-700 g C m~ 2 year™ ) m temperate regions, and the
lowest NPP (<200 g C m™ 2 year™ Y in the cold or arid
regions. However, the simulated NPP in boreal forests and
tundra exhibits an obviously lower NPP belt (same hereaf-
ter), which is mainly due to the cold bias (Figure la)
limiting the vegetatlon growth especially in boreal summer.
For instance in northwest Europe (10 20°E), the simulated
NPP can be 200 g C m™~ year ! Jower than IGBP data
south of 63°N. When validating the simulated NPP further
in Sweden using GPPDI data (figure not shown here), we
found that the simulated NPP in southen Sweden (56—
63°N and centered 15°E) appears to be around 120 g C m™?
year~! lower because of the cold bias, and IGBP data are at
least 150 g C m™2 year'l overestimated, given that the
GPPDI NPP from field data is regarded as an actual
distribution. In the Southermn Hemisphere, the simulated
NPP south of 15°S in Africa is larger than IGBP data
mainly because of the vegetation type classification of
broadleaf trees in contrast with the shrublands or grassland
in other models such as C3 and C4 grasslands of BIOME-
BGC [Running and Hunt, 1993; Hunt et al., 1996]. The
broadleaf trees under overestimated temperature and pre-
cipitation can lead to the higher NPP simulation.

[19] For the sake of deep validation of NPP in spatial
pattern, we present the simulated NPP of China, USA and
Australia because GPPDI data do indeed have measured
values in these three countries (available data is sparse over

Table 3. Arca-Averaged Precipitation®

China). Figure 3 shows the simulated NPP (Figure 3a),
IGBP data (Figure 3d) and MODIS NPP (Figure 3e) in
China. To compare the simulated NPP to other models,
regional NPP of CASA and GIoPEM is also presented in
Figures 3b and 3c. The simulated NPP in eastern China
south of 35°N is consistent with IGBP and MODIS data in
that the magmtude is larger than 500 g C m™~ 2 year ' and
reaches 700 g C m 2 year! more in southern China, which
reflects the relatively large carbon flux in this area
corresponding to the largest water and heat conditions for
vegetation growth over China. The CASA and GloPEM
model shows the similar spatial pattern with the exception
of generally higher value of GloPEM and lower of CASA in
southern China. The spatial pattern is reasonable compared
to the modeled result of Tzo et al. [2003] using the NOAA
NDVI in the CEVSA model [Cao and Woodward, 1998] to
calculate the climatological NPP distribution of China. Tao
et al. [2003] shows a similar pattern south of 35°N in China,
and other studies [e.g., Sun and Zhu, 2001; Chen et al.,
2002] use remote sensing data of vegetation to estimate the
terrestrial NPP of China, presenting the same NPP magni-
tude south of 35°N in China. However, the NPP in northeast
China simulated by AVIM-GOALS is much lower than
IGBP and MODIS data, especially north of 48°N, which
can be attributed to underestimated air temperature reaching
4°C. However, it is interesting to explore the actual NPP in
this area further. Jiang et al. [1999] used the ground-based
measurements of NPP from Forestry Ministry of China
[1994] to present the spatial distribution of NPP in China.
Their subdivided areas (9A, 9B and 10B) sum equivalent to
the area north of 48°N in thls stud?l shows the NPP ranging
from 301.5 to 342 g C m™? year The GPPDI data in this
area is mainly 350-400 g C m™ 2 year™!. The simulated
NPP of Tao et al. [2003] and the calculation of Wang et al.
[2001] using the model of Zhou and Zhang [1995] show
also the similar ranges. Consequently, we consider that the
value 350-400 g C m™? year~! seems to be the actual NPP
north of 48°N in northeast China, which is reflected in
MODIS data. The new calculated NPP of Cao et al. [2005]
using AVHRR land data and observational climate to drive
the GloPEM model over China (Figure 3f) and the NPP of
ORNL data (Figure 3g), present the same NPP magnitude in
this area. For the NPP distribution in western China, the

Area
Time Global P Sim/Obs China P Sim/Obs USA P Sim/Obs Australia P Sim/Obs
DJF mean 2.64/2.01 1.68/0.44 1.93/1.71 2.86/2.41
JJA mean 2.51/2.45 3.37/4.33 1.97/2.30 1.02/0.68
Annual mean 2.70/2.15 2.57/2.00 1.95/1.98 1.89/1.31

*Units are mm/day. P, precipitation; Sim, simulation; Obs, CRU observation data; DJF, December-January-February; JJA, June-July-August.
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Figure 2. Globally annual mean NPP of (a) the coupled model AVIM-GOALS, (b) IGBP Global NPP
Intercomparison data from ISLSCP II, and (c) MODIS NPP data. Units are g C m~2 year™".

simulated NPP west of 95°E agrees well with IGBP data
and the agreement is consistent with the work of Tao et al.
[2003].

[20] Figures 4a—4g present the simulated annual mean
NPP, modeled NPP (CASA and GloPEM), IGBP data,
MODIS data, GPPDI data and ORNL data of USA respec-
tively. Compared to the estimated and modeled NPP data
(CASA and GloPEM), the simulated NPP reproduces the
high NPP in the southeastern USA and low values in the
northwest. However, the simulated NPP in the central USA
south of 40°N is overestimated because of the high tem-
perature and precipitation. The maximum discrepancy is
located in northeast USA north of 36°N, where the simu-
lation is much lower than the IGBP data, GPPDI data and
ORNL data. The reason for the markedly lower magnitude
upto400gC m~2 year™! in the northeastern corner of USA
is complicated, since the annual temperature and precipita-
tion of the two-way coupled models agrees generally with
the CRU data. We assumed that one of the potential causes
is the radiation (not analyzed in this study) affecting the
photosynthetic active radiation (PAR) at the top of the
canopy, because the solar radiation in the eastern USA is
one potential climatic constraint to plant growth according
to Nemani et al. [2003]. It is interesting that the MODIS
data in northeastern corner (Figure 4e) are also lower than
GPPDI and ORNL data, which demonstrates the compli-
cated NPP distribution for different data sets and the
necessity of validating NPP at a regional scale.

[21] The simulated and other NPP data over Australia
(not including Tasmania) are shown in Figure 5. All of the

NPP values show the decreasing trend from east, north and
southwest to central Australia. NPP of the coupled model
shows intermediate values, with magnitudes ranging
between CASA and GIoPEM in most regions. The simu-
lated NPP in eastern part can reach 800—-1100g C m~2year™"
similar to the IGBP and MODIS data, which reflects the
sufficient heat and water conditions for vegetation growth,
but the simulation band is much wider than the IGBP and
MODIS data with the highest NPP located along the
eastern coasts. According to the document of ISLSCP I
for the GPPDI data, there are possible lower estimates of
belowground NPP (consequently for total NPP as well) for
shrubland cells in Australian data because of application of
belowground/aboveground carbon allocation method
[Raich and Nadelhoffer, 1989] that is more suitable for
forest ecosystems. We can see that the GPPDI data in
central Australia are almost below 100 g C m™? year™
(Figure 5f); the simulation, IGBP and MODIS data can
range from 200 to 300 g C m™ year™!, and this
discrepancy maybe reflects the possible underestimate of
the GPPDI NPP in this area.

[22] To compare the NPP magnitude at global and na-
tional levels, area-averaged NPP for all models and esti-
mated data is presented in Table 4. Compared to the global
and regional averaged NPP of IGBP and MODIS data, the
simulation shows the agreement in global NPP, lower NPP
magnitudes in China and USA, and higher magnitudes in
Australia. The reason is the underestimated NPP of boreal
forests in northeast China and northeast USA, and the wider
distribution of high NPP in eastern Australia affected
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Figure 3. Annual mean NPP over China of (a) AVIM-GOALS, (b) CASA, (c) GloPEM, (d) IGBP
Global NPP data from ISLSCP II, (¢) MODIS NPP data, (f) GIoPEM from Cao et al. [2005], and
(g) ORNL estimated data. Units are g C m™~ year |
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Figure 4. Annual mean NPP over USA of (a) AVIM-GOALS, (b) CASA, (c) GloPEM, (d) IGBP
Global NPP data from ISLSCP II, (¢) MODIS data, (f) GPPDI Gridded data from ISLSCP II, and (g)
ORNL estimate data. Units are g C m ™~ year ', (h) Land cover classifications over USA (see Table 1 for

the specification).

mainly by overestimated precipitation. The simulated NPP
lies between CASA and GLoPEM modeled values at global
and regional scale. The values of Cao et al. [2005] over
China and ORNL data over USA demonstrate the slightly
high NPP of China and 90 g C m™2 year—1 high in USA for

IGBP NPP data, whereas MODIS NPP shows an approx-
imate magnitude in the two countries. Global higher aver-
aged MODIS NPP in comparison to IGBP data results in
part from the high NPP of 5°S—30°N due to the lower vapor
pressure deficit (VPD) [Zhao et al., 2006]. To study the
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Table 4. Area-Averaged Annual NPP at Global and Country-Level Scale®

NPP Origin Global Average Average Over China Average Over USA Average Over Australia
AVIM-GOALS 447.47 330.83 309.13 459.33
CASA NPP 313.99 331.79 387.57 251.54
GloPEM NPP 744.84 745.66 814.78 664.49
IGBP NPP data 450.42 417.58 497.73 300.26
MODIS NPP data 505.85 405.50 409.36 354.27
Other NPP 391.14° 402.96°

*Units are g C m™ year™ .

"NPP value of Cao et al. [2005) over China using GloPEM model and ORNL data over USA.

spatial agreement between the simulated NPP and other
data, MODIS NPP was dealt with the referenced NPP to
calculate the correlation coefficients of NPP values. The
correlation coefficients have a high statistical significance of
99.9% in a student t-test and are shown in Table 5. For all
NPP values, the lowest correlation occurs in the USA. For
the three countries, AVIM-GOALS shows the largest cor-
relation in China, whereas CASA and GloPEM have largest
values in Australia. The correlation coefficient of AVIM-
GOALS is located between CASA and GloPEM for global
average. IGBP NPP shows the largest correlation at global
and the country-level scale in contrast with other NPP
sources. The coefficients reflect the agreement of AVIM-
GOALS NPP with MODIS data lies between CASA and
GIoPEM for global average, and IGBP NPP agrees spatially
well with MODIS data.

[23] In this study, a relative error term (RE), as adopted
by Zhao et al. [2006], was used to evaluate the simulated
NPP uncertainty at regional and global scale against IGBP
data, and RE equation is:

x 100% )
where P; is global and regional NPP of models, P, is IGBP
data, n is the number of grid cells. Table 6 presents the RE
values of AVIM-GOALS, CASA and GloPEM at global and
regional scale. A significant discrepancy exists for the three
models: AVIM-GOALS has positive RE values of globe and
Australia and negative in China and USA, whereas CASA is
negative and GIoPEM is positive at regional and global
scales. The simulated RE values are largest in Australia
(>60%) and relatively small in other regions. The global RE
value is a quantitative measure of the deviation between
AVIM-GOALS and IGBP NPP. This is comparable to
CASA and GIoPEM and the degree of departure from
global IGBP NPP in the coupled model is located between
the two models.

3.2. Zonal Average and Latitudinal-Seasonal Variation
of Global NPP

[24] Figure 6 is the globally zonal average for surface air
temperature, precipitation and NPP distribution. All zonal

Table 5. Correlation Coefficients Between NPP Values and
MODIS NPP Data in the Global and Country-Level Spatial Pattern

mean NPP values (Figure 6¢) show the similar latitudinal
variation pattern despite the different magnitude. The sim-
ulated NPP is close to IGBP and MODIS data except for
north of 45°N, and the magnitude varies between CASA
and GIoPEM in 45°N-50°S. The zonal mean temperature
over land south of 50°N is above 0°C, which is reflected in
the simulation and CRU temperature. The climatic factors
of temperature, precipitation and radiation (not analyzed
here) tend to be colimiting the plant growth [Nemani et al.,
2003]. This study only considers precipitation and temper-
ature at regional and global scales, which are the two major
climatic factors that govern the NPP of the biosphere
[Cramer et al., 1999; Tian et al., 1999]. In boreal regions,
the vegetation is mainly controlled by air temperature; in
temperate regions, the vegetation growth is affected by
temperature and precipitation; in subtropical and tropical
regions, the precipitation is the principal limiting factor for
the vegetation growth because of the sufficient surface heat
content. Consequently, the NPP discrepancy in Figure 6c is
related to the climate difference (Figures 6a and 6b). The
simulated zonal mean NPP north of 50°N is lower than the
IGBP and MODIS data, which reflects the lower tempera-
ture in this region. For the NPP distribution in the Arctic
Circle, the ecosystem is mainly tundra and the absolute
value of NPP is rather low, thus the magnitude of the NPP
discrepancy is not large despite the lower temperature up to
10°C. However, the question remains as to why the 30—
50°N zonal mean NPP is obviously smaller than the IGBP
and MODIS data since the simulated temperature is 1-2°
higher than the CRU data and the simulated precipitation is
slightly overestimated. Through careful analysis, we found
the cause originating over the Tibetan Plateau, where the
simulated strong warming bias more than 8°C (Figure le)
leads to the slight overestimate of zonal mean temperature
between 30 and 50°N, with the explanation being the thin
snow cover [Dan et al., 2005]. However, the obvious
warming in the Tibetan Plateau cannot cause the
corresponding NPP increase in full, because the land cover
is bare soil or sparse vegetation in arid regions. So the
underestimated temperature in other regions along this
latitude results in the well-defined decrease in NPP (e.g.,
northeast China for conifer forests, see Figure 3a). For the

Table 6. Relative Error Term (RE) of the Three Global Models
With Respect to IGBP NPP Data

NPP Origin Globe China USA Australia  Global/Regional RE AVIM-GOALS, % CASA, % GloPEM, %
AVIM-GOALS 0.77 0.76 0.57 0.63 Globe 20.01 —16.47 106.27
CASA NPP 0.82 0.64 0.64 0.80 China -20.71 —18.37 96.09
GloPEM NPP 0.72 0.65 0.45 0.70 USA -31.96 -16.78 107.32
IGBP NPP data 0.86 0.81 0.75 0.90 Australia 64.41 —10.58 161.36
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zonal mean NPP between 30°N-30°S, the NPP variation is
mainly controlled by precipitation change, and the over-
estimated NPP simulation (in contrast with IGBP and
MODIS data) generally corresponds to the increasing pre-
cipitation magnitude compared to CRU data (Figure 6b).

The 5°S—-30°N MODIS NPP is overestimated because of
the lower vapor pressure deficit [Zhao et al., 2006], thus it
presents NPP values which are too high between 20 and
30°N. By comparing the overall trend of zonal mean curves
of NPP with that of air temperature and precipitation, we
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Table 7. Zonal Mean of Annual NPP for Latitudinal Bands With 30° Interval®

NPP Origin 60-30°S Average 30°S-0° Average 0-30°N Average 30-60°N_Average 60—90°N Average
AVIM-GOALS 470.76 791.89 493.18 216.83 70.92
CASA NPP 311.71 564.86 318.93 253.68 146.73
GloPEM NPP 848.71 1182.55 846.09 626.59 387.35
IGBP NPP data 453.58 672.40 451.53 380.43 214.78
MODIS NPP data 506.32 737.38 678.61 325,78 180.13

*Units are g C m ™2 year™ .

found that the NPP variation across latitudes is more similar
to precipitation change than it is to temperature.

[2s] The zonal mean NPP in the latitudinal band is
generally consistent with IGBP and MODIS data (Table 7),
however, the values above 60°N is markedly underesti-
mated for the same reason for China and USA. The largest
NPP distribution was found between 30°S—30°N, whereas
the NPP of 0—30°N is smaller than that of 30°S—0 because
of more arid regions or deserts in the 0—30°N belt. The
simulated value is located between CASA and GloPEM
excluding the northern high latitude. This suggests again
that the simulated NPP magnitude varies generally between
the two global biogeochemical models and the latitudinal
NPP variation of the coupled model is reasonable in
comparison to IGBP and MODIS data. The high NPP of
MODIS data in the regions 30°S—-0 and 0—30°N has an
identical explanation to that of the 5°S—30°N.

[26] Figure 7 exhibits the month-to-month change of
climate and simulated NPP across latitudes. The latitudi-
nal-seasonal change of simulated air temperature agrees
well with the CRU temperature, with a discrepancy of 5°
overestimate between 30°S and 30°N. During June to
August in each semihemisphere, a temperature ridge exists
representing a cold peak in the Southern Hemisphere and a
warm peak in the Northern Hemisphere, especially pole-
ward of 30°S or 30°N. The simulated and CRU precipita-
tion shows the latitudinal-seasonal pattern similar to the
temperature and the main rain belt is located in the tropical
regions. The simulated monthly NPP with the magnitude
above 60 g C m~2 is mainly located in the 10°S—5°N
tropical belt, which corresponds to the largest air tempera-
ture and precipitation in this latitudinal zone. The NPP in
northern latitudes above 30°N shows the maximum value
during boreal summer related to the climate ridge especially
to temperature. The region poleward of 30°S has the
lowermost NPP during June to August, but it is not as
obvious as the peak of the Northern Hemisphere because of
the fact that most landmasses in the Southern Hemisphere
are mainly distributed within the relatively warm conditions
of 35°S. The NPP in the tropical latitudes exhibits no peaks
or conspicuous low values, which can be attributed to the
fact that the different seasonal patterns (but of similar
magnitudes) of NPP in Northern and Southern Hemisphere
oppose each other, acting as buffers. Also, the latitudinal-
seasonal variation of globally monthly NPP should be
correct when compared with the results of the 15 models
participating in the Potsdam NPP model Intercomparison
Workshop [Kicklighter et al., 1999].

3.3. Global NPP and Climate for Vegetation Type

{27] Tt is rather difficult to obtain global field data of NPP
to validate global or regional models, but use of the

averaged NPP by biome type is a valuable method to
evaluate the terrestrial NPP [Zhao et al., 2005]. The
intercomparison of NPP by vegetation types has been used
in many previous studies [Scurlock and Olson, 2002; Dan et
al., 2005; Zhao et al., 2005] and it proves to be a useful
validation method for global NPP distribution. Global NPP
averaged by biome types is shown in Figure 8a for 11
vegetation types excluding bare soil or desert, and the
vegetation classification can be found in Table 1. Similar
to NPP, the simulated and observed climate (temperature
and precipitation) for the 11 vegetation types is also
presented in Figures 8b and 8c.

[28] NPP of all sources show high values in tropical rain
forest (vegetation 1), broadleaf trees with ground cover
(vegetation 6) and crops (vegetation 12), which can be
attributed to the favorable climate conditions for vegetation
growth in the two former types and the human effects (e.g.,
irrigation) in the latter. The lower NPP occurs in arid or cold
regions (vegetation 9 and 10) with unfavorable growth
conditions of climate. The simulated NPP of AVIM-
GOALS in boreal forest (types 3—5) and tundra (type 10)
is lower than IGBP and MODIS NPP because of the
underestimated temperature, especially for vegetation type
5, and the simulated NPP of other vegetation types lies
generally between CASA and GloPEM. The averaged NPP
for all NPP sources (Figure 8a) is highly correlated to mean
climate of precipitation (Figure 8c) with a correlation
coefficient of 0.96, which is higher in magnitude and
statistical significance than those of temperature (0.59).
This shows that the NPP variation across global vegetation
types depends highly on precipitation and temperature is
generally the second climate constraint. The correlation
coefficients between the simulated and observed climate
(0.98 for temperature and 0.93 for precipitation) reflect the
good agreement of actual climate data to simulated climate
data across terrestrial ecosystem types excluding bare soil.
All the coefficients are conducted in a student t-test and the
significance level is shown in the Figure 8 legend.

[2] To evaluate further the uncertainty of NPP for biome
types in the variation amplitude, the maximum, minimum
and range (Max-Min-Ran) of NPP are presented in Figure 9.
The NPP range of AVIM-GOALS is higher than IGBP and
MODIS data, and the range of MODIS NPP corresponds
closely to that of mean NPP averaged in all NPP sources
(Figure 9a). The maximum and minimum simulations are
located in the intermediate position for the three global
models. The Max-Min-Ran of each NPP source minus that
of mean NPP is shown in Figure 9b. The simulated range
difference of AVIM-GOALS can be more than 100 g C m™>2
year™', and the Max-Min difference lies again between
CASA and GIoPEM. The comparison reflects that the
smallest discrepancy with respect to averaged NPP occurs
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g Cm~ month™ .

in MODIS NPP, and IGBP NPP is second to MODIS data.
Thus the Max-Min-Ran relative percentage (RP) with
respect to MODIS data is calculated as:

P i P m

m

RP = x 100% 3)
where P; is the Max-Min-Ran of three global models and
IGBP NPP, P,, is the Max-Min-Ran of MODIS NPP data.
The RP values of AIVM-GOALS (Figure 9c) lie within
+20% and resemble those of IGBP NPP data, which reflects
the relative agreement with IGBP and MODIS data. The
absolute RP value of GIoPEM range is the smallest in the
three global models and agrees well with IGBP and MODIS
data. The Max-Min RP value of AVIM-GOALS is located
between CASA and GloPEM. The absolute RP values of

IGBP data are lower than 15%, which shows the closest
agreement with MODIS data.

[30] Finally, the correlation coefficient (Corr) between
NPP and the observation climate is calculated to explore
the relationship of global NPP with temperature and pre-
cipitation for vegetation types. All the coefficients and their
significance level in a student t-test are presented in Table 8.
The Corr of all NPP with precipitation is statistical high
compared to that of temperature. The Corr of temperature
for the simulated NPP is highest in all NPP sources, and the
Corr of precipitation is smallest compared to that of other
NPP sources. This reflects that the NPP variation of global
vegetation types in the coupled model is more related to
temperature than other NPP data, which helps to understand
the lower simulated NPP at northem high Iatitudes due to
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coefficient between the simulated climate and CRU data at
99.9% significance level; corr_Ts, correlation coefficient of
mean NPP with mean temperature at 90% significance
level; corr_Prp, correlation coefficient of mean NPP with
mean precipitation at 99.9% significance level.)

the underestimated temperature. The Corr of MODIS data
shows the highest correlation with temperature and precip-
itation and equals nearly to the Corr of mean NPP, which
exhibits the high dependence on temperature and precipita-
tion across global biome types. IGBP Corr shows stronger
correlation with precipitation than temperature, as opposed
to MODIS data.

[31] For all NPP sources, vegetation type 8 (broadleaf
shrub with ground cover) is the main type leading to the
lower Corr with climate. To show this effect, the Corr
removing type 8 is shown in Table 9. The simulated Corr
for precipitation increases to 0.95, and the Corr of other
NPP data increases markedly for temperature, especially in
CASA model. This reflects the different mechanism of
vegetation type 8 related to climate: controlled by precip-
itation and not simulated well in the coupled model;
controlled mainly by temperature and possibly not captured
well in other two global models, IGBP and MODIS data.

4. Conclusions and Discussion

{32] The global model NPP, ranging from 39.9 to 80.5 Pg
C year™ Y [Cramer et al., 1999), indicates a large uncertainty
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from MODIS data. (Max, maximum; Min, Minimum; Dif]
difference; Prt, percentage.)

[4hl et al., 2005]. Consistent data on terrestrial NPP are
urgently needed to constrain model estimates of carbon
fluxes and hence to refine our understanding of ecosystem
responses to climate change [Scurlock and Olson, 2002].
However, because of the long-term deficiency of global data
[Zheng et al., 2003; Zhao et al., 2005], the model NPP
validation is not implemented fully and maturely at global
and regional scales as are the validations of climatic
simulations. Many discrepancies exist for global NPP
estimates, such as in the tropical rain forests, the max1mum
of 850 g C m~2 year™! for Field et al. [1998], 964 g C m™

year ' for Cao and Woodward [1998], 1500 g C m™~

Table 8. Correlation Coefficients Between All NPP and CRU
Climate by Global Vegetation Type®

Corr_Ts and the

Corr_Prp and the

NPP Origin Significance Level Significance Level
AVIM-GOALS 0.76 (99%) 0.88 (99.9%)
CASA NPP 0.46 (80%) 0.97 (99.9%)
GloPEM NPP 0.60 (99%) 0.90 (99.9%)
IGBP NPP data 0.47 (80%) 0.97 (99.9%)
MODIS NPP data 0.60 (95%) 0.97 (99.9%)
Mean NPP 0.61 (95%) 0.96 (99.9%)

“Ts, air temperature; Prp, precipitation. The significance level in the
parentheses is obtained in a student t-test.
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Table 9. Correlation Coefficients Between All NPP and Climate
as Table 8 but for Excluding Vegetation Type 8 of Broadleaf Shrub
With Ground Cover

Corr_Ts and the Corr_Prp and the

NPP Origin Significance Level Significance Level
AVIM-GOALS 0.77 (99%) 0.95 (99.9%)
CASA NPP 0.61 (50%) 0.96 (99.9%)
GloPEM NPP 0.71 (98%) 0.90 (99.9%)
IGBP NPP data 0.63 (95%) 0.97 (99.9%)
MODIS NPP data 0.73 (98%) 0.97 (99.9%)
Mean NPP 0.71 (99%) 0.97 (99.9%)

year~! for Goetz et al. [2000], 1672 g C m~2 Plear—l for
Bonan et al. [2003] and 1000 g C m 2 year ' for Zeng
[2003]. There is a need for improved understanding of the
factors that influence the variability of NPP model estimates
at different scales so the accuracy of NPP estimated at the
global scale can also be improved [4hl et al., 2005].
Consequently, the model validation for NPP estimates and
the exploration of the NPP variation related to climate
change is very important.

[33] In this study, we used the modeled and estimated
NPP (including IGBP and GPPDI) data to compare and
validate the simulated global NPP with the two-way
coupled model between biosphere and atmosphere. By
comparing the spatial pattern of NPP at global and the
country-level scale (China, USA and Australia), we found
the general consistency of the simulation with IGBP and
MODIS data. The global NPP distributions of the model
simulations from low, mid to high latitudes were reasonable,
compared to the spatial pattern of previous studies [Field et
al., 1998; Kicklighter et al., 1999; Running et al., 1999,
Bonan et al., 2003; Zeng, 2003). The underestimated air
temperature limiting the vegetation growth in the northern
high latitudes leads to the lower simulated NPP. The
simulated NPP south of 15°S in Affica is larger than the
IGBP and MODIS data and it results from the classification
of different ecosystem types; that is, the land cover type is
mainly broadleaf trees as the SSiB model [Xue et al., 2004],
whereas the shrublands or grasslands are distributed in
many other models. The zonal mean NPP values of the
simulation in each latitudinal band with 30° interval show
the consistency with IGBP and MODIS data except the
obviously lower estimate poleward of 60°N.

[34] The country-level NPP was compared and validated
using IGBP data, GPPDI data, two global model NPP and
ORNL estimate data with the global 0.5° cell. In China, the
simulated NPP corresponds well to the IGBP and MODIS
data in the spatial pattern with NPP >500 g C m™? year ™"
south of 35°N in eastern China and up to 700 g C m™*
year~' more in southern China, which is reproduced in the
new calculation using GloPEM [Cao et al., 2005]. However,
in northeast China, the simulated NPP is underestimated
(caused by a cold bias) even reaching lower 200 g C m™?
year~' north of 48°N compared to IGBP and other modeled
and estimated data. By carefully comparing the simulation,
IGBP data and GPPDI data north of 48°N in northeast
China to previous relevant studies [e.g., Tao et al., 2003;
Jiang et al., 1999], we found that the actual NPP in this
region may be 350—400 g C m ™2 year™'. The NPP value of
Cao et al. [2005], MODIS and ORNL data also supports
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those values in this area. In the USA, the simulated NPP
shows roughly an overall agreement with the IGBP and
GPPDI data, but the simulation cannot capture the west-east
gradients between 95 and 105°W because the simulated
precipitation cannot capture the 1-2.5 mm/day gradient in
this area, unlike with CRU data. As a result, along with the
north-south gradient impact of air temperature, the west-east
NPP band is not shown in the simulation. In Australia, the
simulated NPP corresponds to the modeled and estimated
data with the large values in the eastern, northern and
southwestern belts. The simulated NPP, IGBP and MODIS
data in central Australia (200-300 g C m~2 year™ ) reflect
the possible underestimate of NPP in GPPDI data (<100 g C
m~2 year™") depicted in the document from ISLSCP II, but
whether or not the NPP value of 200-300 g C m™~ year™ !
is more actual is a decision not to be taken lightly,
considering the NPP distribution modeled by Wang and
Barrett [2003], which shows less than 200 g C m~2 year ™"
in central Australia.

[35] Every single model simulates the NPP with the
discrepancies from other models’ result and limited field
measurement, which demonstrates again the necessity of
model NPP validation against field data at regional and
global scales. As for the current data availability, besides
field or ground-based measured data, the multimodel en-
semble result is another effective and reliable choice for
model validation because the ensemble result (e.g., IGBP
NPP data in this study) produces better estimates of the real
value of NPP than any one particular model taken individ-
ually; this is similar to the ensemble results of climate
simulations (chapter 9 of the third IPCC report) and surface
hydrological simulations [Gordon et al., 2004]. The relative
error term (RE) is one quantified criteria to evaluate the
model NPP discrepancy against the ensemble result or field
data. Compared to IGBP NPP data, the RE values of the
coupled model lie around £20% across the globe and over
China, respectively, and more than —30% in the USA and
60% in Australia. This reflects that the best agreement with
IGBP data is over the entire globe and China, and the large
deviation occurs in the USA and Australia. However, the
overall RE values can be compared to those of CASA and
GloPEM and are located in the intermediate position at
global scale. The area-averaged NPP and correlation coef-
ficients with MODIS data at global and regional scales
again reveal that the values of AVIM-GOALS lie generally
between the two global models. All the values above show
the reasonable overall simulation capacity of the coupled
model to capture spatially global and regional NPP in
contrast with modeled and estimated NPP.

[36] The response of ecosystem processes at regional and
global scales to changing climate is the central theme in the
analysis of global change [Tian et al., 1999]. We also
compared the globally zonal mean NPP using IGBP data,
MODIS data and NPP of two global models and studied the
relationship between NPP and climate. The simulated NPP
is consistent overall with the NPP data and is lower than
IGBP and MODIS data north of 30°N, which is due to the
underestimated air temperature (excluding the 30-50°N
warm bias of the Tibetan Plateau). In view of the overall
latitudinal variation, the global terrestrial NPP corresponds
more closely to the precipitation than the air temperature for
all NPP data. The month-to-month variation of NPP across
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latitudes reflects the seasonal variation of temperature and
precipitation, and the seasonal variation in Northern Hemi-
sphere is more obvious than that of the Southern Hemi-
sphere. The global NPP of all data for vegetation types is
more strongly correlated to precipitation (higher correlation
coefficients at 99.9% significance level) than to tempera-
ture, which shows that the climatic effect of moisture is
generally the principal limiting factor for global vegetation
types. The work of Lu and Ji [2006] using AVIM in
Northeast China Transect (NECT) presents also the high
dependence of moisture including precipitation for spatial
distribution of NPP.

[37] To quantify the global and regional NPP is a chal-
lenge, however, though it is one useful and reliable way to
validate the NPP values with the synthesized NPP as
suggested by Zhao et al. [2005). The globally averaged
NPP of AVIM-GOALS is 447 47 g C m~? year' and
agrees with the 450.42 g C m~? year™ ' of IGBP data, but
the regional mean NPP is underestimated over China and
USA and overestimated over Australia. Global total NPP is
meaningful for the global carbon cycle because carbon sinks
result from an increase in global terrestrial NPP [Nemani et
al., 2003; Zhao et al., 2005]. The simulated global terrestrial
total NPP of 53.4 Pg C year™' is close to the 54.9 Pg C
year ! of IGBP data and it approximates the value of other
literature [e.g., Cao and Woodward, 1998; Nemani et al.,
2003]. The simulated and IGBP data averaged over Chlna
are 330.83/417.58 g C m™2 year™ ', whereas other studies
[Xiao et al., 1998; Sun and Zhu, 2001 Cao et al., 2003,
2005; He et al., 2005] present different values below 400 g
C m™2 year™'. Thus the IGBP value appears to be over-
estimated to an extent, partly because of the high NPP in
northeast China, and the mean value of China below 400 g
C m™2 year™' may be closer to the truly correct result.
Compared to the regional estimate of forest NPP from
Resource Planning Act/Forest Inventory and Assessment
(RPA/FIA) and CASA model driven with satellite data
[Hicke et al., 2002], the NPP of IGBP data averaged over
USA seems reasonable with the value of 497.73 g C m™
year . However, compared to the longer time (1900—
1993) mean NPP from the supplementary information of
Nemani et al. [2002] the IGBP data of USA appear to be
about 90 g C m~2 year™! high. The ORNL NPP averaged
over the USA reveals the higher IGBP data as well. The
simulated NPP over the USA in the coupled model AVIM-
GOALS is underestimated because of the lower NPP north
of 42°N. For the NPP averaged over Australia, it is difficult
for us to draw a definite conclusion because the national-
level NPP varies considerably, similar to that in the work of
Roxburgh et al. [2004] (who presented twelve model
estimates of long- term annual total NPP ranging from
0.67 to 3.31 Pg C year™'). We make a roughly hypothetical
calculation with the ratio of the areas of Australia to global
land areas (0.0502) and using the method of Raupach and
Moran [1998] we found that the global terrestrial total NPP
for the simulation and IGBP data multiplied by 0.0502 is
2.68 and 2.76 Pg C year_', and the two total NPP values of
the Australian continent seem to be within the range
presented by Roxburgh et al. [2004]. On the basis of the
analysis above, we can conclude that the global and
national-level mean NPP should be validated further in
future with more field data as suggested by Cao et al
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[2003]. Also, the regional mean NPP shows more uncer-
tainty than the global average.

[38] Generally speaking, the simulated NPP is accurate in
the global distribution. However, at a national scale, it
shows the regional bias due to the different impacts of
climate, such as the underestimate in northeast China caused
by cold bias and not reproducing the 95—105°W west-east
gradient in the USA from the spatial weakness of precipi-
tation. Correlation and relative error term (RE) were used to
evaluate the simulated NPP at global and regional scale and
show the similar spatial strength and weakness of simula-
tion. In contrast with the regional correlation with MODIS
data, the coupled model simulates NPP better over China
than USA and Australia. This can also be reflected in the
RE values of AVIM-GOALS with respect to IGBP data.

[39] IGBP and GPPDI data show the good spatial pattern
for the distribution of NPP, even at the national scale.
Compared to previous literature and estimated data, IGBP
data capture the reasonable NPP magnitude from the re-
gional scale in China, USA and Australia, up to global
estimate. Its highest correlation coefficient with MODIS
data (0.75 of USA to 0.90 of Australia) in all modeled NPP
shows the best reasonable global and regional spatial
structure in contrast with the three global models. The
relative percentage of maximum, minimum and range for
NPP across global vegetation types with respect to MODIS
data is between +15%, reflecting the best and smallest
variation amplitude in all modeled NPP values. However,
the deficiency appears to be the slight overestimate of NPP
in northeast China. Compared to data of Cao et al. [2005],
previous literature, MODIS data and ORNL data, IGBP
NPP north of 48°N in northeast China seems to be at least a
50 g C m~?2 year_1 overestimate. For IGBP NPP across
global vegetation type, vegetation type 8 affects the corre-
lation with CRU temperature markedly and lowers the
correlation coefficient significantly; however the explana-
tion for this effect is complicated and will not be discussed
here. GPPDI data obtained from field data exhibit finer
distribution at regional scales such as in the USA. The field
data can guarantee the high quality of the GPPDI data from
the perspective of data source, but the carbon allocation
method in central Australia leads to the poss:ble underesti-
mate of approximately 100 g C m™* year ' as described by
the ISLSCP II document, and the lower NPP may be true in
contrast to that of MODIS data, IGBP data and CASA
model.

[40] Admittedly, MODIS data are also not the global
observation NPP. However, the NPP estimate from satellite
data is potentially accurate for global NPP distribution
[Zhao et al., 2006] and can provide good quality data for
the validation of model NPP. Thus we can use MODIS NPP
as a reference to compare the spatial distribution between all
modeled NPP and IGBP data, especially the relationship for
global vegetation types. MODIS NPP used in this paper is
averaged during 2000-2003, and strictly speaking, the
4-year mean has inconsistency to a degree compared with
the multiyear mean NPP of other global models. However,
for current global NPP data available, use of MODIS data is
a good choice to validate the NPP simulation from global
climate-vegetation models, especially in global and regional
spatial distributions. This comparison method with insuffi-
cient duration is similar to the work of Zhao et al. [2006]
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using 2- or 3-year mean MODIS NPP from the year of 2000
to compare against EMDI NPP data. On the other hand,
considering the increase of NPP in northeast China since the
1980s [Cao et al., 2003, 2005], MODIS data in this region
should be higher than NPP in the 1980s. However, MODIS
NPP in northeast China is lower than IGBP data and this
discrepancy again supports the overestimated IGBP NPP in
this region. Global models of GloPEM and CASA with
different moisture schemes for NPP controlling may esti-
mate high and low global NPP, respectively [Cramer et al.,
1999]. The discussion of the discrepancy in the two models
is out of the scope of this study. In other words, the models
were just used in a comparison for global and regional NPP
simulation in spatial pattern to show the model performance
of AVIM-GOALS in contrast with other representative
global biogeochemical models.

[41] The coarse resolution of GOALS GCM due to time-
consuming calculation exerts some limit on the NPP sim-
ulation resulting from the land-sea border control (e.g., in
the western coast areas of USA and Australia), but it does
not influence much of the study as presented in this paper at
global and regional scales. The higher resolution of GCM
should be coupled to simulate terrestrial NPP distribution
and variation at global/regional scales. Fortunately, the R42
L9 GOALS GCM with the grid approximately 2.815°
longitude by 1.67° latitude has been developed and is in
progress [Wu et al., 2003], and we think the finer resolution
of a two-way coupled model in the future will improve the
simulated NPP distribution at the regional scale to an extent,
such as the closer capture of spatial heterogeneity in
contrast to other model and estimated data, with the finer
resolution of AVIM (better for 0.5° by 0.5°).

[42] In fact, the actual global observation of NPP distri-
bution data is still unavailable at present. For instance, the
GPPDI data derived from field measured NPP can provide
the data for model validation only in some regions such as
the three countries in this study (scattered, sparse data in
China), and there are no records with 0.5° in many regions
of the globe. As a result, the NPP data, which incompletely
covers the surface of the globe, causes some limitations on
our model validation, and hence the validation should be
carried out further with more field data aggregated to the
appropriate spatial scale suitable for model validation in the
future.
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